1
|
Liú R, Xiāo X, Gōng J, Lǐ J, Yán H, Gě Q, Lú Q, Lǐ P, Pān J, Shāng H, Shí Y, Chén Q, Yuán Y, Gǒng W. Genetic linkage analysis of stable QTLs in Gossypium hirsutum RIL population revealed function of GhCesA4 in fiber development. J Adv Res 2024; 65:33-46. [PMID: 38065406 PMCID: PMC11519737 DOI: 10.1016/j.jare.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Upland cotton is an important allotetrapolyploid crop providing natural fibers for textile industry. Under the present high-level breeding and production conditions, further simultaneous improvement of fiber quality and yield is facing unprecedented challenges due to their complex negative correlations. OBJECTIVES The study was to adequately identify quantitative trait loci (QTLs) and dissect how they orchestrate the formation of fiber quality and yield. METHODS A high-density genetic map (HDGM) based on an intraspecific recombinant inbred line (RIL) population consisting of 231 individuals was used to identify QTLs and QTL clusters of fiber quality and yield traits. The weighted gene correlation network analysis (WGCNA) package in R software was utilized to identify WGCNA network and hub genes related to fiber development. Gene functions were verified via virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 strategies. RESULTS An HDGM consisting of 8045 markers was constructed spanning 4943.01 cM of cotton genome. A total of 295 QTLs were identified based on multi-environmental phenotypes. Among 139 stable QTLs, including 35 newly identified ones, seventy five were of fiber quality and 64 yield traits. A total of 33 QTL clusters harboring 74 QTLs were identified. Eleven candidate hub genes were identified via WGCNA using genes in all stable QTLs and QTL clusters. The relative expression profiles of these hub genes revealed their correlations with fiber development. VIGS and CRISPR/Cas9 edition revealed that the hub gene cellulose synthase 4 (GhCesA4, GH_D07G2262) positively regulate fiber length and fiber strength formation and negatively lint percentage. CONCLUSION Multiple analyses demonstrate that the hub genes harbored in the QTLs orchestrate the fiber development. The hub gene GhCesA4 has opposite pleiotropic effects in regulating trait formation of fiber quality and yield. The results facilitate understanding the genetic basis of negative correlation between cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ruìxián Liú
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Xiànghuī Xiāo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jǔwǔ Gōng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jùnwén Lǐ
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hàoliàng Yán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qún Gě
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Quánwěi Lú
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Péngtāo Lǐ
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jìngtāo Pān
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hǎihóng Shāng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yùzhēn Shí
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qúanjiā Chén
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China.
| | - Yǒulù Yuán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Wànkuí Gǒng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
2
|
Qi G, Si Z, Xuan L, Han Z, Hu Y, Fang L, Dai F, Zhang T. Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3135-3150. [PMID: 39046162 DOI: 10.1111/pbi.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
The elucidation of genetic architecture and molecular regulatory networks underlying complex traits remains a significant challenge in life science, largely due to the substantial background effects that arise from epistasis and gene-environment interactions. The chromosome segment substitution line (CSSL) is an ideal material for genetic and molecular dissection of complex traits due to its near-isogenic properties; yet a comprehensive analysis, from the basic identification of substitution segments to advanced regulatory network, is still insufficient. Here, we developed two cotton CSSL populations on the Gossypium hirsutum background, representing wide adaptation and high lint yield, with introgression from G. barbadense, representing superior fibre quality. We sequenced 99 CSSLs that demonstrated significant differences from G. hirsutum in fibre, and characterized 836 dynamic fibre transcriptomes in three crucial developmental stages. We developed a workflow for precise resolution of chromosomal substitution segments; the genome sequencing revealed substitutions collectively representing 87.25% of the G. barbadense genome. Together, the genomic and transcriptomic survey identified 18 novel fibre-quality-related quantitative trait loci with high genetic contributions and the comprehensive landscape of fibre development regulation. Furthermore, analysis determined unique cis-expression patterns in CSSLs to be the driving force for fibre quality alteration; building upon this, the co-expression regulatory network revealed biological relationships among the noted pathways and accurately described the molecular interactions of GhHOX3, GhRDL1 and GhEXPA1 during fibre elongation, along with reliable predictions for their interactions with GhTBA8A5. Our study will enhance more strategic employment of CSSL in crop molecular biology and breeding programmes.
