1
|
Wu Q, Xia R, Yang J, Chen R, Zeng Z, Fan C. Identification and Comprehensive Analysis of OFP Genes for Fruit Shape Influence in Mango. Genes (Basel) 2024; 15:823. [PMID: 39062602 PMCID: PMC11275924 DOI: 10.3390/genes15070823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
OVATE family proteins (OFPs) are a class of plant-specific proteins with a conserved OVATE domain that play fundamental roles in fruit development and plant growth. Mango (Mangifera indica L.) is an economically important subtropical fruit tree characterized by a diverse array of fruit shapes and sizes. Despite extensive research on OFPs across various species, there remains a scarcity of information regarding OFPs in mango. Here, we have successfully identified 25 OFP genes (MiOFPs) in mango, each of which exhibits the conserved OVATE domains. The MiOFP gene exhibit a range of 2-6 motifs, with all genes containing both motif 1 and motif 2. Phylogenetic analysis on 97 OFPs (including 18 AtOFPs, 24 SlOFPs, 25 MiOFPs, and 30 OsOFPs) indicated that MiOFPs could be divided into three main clades: clade I, II, and III. Comparative morphological analysis identified significant variations in fruit longitudinal diameter, fruit transverse diameter, and fruit shape index between two distinct shaped mango cultivars ('Hongxiangya' and 'Jingpingmang') at DAP5, DAP7, and DAP10 stages. The subsequent examination of paraffin sections revealed distinct patterns of cell elongation. The majority of MiOFP genes exhibited predominantly expressed in developing organs, specifically flowers and immature fruits, while displaying distinct expression patterns. RNA-Seq analysis revealed significant disparities in the expression levels of several OFP genes, including MiOFP5, MiOFP11, MiOFP21, MiOFP22, MiOFP23, and MiOFP25, between the two mango cultivars. These findings suggest that these six genes may play a crucial role for fruit shape in mango, especially the MiOFP22. The findings of this study have established a basis for future investigations into MiOFPs in mango, offering a solid foundation for further research in this field.
Collapse
Affiliation(s)
- Qiuping Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| | - Rui Xia
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Jie Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| | - Rong Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| | - Zaohai Zeng
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China;
| | - Chao Fan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510642, China; (Q.W.)
| |
Collapse
|
2
|
Li H, Suo Y, Li H, Sun P, Han W, Fu J. Cytological, Phytohormone, and Transcriptome Analyses Provide Insights into Persimmon Fruit Shape Formation ( Diospyros kaki Thunb.). Int J Mol Sci 2024; 25:4812. [PMID: 38732032 PMCID: PMC11083898 DOI: 10.3390/ijms25094812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China;
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Yujing Suo
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Hui Li
- Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China;
| | - Peng Sun
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Jianmin Fu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| |
Collapse
|
3
|
Lv Z, Zhou D, Shi X, Ren J, Zhang H, Zhong C, Kang S, Zhao X, Yu H, Wang C. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC PLANT BIOLOGY 2023; 23:371. [PMID: 37491223 PMCID: PMC10369843 DOI: 10.1186/s12870-023-04382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.
Collapse
Affiliation(s)
- Zhenghao Lv
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dongying Zhou
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China.
| | | |
Collapse
|
4
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
5
|
Ban S, Jung JH. Somatic Mutations in Fruit Trees: Causes, Detection Methods, and Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1316. [PMID: 36987007 PMCID: PMC10056856 DOI: 10.3390/plants12061316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Somatic mutations are genetic changes that occur in non-reproductive cells. In fruit trees, such as apple, grape, orange, and peach, somatic mutations are typically observed as "bud sports" that remain stable during vegetative propagation. Bud sports exhibit various horticulturally important traits that differ from those of their parent plants. Somatic mutations are caused by internal factors, such as DNA replication error, DNA repair error, transposable elements, and deletion, and external factors, such as strong ultraviolet radiation, high temperature, and water availability. There are several methods for detecting somatic mutations, including cytogenetic analysis, and molecular techniques, such as PCR-based methods, DNA sequencing, and epigenomic profiling. Each method has its advantages and limitations, and the choice of method depends on the research question and the available resources. The purpose of this review is to provide a comprehensive understanding of the factors that cause somatic mutations, techniques used to identify them, and underlying molecular mechanisms. Furthermore, we present several case studies that demonstrate how somatic mutation research can be leveraged to discover novel genetic variations. Overall, considering the diverse academic and practical value of somatic mutations in fruit crops, especially those that require lengthy breeding efforts, related research is expected to become more active.
