1
|
Versini R, Sritharan S, Aykac Fas B, Tubiana T, Aimeur SZ, Henri J, Erard M, Nüsse O, Andreani J, Baaden M, Fuchs P, Galochkina T, Chatzigoulas A, Cournia Z, Santuz H, Sacquin-Mora S, Taly A. A Perspective on the Prospective Use of AI in Protein Structure Prediction. J Chem Inf Model 2024; 64:26-41. [PMID: 38124369 DOI: 10.1021/acs.jcim.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
AlphaFold2 (AF2) and RoseTTaFold (RF) have revolutionized structural biology, serving as highly reliable and effective methods for predicting protein structures. This article explores their impact and limitations, focusing on their integration into experimental pipelines and their application in diverse protein classes, including membrane proteins, intrinsically disordered proteins (IDPs), and oligomers. In experimental pipelines, AF2 models help X-ray crystallography in resolving the phase problem, while complementarity with mass spectrometry and NMR data enhances structure determination and protein flexibility prediction. Predicting the structure of membrane proteins remains challenging for both AF2 and RF due to difficulties in capturing conformational ensembles and interactions with the membrane. Improvements in incorporating membrane-specific features and predicting the structural effect of mutations are crucial. For intrinsically disordered proteins, AF2's confidence score (pLDDT) serves as a competitive disorder predictor, but integrative approaches including molecular dynamics (MD) simulations or hydrophobic cluster analyses are advocated for accurate dynamics representation. AF2 and RF show promising results for oligomeric models, outperforming traditional docking methods, with AlphaFold-Multimer showing improved performance. However, some caveats remain in particular for membrane proteins. Real-life examples demonstrate AF2's predictive capabilities in unknown protein structures, but models should be evaluated for their agreement with experimental data. Furthermore, AF2 models can be used complementarily with MD simulations. In this Perspective, we propose a "wish list" for improving deep-learning-based protein folding prediction models, including using experimental data as constraints and modifying models with binding partners or post-translational modifications. Additionally, a meta-tool for ranking and suggesting composite models is suggested, driving future advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Raphaelle Versini
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sana Zineb Aimeur
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie, Computationnelle et Quantitative UMR 7238, Institut de Biologie Paris-Seine, 4 Place Jussieu, F-75005 Paris, France
| | - Marie Erard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Patrick Fuchs
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Tatiana Galochkina
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM, BIGR, F-75014 Paris, France
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS (UPR9080), Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
2
|
Borges-Araújo L, Patmanidis I, Singh AP, Santos LHS, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L, Liwo A, Marrink SJ, Souza PCT. Pragmatic Coarse-Graining of Proteins: Models and Applications. J Chem Theory Comput 2023; 19:7112-7135. [PMID: 37788237 DOI: 10.1021/acs.jctc.3c00733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Ilias Patmanidis
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Akhil P Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Lucianna H S Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560 Valbonne, France
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita, Okayama 700-8530, Japan
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| |
Collapse
|
3
|
Bwalya J, Kim KH. The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses. THE PLANT PATHOLOGY JOURNAL 2023; 39:28-38. [PMID: 36760047 PMCID: PMC9929168 DOI: 10.5423/ppj.rw.10.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
4
|
Fieulaine S, Tubiana T, Bressanelli S. De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation. Virology 2023; 578:128-140. [PMID: 36527931 DOI: 10.1016/j.virol.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV), a major cause of acute viral hepatitis, is a single-stranded, positive-sense RNA virus. As such, it encodes a 1700-residue replication polyprotein pORF1 that directs synthesis of new viral RNA in infected cells. Here we report extensive modeling with AlphaFold2 of the full-length pORF1, and its production by in vitro translation. From this, we give a detailed update on the breakdown into domains of HEV pORF1. We also provide evidence that pORF1's N-terminal domain is likely to oligomerize to form a dodecameric pore, homologously to what has been described for Chikungunya virus. Beyond providing accurate folds for its five domains, our work highlights that there is no canonical protease encoded in pORF1 and that flexibility in several functionally important regions rather than proteolytic processing may serve to regulate HEV RNA synthesis.
