1
|
Li S, Agathokleous E, Li S, Xu Y, Xia J, Feng Z. Climate gradient and leaf carbon investment influence the effects of climate change on water use efficiency of forests: A meta-analysis. PLANT, CELL & ENVIRONMENT 2024; 47:1070-1083. [PMID: 38018689 DOI: 10.1111/pce.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Forest ecosystems cover a large area of the global land surface and are important carbon sinks. The water-carbon cycles of forests are prone to climate change, but uncertainties remain regarding the magnitude of water use efficiency (WUE) response to climate change and the underpinning mechanism driving WUE variation. We conducted a meta-analysis of the effects of elevated CO2 concentration (eCO2 ), drought and elevated temperature (eT) on the leaf- to plant-level WUE, covering 80 field studies and 95 tree species. The results showed that eCO2 increased leaf intrinsic and instantaneous WUE (WUEi, WUEt), whereas drought enhanced both leaf- and plant-level WUEs. eT increased WUEi but decreased carbon isotope-based WUE, possibly due to the influence of mesophyll conductance. Stimulated leaf-level WUE by drought showed a progressing trend with increasing latitude, while eCO2 -induced WUE enhancement showed decreasing trends after >40° N. These latitudinal gradients might influence the spatial pattern of climate and further drove WUE variation. Moreover, high leaf-level WUE under eCO2 and drought was accompanied by low leaf carbon contents. Such a trade-off between growth efficiency and defence suggests a potentially compromised tolerance to diseases and pests. These findings add important ecophysiological parameters into climate models to predict carbon-water cycles of forests.
Collapse
Affiliation(s)
- Shenglan Li
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Shuangjiang Li
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Yansen Xu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Jiaxuan Xia
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhang J, Liang M, Tong S, Qiao X, Li B, Yang Q, Chen T, Hu P, Yu S. Response of leaf functional traits to soil nutrients in the wet and dry seasons in a subtropical forest on an island. FRONTIERS IN PLANT SCIENCE 2023; 14:1236607. [PMID: 38143586 PMCID: PMC10748499 DOI: 10.3389/fpls.2023.1236607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
Introduction Island ecosystems often have a disproportionate number of endemic species and unique and fragile functional characteristics. However, few examples of this type of ecosystem have been reported. Methods We conducted a comprehensive field study on Neilingding Island, southern China. The leaf samples of 79 subtropical forest tree species were obtained and their functional traits were studied in the dry and wet seasons to explain the relationships between plant functional traits and soil nutrients. Results We found a greater availability of soil moisture content (SMC) and nutrients in the wet season than in the dry season. The values of wet season soil available phosphorus (5.97 mg·kg-1), SMC (17.67%), and soil available potassium (SAK, 266.96 mg·kg-1) were significantly higher than those of the dry season. The leaf dry matter content, specific leaf weight, leaf density, leaf total carbon, leaf total nitrogen, leaf total calcium, and the N/P and C/P ratios of leaves were all significantly higher in the dry season than in the wet season, being 18.06%, 12.90%, 12.00%, 0.17%, 3.41%, 9.02%, 26.80%, and 24.14% higher, respectively. In contrast, the leaf area (51.01 cm2), specific leaf area (152.76 cm2·g-1), leaf water content (0.59%), leaf total nitrogen (1.31%), leaf total phosphorus (0.14%), and leaf total magnesium (0.33%) were much lower in the dry season than in the wet one. There were significant pairwise correlations between leaf functional traits, but the number and strength of correlations were significantly different in the dry and wet seasons. The SAK, soil total phosphorus (STP), and pH impacted plant leaf functional traits in the dry season, whereas in the wet season, they were affected by SAK, STP, pH, and NO3- (nitrate). Discussion Both soil nutrients and water availability varied seasonally and could cause variation in a number of leaf traits.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Minxia Liang
- School of Ecology/State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Sen Tong
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Xueting Qiao
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Buhang Li
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Qiong Yang
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Ting Chen
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Ping Hu
- Guangdong Neilingding-Futian National Nature Reserve, Shenzhen, China
| | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| |
Collapse
|
3
|