Collapse
|
6
|
PpMYB39 Activates PpDFR to Modulate Anthocyanin Biosynthesis during Peach Fruit Maturation. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetablesresponsible for the red flesh formation of peach fruit. Previously, several genes of the MYB family have been reported as transcriptional regulators of the anthocyanin biosynthetic pathway of structural genes in plants. In this study, through comparative transcriptome analysis of the white and red flesh peach cultivars of Harrow Blood and Asama Hakuto, a predicted transcription factor of the R2R3MYB family, PpMYB39, was identified to be associated with anthocyanin biosynthesis in peach fruit. In red-fleshed peach cultivars, the maximum amount of anthocyanin accumulated 95 days after full bloom (DAFB), at full maturity near ripening. Our results showed that, at this stage, PpMYB39 had the highest expression level among the 13 differentially expressed genes (DEGs) found in both red- and white-fleshed fruits, as well as a high correlation with total anthocyanin content throughout fruit development. Moreover, the expression analysis of the structural genes of the anthocyanin biosynthetic pathway in peach fruit revealed that Prunus persica Dihydroflavonol-4-reductase (PpDFR) was co-expressed and up-regulated with PpMYB39 at 95 DAFB, suggesting its possible role as a transcriptional activator of MYB39. This was further confirmed by a yeast one-hybrid assay and a dual luciferase reporter assay. Our results will be helpful in the breeding of peach cultivars and the identification and significance of color in peaches and related fruit species, in addition to providing an understanding of color formation in peach fruit for future research.
Collapse
|
7
|
Khan IA, Cao K, Guo J, Li Y, Wang Q, Yang X, Wu J, Fang W, Wang L. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111151. [PMID: 35151460 DOI: 10.1016/j.plantsci.2021.111151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Flavonoids, particularly anthocyanin is the main pigment that determined the red color of peach flowers, and help the plant to attract pollinators, protect the reproductive organs of flower from photo-oxidative effects of light and various non-communicable diseases. Through weightage gene coexpression network analysis (WGCNA) we identified a network of 15 hub genes that co-expressed throughout peach flower development including 5 genes coded for the key enzymes (CHI, F3'H, DFR, LAR and UFGT) of flavonoid biosynthetic pathway and 1 gene Prupe.1G111700 identified as R2R3 family transcription factor MYB108. Over expression of PpMYB108 significantly increased anthocyanin biosynthesis in Tobacco flowers. Moreover, the expression correlation between PpMYB108 and PpDFR, suggests that PpMYB108 play the role of transcriptional activator for PpDFR. This was further supported by a 6 bp insertion of MYB biding site in the core promoter region of PpDFR in red flower. The positive interaction of PpMYB108 with PpDFR promoter from red flower was confirmed in yeast one hybrid assay. These findings may be helpful in peach breeding programs as well as in identifying anthocyanin related genes in other species.
