1
|
Guo Q, Zhu S, Lai T, Tian C, Hu M, Lu X, Xue Y, Liang C, Tian J. A Phosphate-Starvation Enhanced Purple Acid Phosphatase, GmPAP23 Mediates Intracellular Phosphorus Recycling and Yield in Soybean. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39844392 DOI: 10.1111/pce.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max). GmPAP23 could hydrolyse a series of Pi-containing compounds in vitro, such as trehalose-6-phosphate and glucose-l-phosphate. Moreover, GmPAP23 overexpression led to less P distribution in soybean source organs, including mature leaves and pod shells, but more P distribution in seeds under P sufficient conditions, although no effect was observed for transgenic soybean lines with its suppression. Metabolomic analysis found that a group of P-containing metabolites exhibited differential accumulations in mature leaves between wild type (WT) and GmPAP23 overexpression lines, such as glucose-l-phosphate and trehalose-6-phosphate. Moreover, a MYB transcription factor, GmPHR14 was subsequently found to activate the transcription of GmPAP23 via directly binding to its promoter. Collectively, these findings could highlight that the GmPHR14-GmPAP23 pathway, which controls internal P recycling in soybean, and thus affect yield.
Collapse
Affiliation(s)
- Qi Guo
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| | - Shengnan Zhu
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Department of Bioscience, Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Tao Lai
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| | - Cang Tian
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| | - Meiling Hu
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| | - Xing Lu
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| | - Yingbin Xue
- Department of Agriculture, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Cuiyue Liang
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- College of Natural Resources and Environment, Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Hou L, Zhang D, Wu Q, Gao X, Wang J. Analysis and profiling of the purple acid phosphatase gene family in wheat (Triticum aestivum L.). PROTOPLASMA 2025; 262:73-86. [PMID: 39207505 DOI: 10.1007/s00709-024-01983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.
Collapse
Affiliation(s)
- Lijiang Hou
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongzhi Zhang
- College of Life Sciences and Engineering, Hexi University, Zhangye, 734000, China
| | - Qiufang Wu
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xinqiang Gao
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Ibeas MA, Salinas-Grenet H, Johnson NR, Pérez-Díaz J, Vidal EA, Alvarez JM, Estevez JM. Filling the gaps on root hair development under salt stress and phosphate starvation using current evidence coupled with a meta-analysis approach. PLANT PHYSIOLOGY 2024; 196:2140-2149. [PMID: 38918899 DOI: 10.1093/plphys/kiae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between 2 contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these 2 stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.
Collapse
Affiliation(s)
- Miguel Angel Ibeas
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - Nathan R Johnson
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Jorge Pérez-Díaz
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Elena A Vidal
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - José Miguel Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - José M Estevez
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
4
|
Alshahrani MM, Ur Rehman K, Zaman U, Alissa M, Alghamdi SA, Hajri AK, Alanazi AN, Mahmoud HMA, Abdelrahman EA, Alsuwat MA. Divalent metal ion in the active site of purple acid phosphatase modulates substrate binding: Kinetic and thermodynamic properties. Int J Biol Macromol 2024; 277:134026. [PMID: 39048014 DOI: 10.1016/j.ijbiomac.2024.134026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The purple acid phosphatase was purified from 5.9-fold to apparent homogeneity from Anagelis arvensis seeds using SP-Sephadex C-50 and Sephadex G-100 chromatography. The results of residual activity tests conducted using different temperature ranges (50-70 °C) were calculated as the activation energy (Ed = 72 kJ/mol), enthalpy (69.31 ≤ (ΔH° ≤ 69.10 kJ/mol), entropy (-122.48 ≤ ΔS° ≤ -121.13 J/mol·K), and Gibbs free energy (108.87 ≤ ΔG° ≤ 111.25 kJ/mol) of the enzyme irreversible denaturation. These thermodynamic parameters indicate that this novel PAP is highly thermostable and may be significant for use in industrial applications. However, it may be confirmed by stopped-flow measurements that this substitution produces a chromophoric Fe3+ site and a Pi-substrate interaction that is about ten times faster. Additionally, these data show that phenyl phosphate hydrolysis proceeds more rapidly in metal form of A. arvensis PAP than the creation of a μ-1,3 phosphate complex. The Fe3+ site in the native Fe3+-Mn2+ derivative interacts with it at a faster rate than in the Fe3+-Fe2+ form. This is most likely caused by a network of hydrogen bonds between the first and second coordination spheres. This suggests that the choice of metal ions plays a significant role in regulating the activity of this enzyme.
Collapse
Affiliation(s)
- Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan.
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, KPK, Pakistan
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amira K Hajri
- Department of Chemistry, Alwajh College, University of Tabuk, Saudi Arabia
| | - Amal N Alanazi
- Department of Chemistry, Khafji University College, University of Hafr Al Batin, Saudi Arabia
| | - HassabAlla M A Mahmoud
- Department of Physics, Applied College, King Khalid University, Muhayil 61913, Saudi Arabia
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
5
|
Liu C, Hu CY, Xiao S, Deng S, Liu X, Menezes-Blackburn D, Ma LQ. Insoluble-Phytate Improves Plant Growth and Arsenic Accumulation in As-Hyperaccumulator Pteris vittata: Phytase Activity, Nutrient Uptake, and As-Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3858-3868. [PMID: 38356137 DOI: 10.1021/acs.est.3c10546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 μM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 μM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.
Collapse
Affiliation(s)
- Chenjing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Shufen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Songge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Xue Liu
- Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming 650224 Yunnan, China
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, P. O. Box 34, Al-Khoud, 123 Muscat, Oman
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
6
|
Zhu S, Guo Q, Xue Y, Lu X, Lai T, Liang C, Tian J. Impaired glycosylation of GmPAP15a, a root-associated purple acid phosphatase, inhibits extracellular phytate-P utilization in soybean. PLANT, CELL & ENVIRONMENT 2024; 47:259-277. [PMID: 37691629 DOI: 10.1111/pce.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023]
Abstract
Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.