Collapse
Affiliation(s)
- Guoan Qi
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhanfeng Si
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisha Xuan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zegang Han
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Hu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Fang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fan Dai
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianzhen Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen X, Hu X, Li G, Grover CE, You J, Wang R, Liu Z, Qi Z, Luo X, Peng Y, Zhu M, Zhang Y, Lu S, Zhang Y, Lin Z, Wendel JF, Zhang X, Wang M. Genetic Regulatory Perturbation of Gene Expression Impacted by Genomic Introgression in Fiber Development of Allotetraploid Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401549. [PMID: 39196795 PMCID: PMC11515910 DOI: 10.1002/advs.202401549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Interspecific genomic introgression is an important evolutionary process with respect to the generation of novel phenotypic diversity and adaptation. A key question is how gene flow perturbs gene expression networks and regulatory interactions. Here, an introgression population of two species of allopolyploid cotton (Gossypium) to delineate the regulatory perturbations of gene expression regarding fiber development accompanying fiber quality change is utilized. De novo assembly of the recipient parent (G. hirsutum Emian22) genome allowed the identification of genomic variation and introgression segments (ISs) in 323 introgression lines (ILs) from the donor parent (G. barbadense 3-79). It documented gene expression dynamics by sequencing 1,284 transcriptomes of developing fibers and characterized genetic regulatory perturbations mediated by genomic introgression using a multi-locus model. Introgression of individual homoeologous genes exhibiting extreme low or high expression bias can lead to a parallel expression bias in their non-introgressed duplicates, implying a shared yet divergent regulatory fate of duplicated genes following allopolyploidy. Additionally, the IL N182 with improved fiber quality is characterized, and the candidate gene GhFLAP1 related to fiber length is validated. This study outlines a framework for understanding introgression-mediated regulatory perturbations in polyploids, and provides insights for targeted breeding of superior upland cotton fiber.
Collapse
Affiliation(s)
- Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Guo Li
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yabin Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuan‐ming Zhang
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
4
|
Wang H, Liu C, Zhou X, Wan Y, Song X, Li W, Guo W. Suppressing a β-1,3-glucanase gene expression increases the seed and fibre yield in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:289-301. [PMID: 39154347 DOI: 10.1111/tpj.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Seeds are initiated from the carpel margin meristem (CMM) and high seed yield is top one of breeding objectives for many crops. β-1,3-glucanases play various roles in plant growth and developmental processes; however, whether it participates in CMM development and seed formation remains largely unknown. Here, we identified a β-1,3-glucanase gene (GLU19) as a determinant of CMM callose deposition and seed yield in cotton. GLU19 was differentially expressed in carpel tissues between Gossypium barbadense (Gb) and Gossypium hirsutum (Gh). Based on resequencing data, one interspecies-specific InDel in the promoter of GLU19 was further detected. The InDel was involved in the binding site of the CRABS CLAW (CRC) transcription factor, a regulator of carpel development. We found that the CRC binding affinity to the GLU19 promoter of G. barbadense was higher than that of G. hirsutum. Since G. barbadense yields fewer seeds than G. hirsutum, we speculated that stronger CRC binding to the GLU19 promoter activated higher expression of GLU19 which in turn suppressed seed production. Consistent with this hypothesis was that the overexpression of GhGLU19 caused reduced seed number, boll weight and less callose formation in CMM. Conversely, GhGLU19-knockdown (GhGLU19-KD) cotton led to the opposite phenotypes. By crossing GhGLU19-KD lines with several G. hirsutum and G. barbadense cotton accessions, all F1 and F2 plants carrying GhGLU19-KD transgenic loci exhibited higher seed yield than control plants without the locus. The increased seed effect was also found in the down-regulation of Arabidopsis orthologs lines, indicating that this engineering strategy may improve the seed yield in other crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Gu Q, Lv X, Zhang D, Zhang Y, Wang X, Ke H, Yang J, Chen B, Wu L, Zhang G, Wang X, Sun Z, Ma Z. Deepening genomic sequences of 1081 Gossypium hirsutum accessions reveals novel SNPs and haplotypes relevant for practical breeding utility. Genomics 2024; 116:110848. [PMID: 38663523 DOI: 10.1016/j.ygeno.2024.