Collapse
Affiliation(s)
- Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
8
|
Sheng Y, Yu H, Pan H, Qiu K, Xie Q, Chen H, Fu S, Zhang J, Zhou H. Genome-Wide Analysis of the Gene Structure, Expression and Protein Interactions of the Peach ( Prunus persica) TIFY Gene Family. FRONTIERS IN PLANT SCIENCE 2022; 13:792802. [PMID: 35251076 PMCID: PMC8891376 DOI: 10.3389/fpls.2022.792802] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The TIFY family is a plant-specific gene family involved in regulating many plant processes, such as development and growth, defense and stress responses, fertility and reproduction, and the biosynthesis of secondary metabolites. The v2.0 peach (Prunus persica) genome, which has an improved chromosome-scale assembly and contiguity, has recently been released, but a genome-wide investigation of the peach TIFY family is lacking. In this study, 16 TIFY family genes from the peach genome were identified according to the peach reference genome sequence information and further validated by cloning sequencing. The synteny, phylogenetics, location, structure, and conserved domains and motifs of these genes were analyzed, and finally, the peach TIFY family was characterized into 9 JAZ, 1 TIFY, 1 PPD and 5 ZML subfamily members. Expression profiles of peach JAZ, PPD, and ZML genes in various organs and fruit developmental stages were analyzed, and they showed limited effects with fruit ripening cues. Four TIFY members were significantly affected at the mRNA level by exogenous treatment with MeJA in the peach epicarp, and among them, PpJAZ1, PpJAZ4 and PpJAZ5 were significantly correlated with fruit epicarp pigmentation. In addition, the TIFY family member protein interaction networks established by the yeast two-hybrid (Y2H) assay not only showed similar JAZ-MYC2 and JAZ homo- and heterodimer patterns as those found in Arabidopsis but also extended the JAZ dimer network to ZML-ZML and JAZ-ZML interactions. The PpJAZ3-PpZML4 interaction found in this study suggests the potential formation of the ZML-JAZ-MYC complex in the JA-signaling pathway, which may extend our knowledge of this gene family's functions in diverse biological processes.
Collapse
Affiliation(s)
- Yu Sheng
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Hong Yu
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Haifa Pan
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Keli Qiu
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qingmei Xie
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Hongli Chen
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Songling Fu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jinyun Zhang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Hui Zhou
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
9
|
Molecular Insights of Fruit Quality Traits in Peaches, Prunus persica. PLANTS 2021; 10:plants10102191. [PMID: 34686000 PMCID: PMC8541108 DOI: 10.3390/plants10102191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Fleshy fruits are the most demanded fruits because of their organoleptic qualities and nutritional values. The genus Prunus is a rich source of diversified stone/drupe fruits such as almonds, apricots, plums, sweet cherries, peaches, and nectarines. The fruit-ripening process in Prunus involves coordinated biochemical and physiological changes resulting in changes in fruit texture, aroma gain, color change in the pericarp, sugar/organic acid balance, fruit growth, and weight gain. There are different varieties of peaches with unique palatable qualities and gaining knowledge in the genetics behind these quality traits helps in seedling selection for breeding programs. In addition, peaches have shorter post-harvest life due to excessive softening, resulting in fruit quality reduction and market loss. Many studies have been executed to understand the softening process at the molecular level to find the genetic basis. To summarize, this review focused on the molecular aspects of peach fruit quality attributes and their related genetics to understand the underlying mechanisms.
