1
|
Dreyer I. Nutrient cycling is an important mechanism for homeostasis in plant cells. PLANT PHYSIOLOGY 2021; 187:2246-2261. [PMID: 34890457 PMCID: PMC8644529 DOI: 10.1093/plphys/kiab217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 05/02/2023]
Abstract
Homeostasis in living cells refers to the steady state of internal, physical, and chemical conditions. It is sustained by self-regulation of the dynamic cellular system. To gain insight into the homeostatic mechanisms that maintain cytosolic nutrient concentrations in plant cells within a homeostatic range, we performed computational cell biology experiments. We mathematically modeled membrane transporter systems and simulated their dynamics. Detailed analyses of 'what-if' scenarios demonstrated that a single transporter type for a nutrient, irrespective of whether it is a channel or a cotransporter, is not sufficient to calibrate a desired cytosolic concentration. A cell cannot flexibly react to different external conditions. Rather, at least two different transporter types for the same nutrient, which are energized differently, are required. The gain of flexibility in adjusting a cytosolic concentration was accompanied by the establishment of energy-consuming cycles at the membrane, suggesting that these putatively "futile" cycles are not as futile as they appear. Accounting for the complex interplay of transporter networks at the cellular level may help design strategies for increasing nutrient use efficiency of crop plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca CL-3460000, Chile
- Author for communication:
| |
Collapse
|
2
|
Li J, Yue Y, Wang Z, Zhou Q, Fan L, Chai Z, Song C, Dong H, Yan S, Gao X, Xu Q, Yao J, Wang Z, Wang X, Hou P, Huang L. Illumination/Darkness-Induced Changes in Leaf Surface Potential Linked With Kinetics of Ion Fluxes. FRONTIERS IN PLANT SCIENCE 2019; 10:1407. [PMID: 31787996 PMCID: PMC6854870 DOI: 10.3389/fpls.2019.01407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
A highly reproducible plant electrical signal-light-induced bioelectrogenesis (LIB) was obtained by means of periodic illumination/darkness stimulation of broad bean (Vicia faba L.) leaves. By stimulating the same position of the same leaf with different concentrations of NaCl, we observed that the amplitude and waveform of the LIB was correlated with the intensity of stimulation. This method allowed us to link dynamic ion fluxes induced by periodic illumination/darkness to salt stress. The self-referencing ion electrode technique was used to explore the ionic mechanisms of the LIB. Fluxes of H+, Ca2+, K+, and Cl- showed periodic changes under periodic illumination/darkness before and after 50 mM NaCl stimulation. Gray relational analysis was used to analyze correlations between each of these ions and LIB. The results showed that different ions are involved in surface potential changes at different stages under periodic illumination/darkness. The gray relational grade reflected the contribution of each ion to the change in surface potential at a certain time period. The ion fluxes data obtained under periodic illumination/darkness stimulation will contribute to the future development of a dynamic model for interpretation of electrophysiological events in plant cells.
Collapse
Affiliation(s)
- Jinhai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Yang Yue
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Ziyang Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Lifeng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Zhiqiang Chai
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Chao Song
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Hongtu Dong
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shixian Yan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xinyu Gao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Qiang Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
| | - Jiepeng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Zhongyi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Information Acquisition Technology (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
3
|
Driouich A, Smith C, Ropitaux M, Chambard M, Boulogne I, Bernard S, Follet-Gueye ML, Vicré M, Moore J. Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol Rev Camb Philos Soc 2019; 94:1685-1700. [PMID: 31134732 DOI: 10.1111/brv.12522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
The root cap releases cells that produce massive amounts of mucilage containing polysaccharides, proteoglycans, extracellular DNA (exDNA) and a variety of antimicrobial compounds. The released cells - known as border cells or border-like cells - and mucilage secretions form networks that are defined as root extracellular traps (RETs). RETs are important players in root immunity. In animals, phagocytes are some of the most abundant white blood cells in circulation and are very important for immunity. These cells combat pathogens through multiple defence mechanisms, including the release of exDNA-containing extracellular traps (ETs). Traps of neutrophil origin are abbreviated herein as NETs. Similar to phagocytes, plant root cap-originating cells actively contribute to frontline defence against pathogens. RETs and NETs are thus components of the plant and animal immune systems, respectively, that exhibit similar compositional and functional properties. Herein, we describe and discuss the formation, molecular composition and functional similarities of these similar but different extracellular traps.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Matieland, 7602, South Africa
| | - Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie Chambard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - John Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
4
|
Matzke AJ, Lin WD, Matzke M. Evidence That Ion-Based Signaling Initiating at the Cell Surface Can Potentially Influence Chromatin Dynamics and Chromatin-Bound Proteins in the Nucleus. FRONTIERS IN PLANT SCIENCE 2019; 10:1267. [PMID: 31681370 PMCID: PMC6811650 DOI: 10.3389/fpls.2019.01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
We have developed tools and performed pilot experiments to test the hypothesis that an intracellular ion-based signaling pathway, provoked by an extracellular stimulus acting at the cell surface, can influence interphase chromosome dynamics and chromatin-bound proteins in the nucleus. The experimental system employs chromosome-specific fluorescent tags and the genome-encoded fluorescent pH sensor SEpHluorinA227D, which has been targeted to various intracellular membranes and soluble compartments in root cells of Arabidopsis thaliana. We are using this system and three-dimensional live cell imaging to visualize whether fluorescent-tagged interphase chromosome sites undergo changes in constrained motion concurrently with reductions in membrane-associated pH elicited by extracellular ATP, which is known to trigger a cascade of events in plant cells including changes in calcium ion concentrations, pH, and membrane potential. To examine possible effects of the proposed ion-based signaling pathway directly at the chromatin level, we generated a pH-sensitive fluorescent DNA-binding protein that allows pH changes to be monitored at specific genomic sites. Results obtained using these tools support the existence of a rapid, ion-based signaling pathway that initiates at the cell surface and reaches the nucleus to induce alterations in interphase chromatin mobility and the surrounding pH of chromatin-bound proteins. Such a pathway could conceivably act under natural circumstances to allow external stimuli to swiftly influence gene expression by affecting interphase chromosome movement and the structures and/or activities of chromatin-associated proteins.
Collapse
Affiliation(s)
| | | | - Marjori Matzke
- *Correspondence: Antonius J.M. Matzke, ; Marjori Matzke,
| |
Collapse
|