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Fiber quality is a major breeding goal in cotton, but phenotypically direct selection is often hindered. In this study, we identified fiber quality and yield related loci using GWAS based on 2.97 million SNPs obtained from 10.65× resequencing data of 1081 accessions. The results showed that 585 novel fiber loci, including two novel stable SNP peaks associated with fiber length on chromosomes At12 and Dt05 and one novel genome regions linked with fiber strength on chromosome Dt12 were identified. Furthermore, by means of gene expression analysis, GhM_A12G0090, GhM_D05G1692, GhM_D12G3135 were identified and GhM_D11G2208 function was identified in Arabidopsis. Additionally, 14 consistent and stable superior haplotypes were identified, and 25 accessions were detected as possessing these 14 superior haplotype in breeding. This study providing fundamental insight relevant to identification of genes associated with fiber quality and yield will enhance future efforts toward improvement of upland cotton.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xingyi Wang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China.
| |
Collapse
|
6
|
Li G, Che J, Gong J, Duan L, Zhang Z, Jiang X, Xu P, Fan S, Gong W, Shi Y, Liu A, Li J, Li P, Pan J, Deng X, Yuan Y, Shang H. Quantitative Trait Locus Mapping for Plant Height and Branch Number in CCRI70 Recombinant Inbred Line Population of Upland Cotton (Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1509. [PMID: 38891318 PMCID: PMC11174691 DOI: 10.3390/plants13111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.
Collapse
Affiliation(s)
- Gangling Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jincan Che
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Li Duan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng 475001, China
| | - Zhen Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiao Jiang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Peng Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Senmiao Fan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Aiying Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Pengtao Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiaoying Deng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Youlu Yuan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Haihong Shang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| |
Collapse
|
7
|
Ni J, You C, Chen Z, Tang D, Wu H, Deng W, Wang X, Yang J, Bao R, Liu Z, Meng P, Rong T, Liu J. Deploying QTL-seq rapid identification and separation of the major QTLs of tassel branch number for fine-mapping in advanced maize populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:88. [PMID: 38045561 PMCID: PMC10686902 DOI: 10.1007/s11032-023-01431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
The tassel competes with the ear for nutrients and shields the upper leaves, thereby reducing the yield of grain. The tassel branch number (TBN) is a pivotal determinant of tassel size, wherein the reduced TBN has the potential to enhance the transmission of light and reduce the consumption of nutrients, which should ultimately result in increased yield. Consequently, the TBN has emerged as a vital target trait in contemporary breeding programs that focus on compact maize varieties. In this study, QTL-seq technology and advanced population mapping were used to rapidly identify and dissect the major effects of the TBN on QTL. Advanced mapping populations (BC4F2 and BC4F3) were derived from the inbred lines 18-599 (8-11 TBN) and 3237 (0-1 TBN) through phenotypic recurrent selection. First, 13 genomic regions associated with the TBN were detected using quantitative trait locus (QTL)-seq and were located on chromosomes 2 and 5. Subsequently, validated loci within these regions were identified by QTL-seq. Three QTLs for TBN were identified in the BC4F2 populations by traditional QTL mapping, with each QTL explaining the phenotypic variation of 6.13-18.17%. In addition, for the major QTL (qTBN2-2 and qTBN5-1), residual heterozygous lines (RHLs) were developed from the BC4F2 population. These two major QTLs were verified in the RHLs by QTL mapping, with the phenotypic variation explained (PVE) of 21.57% and 30.75%, respectively. Near-isogenic lines (NILs) of qTBN2-2 and qTBN5-1 were constructed. There were significant differences between the NILs in TBN. These results will enhance our understanding of the genetic basis of TBN and provide a solid foundation for the fine-mapping of TBN. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01431-y.