Collapse
|
10
|
Tan Q, Li S, Zhang Y, Chen M, Wen B, Jiang S, Chen X, Fu X, Li D, Wu H, Wang Y, Xiao W, Li L. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach. HORTICULTURE RESEARCH 2021; 8:213. [PMID: 34593767 PMCID: PMC8484544 DOI: 10.1038/s41438-021-00648-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 06/13/2021] [Indexed: 05/09/2023]
Abstract
Prunus species include many important perennial fruit crops, such as peach, plum, apricot, and related wild species. Here, we report de novo genome assemblies for five species, including the cultivated species peach (Prunus persica), plum (Prunus salicina), and apricot (Prunus armeniaca), and the wild peach species Tibetan peach (Prunus mira) and Chinese wild peach (Prunus davidiana). The genomes ranged from 240 to 276 Mb in size, with contig N50 values of 2.27-8.30 Mb and 25,333-27,826 protein-coding gene models. As the phylogenetic tree shows, plum diverged from its common ancestor with peach, wild peach species, and apricot ~7 million years ago (MYA). We analyzed whole-genome resequencing data of 417 peach accessions, called 3,749,618 high-quality SNPs, 577,154 small indels, 31,800 deletions, duplications, and inversions, and 32,338 insertions, and performed a structural variant-based genome-wide association study (GWAS) of key agricultural traits. From our GWAS data, we identified a locus associated with a fruit shape corresponding to the OVATE transcription factor, where a large inversion event correlates with higher OVATE expression in flat-shaped accessions. Furthermore, a GWAS revealed a NAC transcription factor associated with fruit developmental timing that is linked to a tandem repeat variant and elevated NAC expression in early-ripening accessions. We also identified a locus encoding microRNA172d, where insertion of a transposable element into its promoter was found in double-flower accessions. Thus, our efforts have suggested roles for OVATE, a NAC transcription factor, and microRNA172d in fruit shape, fruit development period, and floral morphology, respectively, that can be connected to traits in other crops, thereby demonstrating the importance of parallel evolution in the diversification of several commercially important domesticated species. In general, these genomic resources will facilitate functional genomics, evolutionary research, and agronomic improvement of these five and other Prunus species. We believe that structural variant-based GWASs can also be used in other plants, animal species, and humans and be combined with deep sequencing GWASs to precisely identify candidate genes and genetic architecture components.
Collapse
Affiliation(s)
- Qiuping Tan
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Sen Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Yuzheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Binbin Wen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Shan Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Xiling Fu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Dongmei Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Hongyu Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yong Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China.
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Bao Y, Zhong Y, Wang Q, Liu H. Genome-wide association study and transcriptome of olecranon-type traits in peach (Prunus persica L.) germplasm. BMC Genomics 2021; 22:702. [PMID: 34583632 PMCID: PMC8480057 DOI: 10.1186/s12864-021-08017-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023] Open
Abstract
Background The top of the olecranon honey peach (Prunus persica L.) fruit appears similar to an eagle’s beak. In this study, a single olecranon honey peach with a round-type fruit was observed in our fruit orchard. To explore the genetic mechanism of olecranon formation, we performed full-length transcriptome sequencing analysis of olecranon and round peaches as well as a genome-wide association study of the association of olecranon-type trait loci. Results The gene locus was 26,924,482 base pairs in NC_034014.1. Transcriptome sequencing showed that the clean sequencing data of each sample reached 7.10GB, with 14,360 genes and 23,167 transcripts expressed in both the olecranon honey peach and round peach. Among the 11 differentially expressed genes selected as candidate genes, six were highly expressed in olecranon peach and named as LOC18775282, LOC18772209, LOC18773929, LOC18772013, LOC18773401, and ONT.13798.5. Five genes were highly expressed in round peach and named as LOC18773079, LOC18773525, LOC18773067, LOC18775244, and LOC18772236. Notably, ONT.13798.5 was not previously identified. The genes were within 1 Mb up- or down-stream of the main genome-wide association study locus for olecranon-type traits. Conclusions This study revealed loci associated with olecranon and provides useful information for analysis and breeding of olecranon honey peach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08017-y.