Zhang Q, Fu S, Guo H, Chen S, Li Z. Climatic Warming-Induced Drought Stress Has Resulted in the Transition of Tree Growth Sensitivity from Temperature to Precipitation in the Loess Plateau of China. BIOLOGY 2023; 12:1275. [PMID: 37886985 PMCID: PMC10604754 DOI: 10.3390/biology12101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Ongoing climate warming poses significant threats to forest ecosystems, particularly in drylands. Here, we assess the intricate responses of tree growth to climate change across two warming phases (1910-1940 and 1970-2000) of the 20th century in the Loess Plateau of China. To achieve this, we analyzed a dataset encompassing 53 ring-width chronologies extracted from 13 diverse tree species, enabling us to discern and characterize the prevailing trends in tree growth over these warming phases. The difference in the primary contributors over two warming phases was compared to investigate the association of tree growth with climatic drivers. We found that the first warming phase exerted a stimulating effect on tree growth, with climate warming correlating to heightened growth rates. However, a contrasting pattern emerged in the second phase as accelerated drought conditions emerged as a predominant limiting factor, dampening tree growth rates. The response of tree growth to climate changed markedly during the two warming phases. Initially, temperature assumed a dominant role in driving the tree growth of growth season during the first warming phase. Instead, precipitation and drought stress became the main factors affecting tree growth in the second phase. This drought stress manifested predominantly during the early and late growing seasons. Our findings confirm the discernible transition of warming-induced tree growth in water-limited regions and highlight the vulnerability of dryland forests to the escalating dual challenges of heightened warming and drying. If the warming trend continues unabated in the Loess Plateau, further deterioration in tree growth and heightened mortality rates are foreseeable outcomes. Some adaptive forest managements should be encouraged to sustain the integrity and resilience of these vital ecosystems in the Loess Plateau and similar regions.
Collapse
Affiliation(s)
- Qindi Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Q.Z.); (S.F.); (H.G.)
| | - Shaomin Fu
- College of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Q.Z.); (S.F.); (H.G.)
| | - Hui Guo
- College of Life Sciences, Shanxi Normal University, Taiyuan 030031, China; (Q.Z.); (S.F.); (H.G.)
| | - Shaoteng Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China;
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China;
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi’an 710061, China
| |
Collapse
|
4
|
Qin J, Ma M, Shi J, Ma S, Wu B, Su X. The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:799. [PMID: 36613120 PMCID: PMC9819476 DOI: 10.3390/ijerph20010799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Forests represent the greatest carbon reservoir in terrestrial ecosystems. Climate change drives the changes in forest vegetation growth, which in turn influences carbon sequestration capability. Exploring the dynamic response of forest vegetation to climate change is thus one of the most important scientific questions to be addressed in the precise monitoring of forest resources. This paper explores the relationship between climate factors and vegetation growth in typical forest ecosystems in China from 2007 to 2019 based on long-term meteorological monitoring data from six forest field stations in different subtropical ecological zones in China. The time-varying parameter vector autoregressive model (TVP-VAR) was used to analyze the temporal and spatial differences of the time-lag effects of climate factors, and the impact of climate change on vegetation was predicted. The enhanced vegetation index (EVI) was used to measure vegetation growth. Monthly meteorological observations and solar radiation data, including precipitation, air temperature, relative humidity, and photosynthetic effective radiation, were provided by the resource sharing service platform of the national ecological research data center. It was revealed that the time-lag effect of climate factors on the EVI vanished after a half year, and the lag accumulation tended to be steady over time. The TVP-VAR model was found to be more suitable than the vector autoregressive model (VAR). The predicted EVI values using the TVP-VAR model were close to the true values with the root mean squares error (RMSE) < 0.05. On average, each site improved its prediction accuracy by 14.81%. Therefore, the TVP-VAR model can be used to analyze the relationship of climate factors and forest EVI as well as the time-lag effect of climate factors on vegetation growth in subtropical China. The results can be used to improve the predictability of the EVI for forests and to encourage the development of intensive forest management.