Collapse
Affiliation(s)
- Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Chong You
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhengjie Chen
- Sichuan Advanced Agricultural & Industrial Institute, China Agriculture University, No.8 Xingyuan Road, Xinjin District, Chengdu, 611430 Sichuan China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, No. 211 Huiming Road, Wenjiang District, Chengdu, 611130 Sichuan China
| |
Collapse
|
8
|
Alam B, Liu R, Gong J, Li J, Yan H, Ge Q, Xiao X, Pan J, Shang H, Shi Y, Yuan Y, Gong W. Hub Genes in Stable QTLs Orchestrate the Accumulation of Cottonseed Oil in Upland Cotton via Catalyzing Key Steps of Lipid-Related Pathways. Int J Mol Sci 2023; 24:16595. [PMID: 38068920 PMCID: PMC10706765 DOI: 10.3390/ijms242316595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.
Collapse
Affiliation(s)
- Beena Alam
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Ruixian Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Haoliang Yan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qun Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Haihong Shang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| | - Youlu Yuan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China (Y.S.)
| |
Collapse
|
9
|
Wang Y, Guo X, Xu Y, Sun R, Cai X, Zhou Z, Qin T, Tao Y, Li B, Hou Y, Wang Q, Liu F. Genome-wide association study for boll weight in Gossypium hirsutum races. Funct Integr Genomics 2023; 23:331. [PMID: 37940771 DOI: 10.1007/s10142-023-01261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinlei Guo
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ye Tao
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Baihui Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. J Adv Res 2023; 53:1-16. [PMID: 36460274 PMCID: PMC10658236 DOI: 10.1016/j.jare.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The simultaneous improvement of fiber quality and yield for cotton is strongly limited by the narrow genetic backgrounds of Gossypium hirsutum (Gh) and the negative genetic correlations among traits. An effective way to overcome the bottlenecks is to introgress the favorable alleles of Gossypium barbadense (Gb) for fiber quality into Gh with high yield. OBJECTIVES This study was to identify superior loci for the improvement of fiber quality and yield. METHODS Two sets of chromosome segment substitution lines (CSSLs) were generated by crossing Hai1 (Gb, donor-parent) with cultivar CCRI36 (Gh) and CCRI45 (Gh) as genetic backgrounds, and cultivated in 6 and 8 environments, respectively. The kmer genotyping strategy was improved and applied to the population genetic analysis of 743 genomic sequencing data. A progeny segregating population was constructed to validate genetic effects of the candidate loci. RESULTS A total of 68,912 and 83,352 genome-wide introgressed kmers were identified in the CCRI36 and CCRI45 populations, respectively. Over 90 % introgressions were homologous exchanges and about 21 % were reverse insertions. In total, 291 major introgressed segments were identified with stable genetic effects, of which 66(22.98 %), 64(21.99 %), 35(12.03 %), 31(10.65 %) and 18(6.19 %) were beneficial for the improvement of fiber length (FL), strength (FS), micronaire, lint-percentage (LP) and boll-weight, respectively. Thirty-nine introgression segments were detected with stable favorable additive effects for simultaneous improvement of 2 or more traits in Gh genetic background, including 6 could increase FL/FS and LP. The pyramiding effects of 3 pleiotropic segments (A07:C45Clu-081, D06:C45Clu-218, D02:C45Clu-193) were further validated in the segregating population. CONCLUSION The combining of genome-wide introgressions and kmer genotyping strategy showed significant advantages in exploring genetic resources. Through the genome-wide comprehensive mining, a total of 11 clusters (segments) were discovered for the stable simultaneous improvement of FL/FS and LP, which should be paid more attention in the future.