Collapse
Affiliation(s)
- Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Zhang L, Si Q, Yang K, Zhang W, Okita TW, Tian L. mRNA Localization to the Endoplasmic Reticulum in Plant Endosperm Cells. Int J Mol Sci 2022; 23:13511. [PMID: 36362297 PMCID: PMC9656906 DOI: 10.3390/ijms232113511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Subcellular mRNA localization is an evolutionarily conserved mechanism to spatially and temporally drive local translation and, in turn, protein targeting. Hence, this mechanism achieves precise control of gene expression and establishes functional and structural networks during cell growth and development as well as during stimuli response. Since its discovery in ascidian eggs, mRNA localization has been extensively studied in animal and yeast cells. Although our knowledge of subcellular mRNA localization in plant cells lags considerably behind other biological systems, mRNA localization to the endoplasmic reticulum (ER) has also been well established since its discovery in cereal endosperm cells in the early 1990s. Storage protein mRNA targeting to distinct subdomains of the ER determines efficient accumulation of the corresponding proteins in different endosomal storage sites and, in turn, underlies storage organelle biogenesis in cereal grains. The targeting process requires the presence of RNA localization elements, also called zipcodes, and specific RNA-binding proteins that recognize and bind these zipcodes and recruit other factors to mediate active transport. Here, we review the current knowledge of the mechanisms and functions of mRNA localization to the ER in plant cells and address directions for future research.
Collapse
Affiliation(s)
- Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Qidong Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Kejie Yang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Wenwei Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 310007, China
| |
Collapse
|
6
|
Clavel M, Dagdas Y. Proteasome and selective autophagy: Brothers-in-arms for organelle quality control. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102106. [PMID: 34487948 DOI: 10.1016/j.pbi.2021.102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Maintaining the integrity of organelles despite the cellular disturbances that arise during stress is essential for life. To ensure organelle proteostasis (protein homeostasis), plants have evolved multitiered quality control mechanisms that work together to repair or recycle the damaged organelles. Despite recent advances, our understanding of plant organelle quality control mechanisms is far from complete. Especially, the crosstalk between different quality control pathways remains elusive. Here, we highlight recent advances on organelle quality control, focusing on the targeted protein degradation pathways that maintain the homeostasis of the endoplasmic reticulum (ER), chloroplast, and mitochondria. We discuss how plant cells decide to employ different degradation pathways and propose tools that could be used to discover the missing components in organelle quality control.
Collapse
Affiliation(s)
- Marion Clavel
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
7
|
Komatsu K, Sasaki N, Yoshida T, Suzuki K, Masujima Y, Hashimoto M, Watanabe S, Tochio N, Kigawa T, Yamaji Y, Oshima K, Namba S, Nelson RS, Arie T. Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. J Virol 2021; 95:e0190620. [PMID: 34346768 PMCID: PMC8475525 DOI: 10.1128/jvi.01906-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.
Collapse
Affiliation(s)
- Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Nobumitsu Sasaki
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Gene Research Center, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiro Suzuki
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Yuki Masujima
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoru Watanabe
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoya Tochio
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience, Department of Clinical Plant Science, Hosei University, Koganei, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Richard S. Nelson
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| |
Collapse
|
8
|
Patel A, McBride JAM, Mark BL. The endopeptidase of the maize-affecting Marafivirus type member maize rayado fino virus doubles as a deubiquitinase. J Biol Chem 2021; 297:100957. [PMID: 34265303 PMCID: PMC8348309 DOI: 10.1016/j.jbc.2021.100957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/28/2022] Open
Abstract
Marafiviruses are capable of persistent infection in a range of plants that have importance to the agriculture and biofuel industries. Although the genomes of a few of these viruses have been studied in-depth, the composition and processing of the polyproteins produced from their main ORFs have not. The Marafivirus polyprotein consists of essential proteins that form the viral replicase, as well as structural proteins for virus assembly. It has been proposed that Marafiviruses code for cysteine proteases within their polyproteins, which act as endopeptidases to autocatalytically cleave the polyprotein into functional domains. Furthermore, it has also been suggested that Marafivirus endopeptidases may have deubiquitinating activity, which has been shown to enhance viral replication by downregulating viral protein degradation by the ubiquitin (Ub) proteasomal pathway as well as tampering with cell signaling associated with innate antiviral responses in other positive-sense ssRNA viruses. Here, we provide the first evidence of cysteine proteases from six different Marafiviruses that harbor deubiquitinating activity and reveal intragenus differences toward Ub linkage types. We also examine the structural basis of the endopeptidase/deubiquitinase from the Marafivirus type member, maize rayado fino virus. Structures of the enzyme alone and bound to Ub reveal marked structural rearrangements that occur upon binding of Ub and provide insights into substrate specificity and differences that set it apart from other viral cysteine proteases.