Collapse
Affiliation(s)
- Jianliang Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, Guangdong, China.,Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, China.,Modern Agriculture Research Center, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, Guangdong, China
| | - Yao Bao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Yuming Zhong
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, 510225, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Ravari HH, Kavousi HR, Mohammadi F, Pourseyedi S. Partial cloning, characterization, and analysis of expression and activity of plasma membrane H +-ATPase in Kallar grass [Leptochloa fusca (L.) Kunth] under salt stress. Biol Futur 2021; 71:231-240. [PMID: 34554505 DOI: 10.1007/s42977-020-00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Abstract
Kallar grass (Leptochloa fusca) is a highly salt-tolerant C4 perennial halophytic forage. The regulation of ion movement across the plasma membrane (PM) to improve salinity tolerance of plant is thought to be accomplished with the aid of the proton electrochemical gradient generated by PM H+-ATPase. In this study, we cloned a partial gene sequence of the Lf PM H+-ATPase and investigated its expression and activity under salt stress. The amino acid sequence of the isolated region of Lf PM H+-ATPase possesses the maximum identity up to 96% to its ortholog in Aeluropus littoralis. The isolated fragment of Lf PM H+-ATPase gene is a member of the subfamily Π of plant PM H+-ATPase and is most closely related to the Oryza sativa gene OSA7. The transcript level and activity of the PM H+-ATPase were increased in roots and shoots in response to NaCl and were peaked at 450 mM NaCl in both tissues. The induction of activity and gene expression of PM H+-ATPase in roots and shoots of Kallar grass under salinity indicate the necessity for this pump in these organs during salinity adaptation to establish and maintain the electrochemical gradient across the PM of the cells for adjusting ion homeostasis.
Collapse
Affiliation(s)
- Hadi Hamidi Ravari
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Reza Kavousi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Fereshteh Mohammadi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Department of Biotechnology, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
13
|
Xie T, Zhang J, Luan A, Zhang W, Wu J, Cai Z, He Y. Comparative transcriptome analysis of a fan-shaped inflorescence in pineapple using RNA-seq. Genomics 2021; 113:3653-3665. [PMID: 34455035 DOI: 10.1016/j.ygeno.2021.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Pineapple plant usually has a capitulum. However, a fan-shaped inflorescence was exceptionally evolved in pineapple, having multiple crown buds. In order to reveal the molecular mechanisms of the formation of the fan-shaped inflorescence, fruit traits and the transcriptional differences between the fan-shaped inflorescence and the wild-shaped inflorescence pineapples were analyzed in three tissues, i.e., the flower stem apex, the base of the inflorescence, and the inflorescence axis. The weight (i.e., individual yield) of fan-shaped fruit is 4.5 times that of wild-shaped fruit;and non-significant difference in soluble solids, soluble sugar, titratable acid, and Vitamin C was found. Between the fan-shaped inflorescence and wild-shaped inflorescence, a total of 5370 differentially expressed genes were identified across the three tissues. Of these genes, there were 489 overlapping differentially expressed genes in all three tissue comparisons. Between the two pineapples, functional analysis indicated that 444 transcription factors and 206 inflorescence development-related genes were differentially expressed in at least one tissue comparison, while 45 transcription factors and 21 inflorescence development-related genes were overlapped across three tissues. Among the 489 overlapping differentially expressed genes in the three tissue comparisons, excluding the inflorescence development-related genes and transcription factors, 80 of them revealed a higher percentage of involvement in the biological processes relating to response to auxin, and reproductive processes. RNA-seq value and real-time quantitative PCR analysis exhibited the similar gene expression patterns in the three tissues. Our result provided novel cues for understanding the molecular mechanisms of the formation of the fan-shaped inflorescence in pineapple, making a valuable resource for the study of plant breeding and the speciation of pineapple.
Collapse
Affiliation(s)
- Tao Xie
- Department of Horticulture, Foshan University, Foshan 528231, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- Department of Horticulture, Foshan University, Foshan 528231, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Wei Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Wu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiquan Cai
- Department of Horticulture, Foshan University, Foshan 528231, China.