Collapse
Affiliation(s)
- Jushuang Qin
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Menglu Ma
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Jiabin Shi
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Shurui Ma
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Baoguo Wu
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Research Institute of Forestry Informatization, Beijing Forestry University, Beijing 100083, China
| | - Xiaohui Su
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| |
Collapse
|
5
|
Kilpeläinen J, Domisch T, Lehto T, Kivimäenpää M, Martz F, Piirainen S, Repo T. Separating the effects of air and soil temperature on silver birch. Part II. The relation of physiology and leaf anatomy to growth dynamics. TREE PHYSIOLOGY 2022; 42:2502-2520. [PMID: 35939341 PMCID: PMC9743009 DOI: 10.1093/treephys/tpac093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
The aboveground parts of boreal forest trees grow earlier in the growing season, the roots mostly later. The idea was to examine whether root growth followed soil temperature, or whether shoot growth also demanded most resources in the early growing season (soil temperature vs internal sink strengths for resources). The linkage between air and soil temperature was broken by switching the soil temperature. We aimed here to identify the direct effects of different soil temperature patterns on physiology, leaf anatomy and their interactions, and how they relate to the control of the growth dynamics of silver birch (Betula pendula Roth). Sixteen 2-year-old seedlings were grown in a controlled environment for two 14-week simulated growing seasons (GS1, GS2). An 8-week dormancy period interposed the GSs. In GS2, soil temperature treatments were applied: constant 10 °C (Cool), constant 18 °C (Warm), early growing season at 10 °C switched to 18 °C later (Early Cool Late Warm) and 18 °C followed by 10 °C (Early Warm Late Cool) were applied during GS2. The switch from cool to warm enhanced the water status, net photosynthesis, chlorophyll content index, effective yield of photosystem II (ΔF/Fm') and leaf expansion of the seedlings. Warm treatment increased the stomatal number per leaf. In contrast, soil cooling increased glandular trichomes. This investment in increasing the chemical defense potential may be associated with the decreased growth in cool soil. Non-structural carbohydrates were accumulated in leaves at a low soil temperature showing that growth was more hindered than net photosynthesis. Leaf anatomy differed between the first and second leaf flush of silver birch, which may promote tree fitness in the prevailing growing conditions. The interaction of birch structure and function changes with soil temperature, which can further reflect to ecosystem functioning.
Collapse
Affiliation(s)
- Jouni Kilpeläinen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Timo Domisch
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Tarja Lehto
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, 80100 Joensuu, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
- Natural Resources Institute Finland (Luke), Juntintie 154, 77600 Suonenjoki, Finland
| | - Françoise Martz
- Natural Resources Institute Finland (Luke), Ounasjoentie 6, 96200 Rovaniemi, Finland
| | - Sirpa Piirainen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| | - Tapani Repo
- Natural Resources Institute Finland (Luke), Yliopistokatu 6 B, Joensuu 80100, Finland
| |
Collapse
|
6
|
Yuan J, Yan Q, Wang J, Xie J, Li R. Different responses of growth and physiology to warming and reduced precipitation of two co-existing seedlings in a temperate secondary forest. FRONTIERS IN PLANT SCIENCE 2022; 13:946141. [PMID: 36311134 PMCID: PMC9614434 DOI: 10.3389/fpls.2022.946141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Warming and precipitation reduction have been concurrent throughout this century in most temperate regions (e.g., Northeast China) and have increased drought risk to the growth, migration, or mortality of tree seedlings. Coexisting tree species with different functional traits in temperate forests may have inconsistent responses to both warming and decreased precipitation, which could result in a species distribution shift and change in community dynamics. Unfortunately, little is known about the growth and physiological responses of coexisting species to the changes in these two meteorological elements. We selected two coexisting species in a temperate secondary forest of Northeast China: Quercus mongolica Fischer ex Ledebour (drought-tolerant species) and Fraxinus mandschurica Rupr. (drought-intolerant species), and performed an experiment under strictly controlled conditions simulating the predicted warming (+2°C, +4°C) and precipitation reduction (-30%) compared with current conditions and analyzed the growth and physiology of seedlings. The results showed that compared with the control, warming (including +2°C and +4°C) increased the specific area weight and total biomass of F. mandschurica seedlings. These were caused by the increases in foliar N content, the activity of the PSII reaction center, and chlorophyll content. A 2°C increase in temperature and reduced precipitation enhanced root biomass of Q. mongolica, resulting from root length increase. To absorb water in drier soil, seedlings of both species had more negative water potential under the interaction between +4°C and precipitation reduction. Our results demonstrate that drought-tolerant species such as Q. mongolica will adapt to the future drier conditions with the co-occurrence of warming and precipitation reduction, while drought-intolerant species will accommodate warmer environments.