Collapse
Affiliation(s)
- Ankoor Patel
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Gobert A, Quan Y, Arrivé M, Waltz F, Da Silva N, Jomat L, Cohen M, Jupin I, Giegé P. Towards plant resistance to viruses using protein-only RNase P. Nat Commun 2021; 12:1007. [PMID: 33579946 PMCID: PMC7881203 DOI: 10.1038/s41467-021-21338-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Plant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases. New approaches to plant disease control are important for pathogens that are difficult to control by existing methods. Here, the authors report a potential strategy to combat plant viruses by cytosolic expressed protein-only RNase P and show its ability for in vitro cleavage of tRNA-like structures existing in many plant viruses.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| | - Yifat Quan
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Florent Waltz
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nathalie Da Silva
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Lucile Jomat
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Mathias Cohen
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Isabelle Jupin
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France.
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
10
|
Fieulaine S, Witte MD, Theile CS, Ayach M, Ploegh HL, Jupin I, Bressanelli S. Turnip yellow mosaic virus protease binds ubiquitin suboptimally to fine-tune its deubiquitinase activity. J Biol Chem 2020; 295:13769-13783. [PMID: 32732284 PMCID: PMC7535911 DOI: 10.1074/jbc.ra120.014628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Single-stranded, positive-sense RNA viruses assemble their replication complexes in infected cells from a multidomain replication polyprotein. This polyprotein usually contains at least one protease, the primary function of which is to process the polyprotein into mature proteins. Such proteases also may have other functions in the replication cycle. For instance, cysteine proteases (PRO) frequently double up as ubiquitin hydrolases (DUB), thus interfering with cellular processes critical for virus replication. We previously reported the crystal structures of such a PRO/DUB from Turnip yellow mosaic virus (TYMV) and of its complex with one of its PRO substrates. Here we report the crystal structure of TYMV PRO/DUB in complex with ubiquitin. We find that PRO/DUB recognizes ubiquitin in an unorthodox way: It interacts with the body of ubiquitin through a split recognition motif engaging both the major and the secondary recognition patches of ubiquitin (Ile44 patch and Ile36 patch, respectively, including Leu8, which is part of the two patches). However, the contacts are suboptimal on both sides. Introducing a single-point mutation in TYMV PRO/DUB aimed at improving ubiquitin-binding led to a much more active DUB. Comparison with other PRO/DUBs from other viral families, particularly coronaviruses, suggests that low DUB activities of viral PRO/DUBs may generally be fine-tuned features of interaction with host factors.
Collapse
Affiliation(s)
- Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Martin D Witte
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S Theile
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Maya Ayach
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Hidde L Ploegh
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isabelle Jupin
- Laboratory of Molecular Virology, Jacques Monod Institute, CNRS, UMR, Université de Paris, Paris, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
In vitro translation of virally-encoded replication polyproteins to recapitulate polyprotein maturation processes. Protein Expr Purif 2020; 175:105694. [PMID: 32681958 DOI: 10.1016/j.pep.2020.105694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022]
Abstract
Single-stranded, positive-sense RNA viruses encode essential replication polyproteins which are composed of several domains. They are usually subjected to finely regulated proteolytic maturation processes to generate cleavage intermediates and end-products. Both polyproteins and maturation products play multiple key roles that ultimately allow synthesis of viral genome progeny. Despite the importance of these proteins in the course of viral replication, their structural properties, including the conformational changes regulating their numerous functions, are poorly described at the structural level. This lack of information is mainly due to the extreme difficulty to express large, membrane-bound, multi-domain proteins with criteria suitable for structural biology methods. To tackle this challenge, we have used a wheat-germ cell-free expression system. We firstly establish that this approach allows to synthesize viral polyproteins encoded by two unrelated positive-sense RNA viruses, a human norovirus and a plant tymovirus. Then, we demonstrate that these polyproteins are fully functional and are spontaneously auto-cleaved by their active protease domain, giving rise to natural maturation products. Moreover, we show that introduction of point mutations in polyproteins allows to inhibit the proteolytic maturation process of each virus. This allowed us to express and partially purify the uncleaved full-length norovirus polyprotein and the tymoviral RNA-dependent RNA polymerase. Thus, this study provides a powerful tool to obtain soluble viral polyproteins and their maturation products in order to conduct challenging structural biology projects and therefore solve unanswered questions.