Collapse
Affiliation(s)
- Shengnan Zhu
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Department of Bioscience, Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Qi Guo
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yingbin Xue
- Department of Agriculture, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Xing Lu
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Tao Lai
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, Department of Plant Nutrition, College of Natural Resources and Environment, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Chen C, Xiang J, Yuan J, Shao S, Rehman M, Peng D, Liu L. Comparative biochemical and transcriptomic analysis reveals the phosphate-starving tolerance of two ramie varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107979. [PMID: 37643556 DOI: 10.1016/j.plaphy.2023.107979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Ramie (Boehmeria nivea L.) is a highly valued fiber crop. Its yield is often limited by lack of available phosphate (Pi) in the soil, but the underlying molecular mechanisms of ramie's response to Pi deficiency remain largely unknown. To investigate how ramie adapts to low Pi stress, we selected a low Pi-tolerant variety (H-5) and a low Pi-sensitive variety (XYL), and conducted a biochemical and transcriptomic analysis on roots and leaves of both varieties. After subjecting the plants to Pi-deficient and Pi-sufficient conditions for 15 days, we found that H-5 exhibited higher dry weight, longer root systems, and higher levels of Pi, galactolipids, and organic acids when subjected to Pi deprivation, compared to XYL. Transcriptomic analysis further revealed that Pi-responsive genes involved in lipid metabolism, Pi transport, organic acid synthesis, and acid phosphatase activities were more induced in the tolerant variety H-5. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five hub genes, including phosphate transporter, SPX domain-containing protein and sulfoquinovosyl transferase, which played key roles in low Pi tolerance in ramie. The present study will broaden our comprehension of the differences and molecular mechanisms of different ramie cultivars in response to Pi starvation, and lay a foundation for future agronomic improvements in ramie and other fiber crops.
Collapse
Affiliation(s)
- Chen Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaming Xiang
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Institute of ZheJiang University, Quzhou, China
| | - Jinzhan Yuan
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Shao
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muzammal Rehman
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Chu J, Li W, Yang Z, Shao Z, Zhang H, Rong S, Kong Y, Du H, Li X, Zhang C. Genome resequencing reveals genetic loci and genes conferring resistance to SMV-SC8 in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:129. [PMID: 37193909 DOI: 10.1007/s00122-023-04373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE A soybean natural population genotyped by resequencing and another RIL population genotyped by SoySNP6K were used to explore consistent genetic loci and genes under greenhouse- and field-conditions for SMV-SC8 resistance. Soybean mosaic virus (SMV) is a member of the genus Potyvirus that occurs in all soybean-growing areas of the world and causes serious losses of yield and seed quality. In this study, a natural population composed of 209 accessions resequenced at an average depth of 18.44 × and another RIL population containing 193 lines were used to explore genetic loci and genes conferring resistance to SMV-SC8. There were 3030 SNPs significantly associated with resistance to SC8 on chromosome 13 in the natural population, among which 327 SNPs were located within an ~ 0.14 Mb region (from 28.46 to 28.60 Mb) of the major QTL qRsc8F in the RIL population. Two genes among 21 candidate genes, GmMACPF1 and GmRad60, were identified in the region of consistent linkage and association. Compared to the mock control, the changes in the expression of these two genes after inoculation with SC8 differed between resistant and susceptible accessions. More importantly, GmMACPF1 was shown to confer resistance to SC8 by significantly decreasing virus content in soybean hairy roots overexpressing this gene. A functional marker, FMSC8, was developed based on the allelic variation of GmMACPF1, and a high coincidence rate of 80.19% between the disease index and marker genotype was identified in the 419 soybean accessions. The results provide valuable resources for studies on the molecular mechanism of SMV resistance and genetic improvement in soybean.
Collapse
Affiliation(s)
- Jiahao Chu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Shaoda Rong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China.
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
9
|
Bhadouria J, Mehra P, Verma L, Pazhamala LT, Rumi R, Panchal P, Sinha AK, Giri J. Root-Expressed Rice PAP3b Enhances Secreted APase Activity and Helps Utilize Organic Phosphate. PLANT & CELL PHYSIOLOGY 2023; 64:501-518. [PMID: 36807470 DOI: 10.1093/pcp/pcad013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Phosphate (Pi) deficiency leads to the induction of purple acid phosphatases (PAPs) in plants, which dephosphorylate organic phosphorus (P) complexes in the rhizosphere and intracellular compartments to release Pi. In this study, we demonstrate that OsPAP3b belongs to group III low-molecular weight PAP and is low Pi-responsive, preferentially in roots. The expression of OsPAP3b is negatively regulated with Pi resupply. Interestingly, OsPAP3b was found to be dual localized to the nucleus and secretome. Furthermore, OsPAP3b is transcriptionally regulated by OsPHR2 as substantiated by DNA-protein binding assay. Through in vitro biochemical assays, we further demonstrate that OsPAP3b is a functional acid phosphatase (APase) with broad substrate specificity. The overexpression (OE) of OsPAP3b in rice led to increased secreted APase activity and improved mineralization of organic P sources, which resulted in better growth of transgenics compared to the wild type when grown on organic P as an exogenous P substrate. Under Pi deprivation, OsPAP3b knock-down and knock-out lines showed no significant changes in total P content and dry biomass. However, the expression of other phosphate starvation-induced genes and the levels of metabolites were found to be altered in the OE and knock-down lines. In addition, in vitro pull-down assay revealed multiple putative interacting proteins of OsPAP3b. Our data collectively suggest that OsPAP3b can aid in organic P utilization in rice. The APase isoform behavior and nuclear localization indicate its additional role, possibly in stress signaling. Considering its important roles, OsPAP3b could be a potential target for improving low Pi adaptation in rice.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Poonam Mehra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Lokesh Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Rumi Rumi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Poonam Panchal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India
| |
Collapse
|
10
|
Roychowdhury A, Srivastava R, Akash, Shukla G, Zehirov G, Mishev K, Kumar R. Metabolic footprints in phosphate-starved plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:755-767. [PMID: 37363416 PMCID: PMC10284745 DOI: 10.1007/s12298-023-01319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.