Collapse
Affiliation(s)
- Junfeng Yuan
- Qingyuan Forest Chinese Ecosystem Research Network (CERN), National Observation and Research Station, Shenyang, China
- Chinese Academy of the Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoling Yan
- Qingyuan Forest Chinese Ecosystem Research Network (CERN), National Observation and Research Station, Shenyang, China
- Chinese Academy of the Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
| | - Jing Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin Xie
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Rong Li
- Qingyuan Forest Chinese Ecosystem Research Network (CERN), National Observation and Research Station, Shenyang, China
- Chinese Academy of the Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Ghafoor GZ, Sharif F, Khan AUH, Shahid MG, Siddiq Z, Shahzad L. Effect of climate warming on seedling growth and biomass accumulation of Acacia modesta and Olea ferruginea in a subtropical scrub forest of Pakistan. ECOSCIENCE 2022. [DOI: 10.1080/11956860.2021.1958536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gul Zareen Ghafoor
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Amin Ul Haq Khan
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | | | - Zafar Siddiq
- Department of Botany, Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| |
Collapse
|
8
|
Chen S, Holyoak M, Liu H, Bao H, Ma Y, Dou H, Jiang G. Effects of spatially heterogeneous warming on gut microbiota, nutrition and gene flow of a heat-sensitive ungulate population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150537. [PMID: 34844317 DOI: 10.1016/j.scitotenv.2021.150537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Effects of climate warming on trophic cascades are increasingly reported for large herbivores occupying northern latitudes. During the last 40 years, moose (Alces alces) in northeast China have lost nearly half of their historical distribution through their habitat shifting northwards. There are many possible causes of bottom-up and top-down effects of temperature and for moose in northeast China they are poorly understood. Of particular relevance are the effects of extrinsic environmental factors on gene flow, nutritional adaptions, and gut microbiota that occur as moose populations retreat northwards. We combined molecular biology, nutritional ecology and metagenomics to gain deeper mechanistic insights into the effects of temperature on moose populations. In this study, we revealed that the direction and intensity of gene flow is consistent with global warming driving retreats of moose populations. We interpret this as evidence for the northward movement of moose populations, with cooler northern populations receiving more immigrants and warmer southern populations supplying emigrants. Comparison across latitudes showed that warmer late spring temperatures were associated with plant community composition and facilitated related changes in moose protein and carbohydrate intake through altering forage availability, forage quality and diet composition. Furthermore, these nutrient shifts were accompanied by changes in gut microbial composition and functional pathways related to nutrient metabolism. This study provided insights into mechanisms driving effects of spatial heterogeneous warming on genetic, nutritional and physiological adaptions related to key demographic rates and patterns of survival of heat-sensitive ungulates along a latitude gradient. Understanding such changes helps to identify key habitat areas and plant species to ensure accurate assessment of population status and targeted management of moose populations.