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Selection and validation reference genes for qRT-PCR normalization in different cultivars during fruit ripening and softening of peach (Prunus persica). Sci Rep 2021; 11:7302. [PMID: 33790378 PMCID: PMC8012606 DOI: 10.1038/s41598-021-86755-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Quantitative real-time PCR (qRT-PCR) has been emerged as an effective method to explore the gene function and regulatory mechanisms. However, selecting appropriate reference gene (s) is a prerequisite for obtaining accurate qRT-PCR results. Peach is one of important fruit in Rosaceae and is widely cultivated worldwide. In this study, to explore reliable reference gene (s) in peach with different types during fruit ripening and softening (S1-S4), nine candidate reference genes (EF-1α, GAPDH, TBP, UBC, eIF-4α, TUB-A, TUB-B, ACTIN, and HIS) were selected from the whole-genome data. Then, the expression levels of the nine selected genes were detected using qRT-PCR in three peach types, including 'Hakuho' (melting type), 'Xiacui' (stony hard type), 'Fantasia' and 'NJC108' (non-melting type) cultivars were detected using qRT-PCR. Four software (geNorm, NormFinder, BestKeeper and RefFinder) were applied to evaluate the expression stability of these candidate reference genes. Gene expression was characterized in different peach types during fruit ripening and softening stages. The overall performance of each candidate in all samples was evaluated. The Actin gene (ACTIN) was a suitable reference gene and displayed excellent stability in 'Total' set, 'Hakuho' samples, S3 and S4 fruit developmental stages. Ubiquitin C gene (UBC) showed the best stability in most independent samples, including 'Fantasia', 'NJC108', S2 sets. Elongation factor-1α gene (EF-1α) was the most unstable gene across the set of all samples, 'NJC108' and S2 sets, while showed the highest stability in 'Xiacui' samples. The stability of candidate reference genes was further verified by analyzing the relative expression level of ethylene synthase gene of Prunus persica (PpACS1) in fruit ripening and softening periods of 'Hakuho'. Taken together, the results from this study provide a basis for future research on the mining of important functional genes, expression patterns and regulatory mechanisms in peach.
Collapse
|
15
|
Guo J, Cao K, Yao JL, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guo W, Wang L. Reduced expression of a subunit gene of sucrose non-fermenting 1 related kinase, PpSnRK1βγ, confers flat fruit abortion in peach by regulating sugar and starch metabolism. BMC PLANT BIOLOGY 2021; 21:88. [PMID: 33568056 PMCID: PMC7877075 DOI: 10.1186/s12870-021-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit abortion is a major limiting factor for fruit production. In flat peach, fruit abortion is present in the whole tree of some accessions during early fruit development. However, the physiological factors and genetic mechanism underlying flat fruit abortion remain largely elusive. RESULTS In this study, we have revealed that the fertilization process was accomplished and the reduction of sucrose and starch contents might result in flat fruit abortion. By combining association and gene expression analysis, a key candidate gene, PpSnRK1βγ, was identified. A 1.67-Mb inversion co-segregated with flat fruit shape altered the promoter activity of PpSnRK1βγ, resulting in much lower expression in aborting flat peach. Ectopic transformation in tomato and transient overexpression in peach fruit have shown that PpSnRK1βγ could increase sugar and starch contents. Comparative transcriptome analysis further confirmed that PpSnRK1βγ participated in carbohydrate metabolism. Subcellular localization found that PpSnRK1βγ was located in nucleus. CONCLUSIONS This study provides a possible reason for flat fruit abortion and identified a critical candidate gene, PpSnRK1βγ, that might be responsible for flat fruit abortion in peach. The results will provide great help in peach breeding and facilitate gene identification for fruit abortion in other plant species.
Collapse
Affiliation(s)
- Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenwu Guo
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
16
|
Guan J, Xu Y, Yu Y, Fu J, Ren F, Guo J, Zhao J, Jiang Q, Wei J, Xie H. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biol 2021; 22:13. [PMID: 33402202 PMCID: PMC7784018 DOI: 10.1186/s13059-020-02239-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Structural variations (SVs), a major resource of genomic variation, can have profound consequences on phenotypic variation, yet the impacts of SVs remain largely unexplored in crops. RESULTS Here, we generate a high-quality de novo genome assembly for a flat-fruit peach cultivar and produce a comprehensive SV map for peach, as a high proportion of genomic sequence is occupied by heterozygous SVs in the peach genome. We conduct population-level analyses that indicate SVs have undergone strong purifying selection during peach domestication, and find evidence of positive selection, with a significant preference for upstream and intronic regions during later peach improvement. We perform a SV-based GWAS that identifies a large 1.67-Mb heterozygous inversion that segregates perfectly with flat-fruit shape. Mechanistically, this derived allele alters the expression of the PpOFP2 gene positioned near the proximal breakpoint of the inversion, and we confirm in transgenic tomatoes that PpOFP2 is causal for flat-fruit shape. CONCLUSIONS Thus, beyond introducing new genomics resources for peach research, our study illustrates how focusing on SV data can drive basic functional discoveries in plant science.