Collapse
Affiliation(s)
- Abhishek Roychowdhury
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Akash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Gyanesh Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| |
Collapse
|
11
|
Kong Y, Liu Y, Li W, Du H, Li X, Zhang C. Allelic Variation in GmPAP14 Alters Gene Expression to Affect Acid Phosphatase Activity in Soybean. Int J Mol Sci 2023; 24:5398. [PMID: 36982472 PMCID: PMC10049298 DOI: 10.3390/ijms24065398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 03/18/2023] Open
Abstract
Improvement in acid phosphatase (APase) activity is considered as an important approach to enhance phosphorus (P) utilization in crops. Here, GmPAP14 was significantly induced by low P (LP), and its transcription level in ZH15 (P efficient soybean) was higher than in NMH (P inefficient soybean) under LP conditions. Further analyses demonstrated that there were several variations in gDNA (G-GmPAP14Z and G-GmPAP14N) and the promoters (P-GmPAP14Z and P-GmPAP14N) of GmPAP14, which might bring about differential transcriptional levels of GmPAP14 in ZH15 and NMH. Histochemical staining measurements revealed that a stronger GUS signal was present in transgenic Arabidopsis with P-GmPAP14Z under LP and normal P (NP) conditions compared with the P-GmPAP14N plant. Functional research demonstrated that transgenic Arabidopsis with G-GmPAP14Z had a higher level of GmPAP14 expression than the G-GmPAP14N plant. Meanwhile, higher APase activity was also observed in the G-GmPAP14Z plant, which led to increases in shoot weight and P content. Additionally, validation of variation in 68 soybean accessions showed that varieties with Del36 displayed higher APase activities than the del36 plant. Thus, these results uncovered that allelic variation in GmPAP14 predominantly altered gene expression to influence APase activity, which provided a possible direction for research of this gene in plants.
Collapse
Affiliation(s)
- Youbin Kong
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Yuan Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hui Du
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xihuan Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Caiying Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
12
|
Wang Y, Feng H, Wang R, Zhou L, Li N, He Y, Yang X, Lai J, Chen K, Zhu W. Non-targeted metabolomics and 16s rDNA reveal the impact of uranium stress on rhizosphere and non-rhizosphere soil of ryegrass. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 258:107090. [PMID: 36565664 DOI: 10.1016/j.jenvrad.2022.107090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
As a radioactive heavy metal element with a long half-life, uranium causes environmental pollution when it enters the surrounding soil. This study analyzed the changes about soil enzyme activity, non-targeted metabolomics, microbial community structure and function microbial community structure and function to assess the differences in the effects of uranium stress on rhizosphere and non-rhizosphere soil. Results showed that uranium stress significantly inhibited the activities of urease and sucrase in rhizosphere and non-rhizosphere, which had less effect on rhizosphere. Compare to the non-rhizosphere soil, the uranium stress induced the production of gibberellin A1, to promoted several metabolic pathways, such as nitrogen and PTS (Phosphotransferase system) metabolic in rhizosphere soil. The species and abundance of Aspergillus, Acidobacter, and Synechococcus in both rhizosphere and non-rhizosphere soil were decreased by uranium stress. However, the microorganisms in rhizosphere soil were less inhibited according to the soil metabolism and microbial network map analysis. Furthermore, the Chujaibacter in rhizosphere soil under uranium stress was found significantly positively correlated with lipid and organic oxygen compounds. Overall, the results indicated that ryegrass roots significantly alleviated the effects of uranium stress on soil microbial activity and population abundances, thus playing a protective role. The study also provided a theoretical basis for in-depth understanding of the biological effects, prevention and control mechanisms of uranium-contaminated soil.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huachuan Feng
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jinlong Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
13
|
Chen Z, Wang L, Cardoso JA, Zhu S, Liu G, Rao IM, Lin Y. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094157. [PMID: 36844096 PMCID: PMC9950756 DOI: 10.3389/fpls.2023.1094157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients for plant growth and development, and it is an integral part of the major organic components, including nucleic acids, proteins and phospholipids. Although total P is abundant in most soils, a large amount of P is not easily absorbed by plants. Inorganic phosphate (Pi) is the plant-available P, which is generally immobile and of low availability in soils. Hence, Pi starvation is a major constraint limiting plant growth and productivity. Enhancing plant P efficiency can be achieved by improving P acquisition efficiency (PAE) through modification of morpho-physiological and biochemical alteration in root traits that enable greater acquisition of external Pi from soils. Major advances have been made to dissect the mechanisms underlying plant adaptation to P deficiency, especially for legumes, which are considered important dietary sources for humans and livestock. This review aims to describe how legume root growth responds to Pi starvation, such as changes in the growth of primary root, lateral roots, root hairs and cluster roots. In particular, it summarizes the various strategies of legumes to confront P deficiency by regulating root traits that contribute towards improving PAE. Within these complex responses, a large number of Pi starvation-induced (PSI) genes and regulators involved in the developmental and biochemical alteration of root traits are highlighted. The involvement of key functional genes and regulators in remodeling root traits provides new opportunities for developing legume varieties with maximum PAE needed for regenerative agriculture.