Collapse
Affiliation(s)
- Shiyu Chen
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Hui Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; College of Forestry, Hainan University, Haikou 570228, China
| | - Heng Bao
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yingjie Ma
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Chaoyang, Beijing 100101, China
| | - Hongliang Dou
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Cabo S, Aires A, Carvalho R, Vilela A, Pascual-Seva N, Silva AP, Gonçalves B. Kaolin, Ascophyllum nodosum and salicylic acid mitigate effects of summer stress improving hazelnut quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:459-475. [PMID: 32648605 DOI: 10.1002/jsfa.10655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/27/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Various strategies are needed to mitigate the negative impact on or to increase fruit quality. The effect of spraying kaolin (K), Ascophyllum nodosum (An) and salicylic acid (SA), in trees with and without irrigation, on quality and sensorial attributes of hazelnut (Grada de Viseu cultivar) was investigated during two consecutive years (2016 and 2017) in a commercial orchard located in Moimenta da Beira, Portugal. RESULTS The treatments affected positively the biometric parameters nut and kernel weight, length, width, thickness and volume as well as the vitamin E level, antioxidant activity and content of some individual phenolics, such as protocatechuic acid, gallocatechin, catechin and epicatechin. The levels of amino acids in hazelnut kernels decreased in all the assayed treatments, while the kernel colour and sensorial attributes were not affected by the treatments. Hazelnut physical properties (nut and kernels), chemical and phytochemical composition and antioxidant activities were positively related. CONCLUSIONS The application of K, An and SA improved the hazelnut tree response to climate change, without compromising the hazelnut chemical and sensorial quality. Furthermore, due to the similar observations for the same treatments with and without irrigation, it can be stated that K, An and SA can be efficient and cost-effective tools to mitigate summer stress in rain-fed orchards. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sandra Cabo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Rosa Carvalho
- Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre, CQ-VR, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Núria Pascual-Seva
- Department of Plant Production, Universitat Politècnica de València, València, Spain
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
| |
Collapse
|
10
|
Wu T, Tissue DT, Li X, Liu S, Chu G, Zhou G, Li Y, Zheng M, Meng Z, Liu J. Long-term effects of 7-year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. GLOBAL CHANGE BIOLOGY 2020; 26:7144-7157. [PMID: 32939936 DOI: 10.1111/gcb.15355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Rising temperature associated with climate change may have substantial impacts on forest tree functions. We conducted a 7-year warming experiment in subtropical China by translocating important native forest tree species (Machilas breviflora, Syzygium rehderianum, Schima superba and Itea chinensis) from cooler high-elevation sites (600 m) to 1-2°C warmer low-elevation sites (300 and 30 m) to investigate warming effects on leaf hydraulic and economic traits. Here, we report data from the last 3 years (Years 5-7) of the experiment. Warming increased leaf hydraulic conductance of S. superba to meet the higher evaporative demand. M. breviflora (300 m), S. rehderianum, S. superba and I. chinensis (300 and 30 m) exhibited higher area-based and mass-based maximum photosynthetic rates (Aa and Am , respectively) related to increasing stomatal conductance (gs ) and stomatal density in the wet season, which led to rapid growth; however, we observed decreased growth of M. breviflora at 30 m due to lower stomatal density and decreased Aa in the wet season. Warming increased photosynthetic nitrogen-use efficiency and photosynthetic phosphorus-use efficiency, but reduced leaf dry mass per unit area due to lower leaf thickness, suggesting that these tree species allocated more resources into upregulating photosynthesis rather than into structural investment. Our findings highlight that there was trait variation in the capacity of trees to acclimate to warmer temperatures such that I. chinensis may benefit from warming, but S. superba may be negatively influenced by warming in future climates.