Collapse
Affiliation(s)
- Jiantao Guan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Yaoguang Xu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Yang Yu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Jun Fu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jiying Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China.
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Zhou H, Ma R, Gao L, Zhang J, Zhang A, Zhang X, Ren F, Zhang W, Liao L, Yang Q, Xu S, Otieno Ogutu C, Zhao J, Yu M, Jiang Q, Korban SS, Han Y. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:192-205. [PMID: 32722872 PMCID: PMC7769229 DOI: 10.1111/pbi.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 05/06/2023]
Abstract
Flat peaches have become popular worldwide due to their novelty and convenience. The peach flat fruit trait is genetically controlled by a single gene at the S locus, but its genetic basis remains unclear. Here, we report a 1.7-Mb chromosomal inversion downstream of a candidate gene encoding OVATE Family Protein, designated PpOFP1, as the causal mutation for the peach flat fruit trait. Genotyping of 727 peach cultivars revealed an occurrence of this large inversion in flat peaches, but absent in round peaches. Ectopic overexpression of PpOFP1 resulted in oval-shaped leaves and shortened siliques in Arabidopsis, suggesting its role in repressing cell elongation. Transcriptional activation of PpOFP1 by the chromosomal inversion may repress vertical elongation in flat-shaped fruits at early stages of development, resulting in the flat fruit shape. Moreover, PpOFP1 can interact with fruit elongation activator PpTRM17, suggesting a regulatory network controlling fruit shape in peach. Additionally, screening of peach wild relatives revealed an exclusive presence of the chromosomal inversion in P. ferganensis, supporting that this species is the ancestor of the domesticated peach. This study provides new insights into mechanisms underlying fruit shape evolution and molecular tools for genetic improvement of fruit shape trait in peach breeding programmes.
Collapse
Affiliation(s)
- Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Ruijuan Ma
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Jinyun Zhang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Fei Ren
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei ProvinceCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Shengli Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jianbo Zhao
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Mingliang Yu
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Quan Jiang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
18
|
Guo J, Cao K, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guan L, Wu S, Guo W, Yao JL, Fei Z, Wang L. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biol 2020; 21:258. [PMID: 33023652 PMCID: PMC7539501 DOI: 10.1186/s13059-020-02169-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored. RESULTS Here, we present an integrated map of 202,273 SVs from 336 peach genomes. A substantial number of SVs have been selected during peach domestication and improvement, which together affect 2268 genes. Genome-wide association studies of 26 agronomic traits using these SVs identify a number of candidate causal variants. A 9-bp insertion in Prupe.4G186800, which encodes a NAC transcription factor, is shown to be associated with early fruit maturity, and a 487-bp deletion in the promoter of PpMYB10.1 is associated with flesh color around the stone. In addition, a 1.67 Mb inversion is highly associated with fruit shape, and a gene adjacent to the inversion breakpoint, PpOFP1, regulates flat shape formation. CONCLUSIONS The integrated peach SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in peach.