Collapse
Affiliation(s)
- Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Yan Lin
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Han R, Chen JY, He SX, Liu CJ, Dai ZH, Liu X, Cao Y, Ma LQ. Phytate and Arsenic Enhance Each Other's Uptake in As-hyperaccumulator Pteris vittata: Root Exudation of Phytate and Phytase, and Plant Uptake of Phytate-P. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:190-200. [PMID: 36521032 DOI: 10.1021/acs.est.2c05659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phytate as a root exudate is rare in plants as it mainly serves as a P storage in the seeds; however, As-hyperaccumulator Pteris vittata effectively secretes phytate and utilizes phytate-P, especially under As exposure. This study investigated the effects of As on its phytate and phytase exudation and the impacts of As and/or phytate on each other's uptake in P. vittata through two hydroponic experiments. Under 10-100 μM arsenate (AsV), the exudation of phytate and phytase by P. vittata was increased by 50-72% to 20.4-23.4 μmol h-1 g-1 and by 28-104% to 18.6-29.5 nmol h-1 plant-1, but they were undetected in non-hyperaccumulator Pteris ensiformis at 10 μM AsV. Furthermore, compared to 500 μM phytate, the phytate concentration in the growth media was reduced by 69% to 155 μM, whereas the P and As contents in P. vittata fronds and roots were enhanced by 68-134% and 44-81% to 2423-2954 and 82-407 mg kg-1 under 500 μM phytate plus 50 μM AsV. The increased P/As uptake in P. vittata was probably attributed to 3.0-4.5-fold increase in expressions of P transporters PvPht1;3-1;4. Besides, under As exposure, plant P may be converted to phytate in P. vittata roots, thereby increasing phytate's contents by 84% to 840 mg kg-1. Overall, our results suggest that As-induced phytate/phytase exudation and phytate-P uptake stimulate its growth and As hyperaccumulation by P. vittata.
Collapse
Affiliation(s)
- Ran Han
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yi Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Hua Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xue Liu
- Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, 510275 Guangzhou, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Wang B, Wang Y, Sun Y, Yu L, Lou Y, Fan X, Ren L, Xu G. Watermelon responds to organic fertilizer by enhancing root-associated acid phosphatase activity to improve organic phosphorus utilization. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153838. [PMID: 36334584 DOI: 10.1016/j.jplph.2022.153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Organic fertilizer is commonly used to increase crop yields and improve soil quality. However, it is unclear whether crops adapt to organic fertilizer by regulating metabolic pathways that are involved in nutrient utilization. In this study, we focused on the organic phosphorus (Po) in organic fertilizer and, using watermelon, investigated changes in gene expression and metabolic pathways in response to organic fertilizer and the combination of chemical fertilizer and organic fertilizer (chemical fertilizer 70% and organic fertilizer 30%, based on phosphorus supply). Purple acid phosphatase (PAP) gene expression was upregulated in leaves and roots of watermelon grown in organic fertilizer alone and in the combination of chemical/organic fertilizer, resulting in enhanced phosphatase activity in roots. When the ratio of chemical to organic fertilizer was 85/15, root-associated acid phosphatase (APase) activity increased over chemical fertilizer alone. This formulation also resulted in increased inorganic phosphate (Pi) concentration in roots and leaves, and the upregulation of the secretory APase genes ClaPAP10/12/15/26, and ClaPAP18 in roots. In conclusion, watermelon responds to organic fertilizer by upregulating expression of secretory ClaPAP genes, subsequently enhancing root-associated APase activity further improving the hydrolysis of phosphomonoesters, and ultimately facilitating Po utilization by roots. The mechanisms of P utilization by roots comprise the enhancement of APase and phytase activity, absorption of small Po molecules, uptake of Pi, and the increase of lateral root number when organic fertilizer is applied to the plants. These findings help to establish the mechanisms by which plants respond to organic fertilizer by regulating metabolic pathways at the transcriptional level.
Collapse
Affiliation(s)
- Bingshuang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Yang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Yan Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Lirong Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Yunsheng Lou
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaorong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| | - Lixuan Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China.
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China; Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, No. 1 Weigang, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, No. 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
16
|
Wang Y, Zhang P, Li L, Li D, Liang Z, Cao Y, Hu T, Yang P. Proteomic Analysis of Alfalfa (Medicago sativa L.) Roots in Response to Rhizobium Nodulation and Salt Stress. Genes (Basel) 2022; 13:genes13112004. [PMID: 36360241 PMCID: PMC9690670 DOI: 10.3390/genes13112004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: Alfalfa is an important legume forage throughout the world. Although alfalfa is considered moderately tolerant to salinity, its production and nitrogen-fixing activity are greatly limited by salt stress. (2) Methods: We examined the physiological changes and proteomic profiles of alfalfa with active nodules (NA) and without nodules (NN) under NaCl treatment. (3) Results: Our data suggested that NA roots showed upregulation of the pathways of abiotic and biotic stress responses (e.g., heat shock proteins and pathogenesis-related proteins), antioxidant enzyme synthesis, protein synthesis and degradation, cell wall degradation and modification, acid phosphatases, and porin transport when compared with NN plants under salt stress conditions. NA roots also upregulated the processes or proteins of lipid metabolism, heat shock proteins, protein degradation and folding, and cell cytoskeleton, downregulated the DNA and protein synthesis process, and vacuolar H+-ATPase proteins under salt stress. Besides, NA roots displayed a net H+ influx and low level of K+ efflux under salt stress, which may enhance the salt tolerance of NA plants. (4) Conclusions: The rhizobium symbiosis conferred the host plant salt tolerance by regulating a series of physiological processes to enhance stress response, improve antioxidant ability and energy use efficiency, and maintain ion homeostasis.