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Net Primary Productivity of Pinus massoniana Dependence on Climate, Soil and Forest Characteristics. FORESTS 2020. [DOI: 10.3390/f11040404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Understanding the spatial variation of forest productivity and its driving factors on a large regional scale can help reveal the response mechanism of tree growth to climate change, and is an important prerequisite for efficient forest management and studying regional and global carbon cycles. Pinus massoniana Lamb. is a major planted tree species in southern China, playing an important role in the development of forestry due to its high economic and ecological benefits. Here, we establish a biomass database for P. massoniana, including stems, branches, leaves, roots, aboveground organs and total tree, by collecting the published literature, to increase our understanding of net primary productivity (NPP) geographical trends for each tree component and their influencing factors across the entire geographical distribution of the species in southern China. P. massoniana NPP ranges from 1.04 to 13.13 Mg·ha−1·year−1, with a mean value of 5.65 Mg·ha−1·year−1. The NPP of both tree components (i.e., stem, branch, leaf, root, aboveground organs, and total tree) show no clear relationships with longitude and elevation, but an inverse relationship with latitude (p < 0.01). Linear mixed-effects models (LMMs) are employed to analyze the effect of environmental factors and stand characteristics on P. massoniana NPP. LMM results reveal that the NPP of different tree components have different sensitivities to environmental and stand variables. Appropriate temperature and soil nutrients (particularly soil available phosphorus) are beneficial to biomass accumulation of this species. It is worth noting that the high temperature in July and August (HTWM) is a significant climate stressor across the species geographical distribution and is not restricted to marginal populations in the low latitude area. Temperature was a key environmental factor behind the inverse latitudinal trends of P. massoniana NPP, because it showed a higher sensitivity than other factors. In the context of climate warming and nitrogen (N) deposition, the inhibition effect caused by high temperatures and the lack or imbalance of soil nutrients, particularly soil phosphorus, should be paid more attention in the future. These findings advance our understanding about the factors influencing the productivity of each P. massoniana tree component across the full geographical distribution of the species, and are therefore valuable for forecasting climate-induced variation in forest productivity.
Collapse
|
12
|
Zhu J, Zhu H, Cao Y, Li J, Zhu Q, Yao J, Xu C. Effect of simulated warming on leaf functional traits of urban greening plants. BMC PLANT BIOLOGY 2020; 20:139. [PMID: 32245420 PMCID: PMC7119294 DOI: 10.1186/s12870-020-02359-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/24/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Response and adaptation strategies of plants to the environment have always been the core issues in ecological research. So far, relatively little study exists on its functional traits responses to warming, especially in an urban environment. This information is the key to help understand plant responses and trade-off strategy to urban warming. RESULTS We chose the common greening trees of mature age in Beijing (Fraxinus pennsylvanica, Koelreuteria paniculata, and Sophora japonica) as the research subjects, and used infrared heaters to simulate warming for three gradients of natural temperature (CK), moderate warming (T1) and severe warming (T2). Results showed that:(1) Leaf dry matter content (LDMC), chlorophyll content (CHL), leaf tissue density (LTD), and stomatal density (SD) all increased with temperature warming. Specific leaf area (SLA), stomatal size (SS), and stomatal aperture (SA) decreased with simulated warming. (2) SLA was extremely significantly negatively correlated with CHL, LDMC, LTD and SD (P < 0.01), and was extremely significantly positively correlated with SS (P < 0.01). SA was extremely negatively correlated with SD (P < 0.01), and was extremely significantly positively correlated with SS (P < 0.01). There was a significant positive correlation between LDMC and LTD (P < 0.01). This showed that urban greening trees adapted to the environment by coordinating adjustment among leaf functional traits. (3) Under the T1 treatment, the R2 and slope among the leaf traits were higher than CK, and the significance was also enhanced. The correlation between leaf traits was strengthened in this warming environment. Conversely, it will weaken the correlation between leaf traits under the T2 treatment. CONCLUSION Our study demonstrated that there was a strong trade-off between leaf functional traits in the urban warming environment. Plants in the warming environment have adopted relatively consistent trade-offs and adaptation strategies. Moderate warming was more conducive to strengthening their trade-off potential. It is further verified that the global leaf economics spectrum also exists in urban ecosystems, which is generally tend to a quick-investment return type with the characteristics of thick leaves, strong photosynthetic capacity, low transpiration efficiency and long life in urban environments.
Collapse
Affiliation(s)
- Jiyou Zhu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Hua Zhu
- Inspection Department of Guangxi Medical College, Nanning, 530402, China
| | - Yujuan Cao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Jinhang Li
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Qiuyu Zhu
- Inspection Department of Guangxi Medical College, Nanning, 530402, China
| | | | - Chengyang Xu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry Administration, Research Center for Urban Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|