Collapse
|
12
|
Tian L, Chou HL, Fukuda M, Kumamaru T, Okita TW. mRNA Localization in Plant Cells. PLANT PHYSIOLOGY 2020; 182:97-109. [PMID: 31611420 PMCID: PMC6945871 DOI: 10.1104/pp.19.00972] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
Localization of mRNAs at the subcellular level is an essential mechanism for specific protein targeting and local control of protein synthesis in both eukaryotes and bacteria. While mRNA localization is well documented in metazoans, somatic cells, and microorganisms, only a handful of well-defined mRNA localization examples have been reported in vascular plants and algae. This review summarizes the function and mechanism of mRNA localization and highlights recent studies of mRNA localization in vascular plants. While the emphasis focuses on storage protein mRNA localization in rice endosperm cells, information on targeting of RNAs to organelles (chloroplasts and mitochondria) and plasmodesmata is also discussed.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Hong-Li Chou
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Masako Fukuda
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
- Plant Genetics Laboratory, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshihiro Kumamaru
- Plant Genetics Laboratory, Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
13
|
Jia H, Gong P. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. Front Microbiol 2019; 10:1945. [PMID: 31507560 PMCID: PMC6713929 DOI: 10.3389/fmicb.2019.01945] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses are a unique class of nucleic acid polymerases. Each viral RdRP contains a 500–600 residue catalytic module with palm, fingers, and thumb domains forming an encircled human right hand architecture. Seven polymerase catalytic motifs are located in the RdRP palm and fingers domains, comprising the most conserved parts of the RdRP and are responsible for the RNA-only specificity in catalysis. Functional regions are often found fused to the RdRP catalytic module, resulting in a high level of diversity in RdRP global structure and regulatory mechanism. In this review, we surveyed all 46 RdRP-sequence available virus families of the positive-strand RNA viruses listed in the 2018b collection of the International Committee on Virus Taxonomy (ICTV) and chose a total of 49 RdRPs as representatives. By locating hallmark residues in RdRP catalytic motifs and by referencing structural and functional information in the literature, we were able to estimate the N- and C-terminal boundaries of the catalytic module in these RdRPs, which in turn serve as reference points to predict additional functional regions beyond the catalytic module. Interestingly, a large number of virus families may have additional regions fused to the RdRP N-terminus, while only a few of them have such regions on the C-terminal side of the RdRP. The current knowledge on these additional regions, either in three-dimensional (3D) structure or in function, is quite limited. In the five RdRP-structure available virus families in the positive-strand RNA viruses, only the Flaviviridae family has the 3D structural information resolved for such regions. Hence, future efforts to solve full-length RdRP structures containing these regions and to dissect the functional contribution of them are necessary to improve the overall understanding of the RdRP proteins as an evolutionarily integrated group, and our analyses here may serve as a guideline for selecting representative RdRP systems in these studies.
Collapse
Affiliation(s)
- Hengxia Jia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
The Many Faces of Amphipathic Helices. Biomolecules 2018; 8:biom8030045. [PMID: 29976879 PMCID: PMC6164224 DOI: 10.3390/biom8030045] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Amphipathic helices (AHs), a secondary feature found in many proteins, are defined by their structure and by the segregation of hydrophobic and polar residues between two faces of the helix. This segregation allows AHs to adsorb at polar⁻apolar interfaces such as the lipid surfaces of cellular organelles. Using various examples, we discuss here how variations within this general scheme impart membrane-interacting AHs with different interfacial properties. Among the key parameters are: (i) the size of hydrophobic residues and their density per helical turn; (ii) the nature, the charge, and the distribution of polar residues; and (iii) the length of the AH. Depending on how these parameters are tuned, AHs can deform lipid bilayers, sense membrane curvature, recognize specific lipids, coat lipid droplets, or protect membranes from stress. Via these diverse mechanisms, AHs play important roles in many cellular processes.
Collapse
|
15
|
Budziszewska M, Obrępalska-Stęplowska A. The Role of the Chloroplast in the Replication of Positive-Sense Single-Stranded Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2018; 9:1776. [PMID: 30542365 PMCID: PMC6278097 DOI: 10.3389/fpls.2018.01776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/15/2018] [Indexed: 05/20/2023]
Abstract
Positive-sense single-stranded plant RNA viruses are obligate intracellular parasites that infect many agriculturally important crops. Most known plant RNA viruses are characterized by small genomes encoding a limited number of multifunctional viral proteins. Viral pathogens are considered to be absolutely dependent on their hosts, and viruses must recruit numerous host proteins and other factors for genomic RNA replication. Overall, the replication process depends on virus-plant protein-protein, RNA-protein and protein-lipid interactions. Recent publications provide strong evidence for the important role of chloroplasts in viral RNA synthesis. The chloroplast is considered to be a multifunctional organelle responsible for photosynthesis and for the generation of plant defense signaling molecules. High-throughput technologies (genomics and proteomics), and electron microscopy, including three-dimensional tomography, have revealed that several groups of plant RNA viruses utilize chloroplast membranes to assemble viral replication complexes (VRCs). Moreover, some chloroplast-related proteins reportedly interact with both viral proteins and their genomic RNAs and participate in trafficking these molecules to the chloroplast, where replication occurs. Here, we present the current knowledge on the important role of chloroplasts in the viral replication process.
Collapse
|