Collapse
Affiliation(s)
- Yafang Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Le Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Danning Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zheng Liang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
17
|
Xu H, Zhang H, Fan Y, Wang R, Cui R, Liu X, Chu S, Jiao Y, Zhang X, Zhang D. The purple acid phosphatase GmPAP17 predominantly enhances phosphorus use efficiency in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111283. [PMID: 35643608 DOI: 10.1016/j.plantsci.2022.111283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Purple acid phosphatase (PAP) is an important plant acid phosphatase, which can secrete to the rhizosphere to decompose organophosphorus, promote phosphorus use efficiency, plant growth and development. However, little is known about the functions of intracellular PAP in plants, especially for soybean. Our previous study integrating QTL mapping and transcriptome analysis identified an promising low phosphorus (LP)-induced gene GmPAP17. Here, we determined that GmPAP17 was mainly expressed in roots and had a strong response to LP stress. Furthermore, and the relative expression in the root of LP tolerant genotypes NN94-156 was significantly greater than that of LP sensitive genotype Bogao after LP stress treatment. The overexpression of GmPAP17 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under LP stress condition, it was vice versa for RNAi interference of GmPAP17, indicating that GmPAP17 plays an important role in P use efficiency. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analysis showed that GmRAP2.2 was involved in the regulation network of GmPAP17. Taken together, our results suggest that GmPAP17 is a novel plant PAP that functions in the adaptation of soybean to LP stress, possibly through its involvement in P recycling in plants.
Collapse
Affiliation(s)
- Huanqing Xu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqian Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingguo Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
18
|
Nepenthes mirabilis Fractionated Pitcher Fluid Use for Mixed Agro-Waste Pretreatment: Advocacy for Non-Chemical Use in Biorefineries. Catalysts 2022. [DOI: 10.3390/catal12070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study determined whether it is feasible to pretreat mixed agro-waste of different particle sizes using the pitcher fluid of Nepenthes mirabilis (N. mirabilis), which is known to digest leaf litter due to the enzyme cocktail contained in the fluid. This is due to the need for the holocellulolysis (a source of fermentable sugars) of mixed agro-waste to produce fermentable hydrolysates. The pitcher fluid was fractionated (<3 kDa, ˃3 kDa, <10 kDa, ˃10 kDa) and slurrified with the mixed agro-waste, i.e., 25% (w/w) for each waste—orange peels, apple peels, maize cobs, grape pomace, and oak plant leaf litter of various particle sizes, i.e., >75 µm x < 106 µm and >106 µm. The process of producing a high concentration of total reducible sugars (TRSs) with the lowest production of total phenolic compounds (TPCs) was determined to be a particle size of >106 µm, pretreatment for 72 h, and an enzyme fraction of <10 kDa, whereby 97 g/L of TRSs were produced with a significantly lower TPCs load (1 g/L). Furthermore, the <10 kDa showed preferable physico-chemical properties, with the highest reduction-oxidation potential including acidity. Several enzymes, i.e., β-1,3-Glucanase, Putative peroxidase 27, Thaumatin-like protein, among others, were identified in the <10 kDa fraction, i.e., enzymes known to perform various functions in plant-based waste. Therefore, there is a need for the renewable energy industry to consider solely using pitcher fluids to pretreat mixed agro-waste for fermentable hydrolysates’ production, which can be used as liquid feedstock for the bioenergy and/or biorefinery industries for environmental pollution reduction.
Collapse
|
19
|
Wang Q, Du W, Zhang S, Yu W, Wang J, Zhang C, Zhang H, Huang F, Cheng H, Yu D. Functional study and elite haplotype identification of soybean phosphate starvation response transcription factors GmPHR14 and GmPHR32. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:29. [PMID: 37309533 PMCID: PMC10248592 DOI: 10.1007/s11032-022-01301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/22/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is one of the important mineral elements required for plant growth and development. However, because of the low mobility in soil, P deficiency has been an important factor limiting soybean production. Here, we identified 14 PHR (phosphate starvation response) genes in soybean genome and verified that two previously unreported GmPHR members, GmPHR14 and GmPHR32, were involved in low-P stress tolerance in soybean. GmPHR14 and GmPHR32 were present in two diverged branches of the phylogenic tree. Both genes were highly expressed in roots and root nodules and were induced by P deficiency. GmPHR14 and GmPHR32 both were expressed in the nucleus. The 211 amino acids in the N terminus of GmPHR32 were found to be required for the transcriptional activity. Overexpressing GmPHR14 or GmPHR32 in soybean hairy roots significantly increased roots and shoots dry weight under low-P condition, and overexpressing GmPHR14 additionally significantly increased roots P concentration under low-P condition. GmPHR14 and GmPHR32 were polymorphic in soybean population and the elite haplotype2 (Hap2) for both genes was preferentially present in improved cultivars and showed significantly higher shoots dry weight under low-P condition than the other two haplotypes. These results suggested GmPHR14 and GmPHR32 both positively regulated low-P responses in soybean, and would shed light on the molecular mechanism of low-P stress tolerance. Furthermore, the identified elite haplotypes would be useful in P-efficient soybean breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01301-z.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shixi Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenqing Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiao Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
20
|
Mo X, Liu G, Zhang Z, Lu X, Liang C, Tian J. Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis. Int J Mol Sci 2022; 23:4592. [PMID: 35562981 PMCID: PMC9105353 DOI: 10.3390/ijms23094592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
Low phosphorus (P) availability limits soybean growth and yield. A set of potential strategies for plant responses to P deficiency have been elucidated in the past decades, especially in model plants such as Arabidopsis thaliana and rice (Oryza sativa). Recently, substantial efforts focus on the mechanisms underlying P deficiency improvement in legume crops, especially in soybeans (Glycine max). This review summarizes recent advances in the morphological, metabolic, and molecular responses of soybean to phosphate (Pi) starvation through the combined analysis of transcriptomics, proteomics, and metabolomics. Furthermore, we highlight the functions of the key factors controlling root growth and P homeostasis, base on which, a P signaling network in soybean was subsequently presumed. This review also discusses current barriers and depicts perspectives in engineering soybean cultivars with high P efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.M.); (G.L.); (Z.Z.); (X.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.M.); (G.L.); (Z.Z.); (X.L.)
| |
Collapse
|
21
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. PLANT CELL REPORTS 2022; 41:33-51. [PMID: 34402946 DOI: 10.1007/s00299-021-02773-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.