Collapse
Affiliation(s)
- Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shan Wu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Wenwu Guo
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
19
|
Bu H, Yu W, Yuan H, Yue P, Wei Y, Wang A. Endogenous Auxin Content Contributes to Larger Size of Apple Fruit. FRONTIERS IN PLANT SCIENCE 2020; 11:592540. [PMID: 33519848 PMCID: PMC7841441 DOI: 10.3389/fpls.2020.592540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 05/21/2023]
Abstract
Fruit size is an important economic trait that is controlled by multiple genes. However, the regulatory mechanism for fruit size remains poorly understood. A bud sport variety of "Longfeng" (LF) apple (Malus domestica) was identified and named "Grand Longfeng" (GLF). The fruit size of GLF is larger than that of LF, and both varieties are diploid. We found that the cell size in GLF fruit was larger than that of LF. Then, we compared the fruit transcriptomes of the two varieties using RNA-Seq technology. A total of 1166 differentially expressed genes (DEGs) were detected between GLF and LF fruits. The KEGG analysis revealed that the phytohormone pathway was the most enriched, in which most of the DEGs were related to auxin signaling. Moreover, the endogenous auxin levels of GLF fruit were higher than those of LF. The expressions of auxin synthetic genes, including MdTAR1 and MdYUCCA6, were higher in GLF fruit than LF. Collectively, our findings suggest that auxin plays an important role in fruit size development.
Collapse
Affiliation(s)
- Haidong Bu
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Wenquan Yu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Pengtao Yue
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Aide Wang,
| |
Collapse
|
20
|
Bu H, Yu W, Yuan H, Yue P, Wei Y, Wang A. Endogenous Auxin Content Contributes to Larger Size of Apple Fruit. FRONTIERS IN PLANT SCIENCE 2020; 11:592540. [PMID: 33519848 DOI: 10.3389/fpls.2020.592540/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 05/21/2023]
Abstract
Fruit size is an important economic trait that is controlled by multiple genes. However, the regulatory mechanism for fruit size remains poorly understood. A bud sport variety of "Longfeng" (LF) apple (Malus domestica) was identified and named "Grand Longfeng" (GLF). The fruit size of GLF is larger than that of LF, and both varieties are diploid. We found that the cell size in GLF fruit was larger than that of LF. Then, we compared the fruit transcriptomes of the two varieties using RNA-Seq technology. A total of 1166 differentially expressed genes (DEGs) were detected between GLF and LF fruits. The KEGG analysis revealed that the phytohormone pathway was the most enriched, in which most of the DEGs were related to auxin signaling. Moreover, the endogenous auxin levels of GLF fruit were higher than those of LF. The expressions of auxin synthetic genes, including MdTAR1 and MdYUCCA6, were higher in GLF fruit than LF. Collectively, our findings suggest that auxin plays an important role in fruit size development.
Collapse
Affiliation(s)
- Haidong Bu
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Wenquan Yu
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Pengtao Yue
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yun Wei
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
21
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
22
|
Foster TM, Aranzana MJ. Attention sports fans! The far-reaching contributions of bud sport mutants to horticulture and plant biology. HORTICULTURE RESEARCH 2018; 5:44. [PMID: 30038785 PMCID: PMC6046048 DOI: 10.1038/s41438-018-0062-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 05/08/2023]
Abstract
A bud sport is a lateral shoot, inflorescence or single flower/fruit with a visibly different phenotype from the rest of the plant. The new phenotype is often caused by a stable somatic mutation in a single cell that is passed on to its clonal descendants and eventually populates part or all of a meristem. In many cases, a bud sport can be vegetatively propagated, thereby preserving the novel phenotype without sexual reproduction. Bud sports provide new characteristics while retaining the desirable qualities of the parent plant, which is why many bud sports have been developed into popular cultivars. We present an overview of the history of bud sports, the causes and methods of detecting somaclonal variation, and the types of mutant phenotypes that have arisen spontaneously. We focus on examples where the molecular or cytological changes causing the phenotype have been identified. Analysis of these sports has provided valuable insight into developmental processes, gene function and regulation, and in some cases has revealed new information about layer-specific roles of some genes. Examination of the molecular changes causing a phenotype and in some cases reversion back to the original state has contributed to our understanding of the mechanisms that drive genomic evolution.
Collapse
Affiliation(s)
- Toshi M. Foster
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4474 New Zealand
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|