Collapse
Affiliation(s)
- Jyoti Bhadouria
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Mier-Guerra JR, Herrera-Valencia VA, Góngora-Castillo E, Peraza-Echeverria S. Discovery of potential phytases of the purple acid phosphatase family in a wide range of photosynthetic organisms and insights into their structure and evolution. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Chen Z, Song J, Li X, Arango J, Cardoso JA, Rao I, Schultze-Kraft R, Peters M, Mo X, Liu G. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. BMC PLANT BIOLOGY 2021; 21:466. [PMID: 34645406 PMCID: PMC8513372 DOI: 10.1186/s12870-021-03249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/06/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. RESULTS In this study, differences in low-P stress tolerance were investigated using two stylo cultivars ('RY2' and 'RY5') that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. CONCLUSIONS This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.
Collapse
Affiliation(s)
- Zhijian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Jianling Song
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570110, P.R. China
| | - Xinyong Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China
| | - Jacobo Arango
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, A.A.6713, Colombia
| | - Juan Andres Cardoso
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, A.A.6713, Colombia
| | - Idupulapati Rao
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, A.A.6713, Colombia
| | - Rainer Schultze-Kraft
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, A.A.6713, Colombia
| | - Michael Peters
- Alliance of Bioversity International and International Center for Tropical Agriculture, Cali, A.A.6713, Colombia
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, P.R. China.
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P.R. China.
| |
Collapse
|
24
|
Li C, Li K, Liu X, Ruan H, Zheng M, Yu Z, Gai J, Yang S. Transcription Factor GmWRKY46 Enhanced Phosphate Starvation Tolerance and Root Development in Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:700651. [PMID: 34594347 PMCID: PMC8477037 DOI: 10.3389/fpls.2021.700651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients, whose deficiency limits the growth and development of plants. In this study, we investigated the possible role of GmWRKY46 in the phosphate (Pi) starvation stress tolerance of soybean. GmWRKY46 belonged to the group III subfamily of the WRKY transcription factor family, which was localized in the nucleus and had transcriptional activator activity. GmWRKY46 could be strongly induced by Pi starvation, especially in soybean roots. Overexpression of GmWRKY46 significantly enhanced tolerance to Pi starvation and lateral root development in transgenic Arabidopsis. RNA-seq analysis showed that overexpression of GmWRKY46 led to change in many genes related to energy metabolisms, stress responses, and plant hormone signal transduction in transgenic Arabidopsis. Among these differential expression genes, we found that overexpression of AtAED1 alone could enhance the tolerance of transgenic Arabidopsis to Pi starvation. Y1H and ChIP-qPCR analyses showed that GmWRKY46 could directly bind to the W-box motif of the AtAED1 promoter in vitro and in vivo. Furthermore, results from intact soybean composite plants with GmWRKY46 overexpression showed that GmWRKY46 was involved in hairy roots development and subsequently affected plant growth and Pi uptake. These results provide a basis for the molecular genetic breeding of soybean tolerant to Pi starvation.
Collapse
Affiliation(s)
- Cheng Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Liu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hui Ruan
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Mingming Zheng
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhijie Yu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Li C, Li K, Zheng M, Liu X, Ding X, Gai J, Yang S. Gm6PGDH1, a Cytosolic 6-Phosphogluconate Dehydrogenase, Enhanced Tolerance to Phosphate Starvation by Improving Root System Development and Modifying the Antioxidant System in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:704983. [PMID: 34484268 PMCID: PMC8414836 DOI: 10.3389/fpls.2021.704983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus plays an important role in plant growth and development, and is an important limiting factor for crop yield. Although previous studies have shown that 6-phosphogluconate dehydrogenase (6PGDH) plays an important role in plant resistance to adversity, its response to low phosphorus (P) stress remains unknown. In this study, we reported the cloning and characterization of a cytosolic 6PGDH gene, Gm6PGDH1, which enhanced the tolerance to phosphate (Pi) starvation by improving root system development and modifying the antioxidant system in transgenic plants. Gm6PGDH1 was highly expressed in the root at full bloom stage, and strongly induced by Pi starvation. The results from intact soybean composite plant and soybean plant, both containing a Gm6PGDH1-overexpressing construct, showed that Gm6PGDH1 was involved in root system development, and subsequently affected P uptake under Pi-deficient conditions. Meanwhile, the accumulation of reactive oxygen species (ROS) in the root tip of transgenic soybean was reduced, and the activity of ROS-scavenging enzymes was enhanced compared with those of the wild type under Pi-deficient conditions. Interestingly, we found that the overexpression of Gm6PGDH1 weakened the response of several other important Pi-answer genes to Pi starvation, such as some purple acid phosphatases (PAPs) and redox-related genes. In addition, the results from a virus-induced gene silencing (VIGS) indicated that Gm6PGDH1 might have functional redundancy in soybean, and the results from a heterogeneous transformation system showed that overexpressing Gm6PGDH1 also enhanced tolerance to Pi starvation in transgenic Arabidopsis. Together, these results suggested the great potential of Gm6PGDH1 in crop breeding for low Pi tolerance.
Collapse
Affiliation(s)
- Cheng Li
- Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, National Center for Soybean Improvement, Soybean Research Institute, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Ministry of Agriculture (MOA) Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Mingming Zheng
- Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, National Center for Soybean Improvement, Soybean Research Institute, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Liu
- Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, National Center for Soybean Improvement, Soybean Research Institute, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xianlong Ding
- Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, National Center for Soybean Improvement, Soybean Research Institute, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, National Center for Soybean Improvement, Soybean Research Institute, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, National Center for Soybean Improvement, Soybean Research Institute, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Zhang J, Xu H, Yang Y, Zhang X, Huang Z, Zhang D. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting soybean genotypes subjected to phosphate starvation. BMC Genomics 2021; 22:433. [PMID: 34107875 PMCID: PMC8191232 DOI: 10.1186/s12864-021-07750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphorus (P) is essential for plant growth and development, and low-phosphorus (LP) stress is a major factor limiting the growth and yield of soybean. Long noncoding RNAs (lncRNAs) have recently been reported to be key regulators in the responses of plants to stress conditions, but the mechanism through which LP stress mediates the biogenesis of lncRNAs in soybean remains unclear. RESULTS In this study, to explore the response mechanisms of lncRNAs to LP stress, we used the roots of two representative soybean genotypes that present opposite responses to P deficiency, namely, a P-sensitive genotype (Bogao) and a P-tolerant genotype (NN94156), for the construction of RNA sequencing (RNA-seq) libraries. In total, 4,166 novel lncRNAs, including 525 differentially expressed (DE) lncRNAs, were identified from the two genotypes at different P levels. GO and KEGG analyses indicated that numerous DE lncRNAs might be involved in diverse biological processes related to phosphate, such as lipid metabolic processes, catalytic activity, cell membrane formation, signal transduction, and nitrogen fixation. Moreover, lncRNA-mRNA-miRNA and lncRNA-mRNA networks were constructed, and the results identified several promising lncRNAs that might be highly valuable for further analysis of the mechanism underlying the response of soybean to LP stress. CONCLUSIONS These results revealed that LP stress can significantly alter the genome-wide profiles of lncRNAs, particularly those of the P-sensitive genotype Bogao. Our findings increase the understanding of and provide new insights into the function of lncRNAs in the responses of soybean to P stress.
Collapse
Affiliation(s)
- Jinyu Zhang
- School of Life Science and Technology, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003 China
| | - Huanqing Xu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiangqian Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhongwen Huang
- School of Life Science and Technology, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003 China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
27
|
Wang X, Balamurugan S, Liu SF, Ji CY, Liu YH, Yang WD, Jiang L, Li HY. Hydrolysis of organophosphorus by diatom purple acid phosphatase and sequential regulation of cell metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2918-2932. [PMID: 33491071 DOI: 10.1093/jxb/erab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) limitation affects phytoplankton growth and population size in aquatic systems, and consequently limits aquatic primary productivity. Plants have evolved a range of metabolic responses to cope with P limitation, such as accumulation of purple acid phosphatases (PAPs) to enhance acquisition of phosphates. However, it remains unknown whether algae have evolved a similar mechanism. In this study, we examined the role of PAPs in the model microalga Phaeodactylum tricornutum. Expression of PAP1 was enhanced in P. tricornutum cells grown on organophosphorus compared to inorganic phosphate. PAP1 overexpression improved cellular growth and biochemical composition in a growth-phase dependent manner. PAP1 promoted growth and photosynthesis during growth phases and reallocated carbon flux towards lipogenesis during the stationary phase. PAP1 was found to be localized in the endoplasmic reticulum and it orchestrated the expression of genes involved in key metabolic pathways and translocation of inorganic P (Pi), thereby improving energy use, reducing equivalents and antioxidant potential. RNAi of PAP1 induced expression of its homolog PAP2, thereby compensating for the Pi scavenging activity of PAP1. Our results demonstrate that PAP1 brings about sequential regulation of metabolism, and provide novel insights into algal phosphorus metabolism and aquatic primary productivity.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Chang-Yang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Kong SL, Abdullah SNA, Ho CL, Musa MHB, Yeap WC. Comparative transcriptome analysis reveals novel insights into transcriptional responses to phosphorus starvation in oil palm (Elaeis guineensis) root. BMC Genom Data 2021; 22:6. [PMID: 33568046 PMCID: PMC7863428 DOI: 10.1186/s12863-021-00962-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers. This has caused serious environmental pollutions and cost increment. Even so, the Pi deficiency response mechanism in oil palm as one of the basic prerequisites for crop improvement remains largely unknown. RESULTS Using total RNA extracted from young roots as template, we performed a comparative transcriptome analysis on oil palm responding to 14d and 28d of Pi deprivation treatment and under adequate Pi supply. By using Illumina HiSeq4000 platform, RNA-Seq analysis was successfully conducted on 12 paired-end RNA-Seq libraries and generated more than 1.2 billion of clean reads in total. Transcript abundance estimated by fragments per kilobase per million fragments (FPKM) and differential expression analysis revealed 36 and 252 genes that are differentially regulated in Pi-starved roots at 14d and 28d, respectively. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, hormonal signaling and gene transcription were found among the differentially expressed genes. CONCLUSIONS Our results showed that the molecular response mechanism underlying Pi starvation in oil palm is complexed and involved multilevel regulation of various sensing and signaling components. This contribution would generate valuable genomic resources in the effort to develop oil palm planting materials that possess Pi-use efficient trait through molecular manipulation and breeding programs.
Collapse
Affiliation(s)
- Sze-Ling Kong
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Chai-Ling Ho
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamed Hanafi Bin Musa
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Chin Yeap
- Sime Darby Technology Centre Sdn. Bhd., Block A, UPM-MTDC Technology Centre III, Lebuh Silikon, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Zhu S, Chen M, Liang C, Xue Y, Lin S, Tian J. Characterization of Purple Acid Phosphatase Family and Functional Analysis of GmPAP7a/ 7b Involved in Extracellular ATP Utilization in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:661. [PMID: 32670306 PMCID: PMC7326820 DOI: 10.3389/fpls.2020.00661] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/28/2020] [Indexed: 05/26/2023]
Abstract
Low phosphate (Pi) availability limits crop growth and yield in acid soils. Although root-associated acid phosphatases (APases) play an important role in extracellular organic phosphorus (P) utilization, they remain poorly studied in soybean (Glycine max), an important legume crop. In this study, dynamic changes in intracellular (leaf and root) and root-associated APase activities were investigated under both Pi-sufficient and Pi-deficient conditions. Moreover, genome-wide identification of members of the purple acid phosphatase (PAP) family and their expression patterns in response to Pi starvation were analyzed in soybean. The functions of both GmPAP7a and GmPAP7b, whose expression is up regulated by Pi starvation, were subsequently characterized. Phosphate starvation resulted in significant increases in intracellular APase activities in the leaves after 4 days, and in root intracellular and associated APase activities after 1 day, but constant increases were observed only for root intracellular and associated APase activities during day 5-16 of P deficiency in soybean. Moreover, a total of 38 GmPAP members were identified in the soybean genome. The transcripts of 19 GmPAP members in the leaves and 17 in the roots were upregulated at 16 days of P deficiency despite the lack of a response for any GmPAP members to Pi starvation at 2 days. Pi starvation upregulated GmPAP7a and GmPAP7b, and they were subsequently selected for further analysis. Both GmPAP7a and GmPAP7b exhibited relatively high activities against adenosine triphosphate (ATP) in vitro. Furthermore, overexpressing GmPAP7a and GmPAP7b in soybean hairy roots significantly increased root-associated APase activities and thus facilitated extracellular ATP utilization. Taken together, these results suggest that GmPAP7a and GmPAP7b might contribute to root-associated APase activities, thus having a function in extracellular ATP utilization in soybean.
Collapse
Affiliation(s)
- Shengnan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Minhui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Cuiyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Yingbin Xue
- Department of Resources and Environmental Sciences, College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, China
| | - Shuling Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Farhadi S, Sabet MS, Malboobi MA, Moieni A. The Critical Role of AtPAP17 and AtPAP26 Genes in Arabidopsis Phosphate Compensation Network. FRONTIERS IN PLANT SCIENCE 2020; 11:565865. [PMID: 33101335 PMCID: PMC7554520 DOI: 10.3389/fpls.2020.565865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
Purple acid phosphatases (PAP)-encoding genes form a complex network that play a critical role in plant phosphate (Pi) homeostasis. Mostly, the functions of PAPs were investigated individually. However, the interactions of most of these genes in response to various concentrations of available Pi remain unknown. In this study, the roles of AtPAP17 and AtPAP26 genes, and their relationship within Pi homeostasis context were investigated. Surprisingly, atpap17 and atpap26 mutants not only showed no obvious developmental defects, but also produced higher biomass in compare to wild type (WT) plants under normal growth conditions. Comparing gene expression patterns of these mutants with WT plant, we identified a set of genes up-regulated in mutant plants but not in WT. Based on these unexpected results and up-regulation of AtPAP17 and AtPAP26 genes by the loss of function of each other, the hypothesis of compensation relationship between these genes in Pi homeostasis was assessed by generating atpap17/atpap26 double mutants. Observation of developmental defects in atpap17/atpap26 mutant but not in single mutants indicated a compensation relationship between AtPAP17 and AtPAP26 genes in Pi homeostasis network. Taken together, these results demonstrate the activation of AtPAP17 and AtPAP26 genes to buffer against the loss of function of each other, and this compensation relationship is vital for Arabidopsis growth and development.
Collapse
Affiliation(s)
- Siamak Farhadi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Mohammad Sadegh Sabet,
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ahmad Moieni
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Kong Y, Wang B, Du H, Li W, Li X, Zhang C. GmEXLB1, a Soybean Expansin-Like B Gene, Alters Root Architecture to Improve Phosphorus Acquisition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:808. [PMID: 31333686 PMCID: PMC6624453 DOI: 10.3389/fpls.2019.00808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
Expansins comprise four subfamilies, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB), which are involved in the regulation of root development and growth under abiotic stress. To date, few EXLB genes have been shown to respond to low phosphorus (P) in plants. In this study, we identified an EXLB gene, GmEXLB1, by analyzing the transcription profiles of GmEXLBs in soybean. Quantitative analysis showed that GmEXLB1 was expressed and induced in the lateral roots of soybean under low P conditions. The observation of β-glucuronidase staining in transgenic Arabidopsis suggested that GmEXLB1 might be associated with lateral root emergence. GmEXLB1 overexpression altered the root architecture of transgenic Arabidopsis by increasing the number and length of lateral roots and the length of primary roots under low P conditions. Additionally, the length of the elongation zone and the average cell length in the elongation zone were increased in transgenic Arabidopsis. Increases in biomass and P content suggested that GmEXLB1 overexpression enhanced P acquisition in Arabidopsis. Overall, we conclude that GmEXLB1 expression is induced in soybean under low P conditions, and the overexpression of GmEXLB1 improves P acquisition by regulating root elongation and architecture in Arabidopsis, which provides a possible direction for research of the function of this gene in soybean.
Collapse
|