Collapse
Affiliation(s)
- Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linglei Kong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke 843900, China
| | - Yuanming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Liu R, Zhu M, Shi Y, Li J, Gong J, Xiao X, Chen Q, Yuan Y, Gong W. QTL Verification and Candidate Gene Screening of Fiber Quality and Lint Percentage in the Secondary Segregating Population of Gossypium hirsutum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3737. [PMID: 37960093 PMCID: PMC10650182 DOI: 10.3390/plants12213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Fiber quality traits, especially fiber strength, length, and micronaire (FS, FL, and FM), have been recognized as critical fiber attributes in the textile industry, while the lint percentage (LP) was an important indicator to evaluate the cotton lint yield. So far, the genetic mechanism behind the formation of these traits is still unclear. Quantitative trait loci (QTL) identification and candidate gene validation provide an effective methodology to uncover the genetic and molecular basis of FL, FS, FM, and LP. A previous study identified three important QTL/QTL cluster loci, harboring at least one of the above traits on chromosomes A01, A07, and D12 via a recombinant inbred line (RIL) population derived from a cross of Lumianyan28 (L28) × Xinluzao24 (X24). A secondary segregating population (F2) was developed from a cross between L28 and an RIL, RIL40 (L28 × RIL40). Based on the population, genetic linkage maps of the previous QTL cluster intervals on A01 (6.70-10.15 Mb), A07 (85.48-93.43 Mb), and D12 (0.40-1.43 Mb) were constructed, which span 12.25, 15.90, and 5.56 cM, with 2, 14, and 4 simple sequence repeat (SSR) and insertion/deletion (Indel) markers, respectively. QTLs of FL, FS, FM, and LP on these three intervals were verified by composite interval mapping (CIM) using WinQTL Cartographer 2.5 software via phenotyping of F2 and its derived F2:3 populations. The results validated the previous primary QTL identification of FL, FS, FM, and LP. Analysis of the RNA-seq data of the developing fibers of L28 and RIL40 at 10, 20, and 30 days post anthesis (DPA) identified seven differentially expressed genes (DEGs) as potential candidate genes. qRT-PCR verified that five of them were consistent with the RNA-seq result. These genes may be involved in regulating fiber development, leading to the formation of FL, FS, FM, and LP. This study provides an experimental foundation for further exploration of these functional genes to dissect the genetic mechanism of cotton fiber development.
Collapse
Affiliation(s)
- Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Minghui Zhu
- Agricultural Technology Extension Center of Kashi District, Kashi 844000, China;
| | - Yongqiang Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| |
Collapse
|
12
|
Saripalli G, Adhikari L, Amos C, Kibriya A, Ahmed HI, Heuberger M, Raupp J, Athiyannan N, Wicker T, Abrouk M, Wallace S, Hosseinirad S, Chhuneja P, Livesay J, Rawat N, Krattinger SG, Poland J, Tiwari V. Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits. Commun Biol 2023; 6:835. [PMID: 37573415 PMCID: PMC10423216 DOI: 10.1038/s42003-023-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.
Collapse
Affiliation(s)
- Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cameron Amos
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ashraf Kibriya
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sydney Wallace
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Seyedali Hosseinirad
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Janelle Livesay
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA.
| |
Collapse
|
13
|
Ro N, Haile M, Ko HC, Cho GT, Lee J, Kim B, Lee S, Kim SH. Genome-Wide Association Study of Phenolic Content and Antioxidant Properties in Eggplant Germplasm. Genes (Basel) 2023; 14:1315. [PMID: 37510220 PMCID: PMC10379237 DOI: 10.3390/genes14071315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The phenolic compounds in eggplant offer potential natural antioxidants for improved health. A large number of samples were examined in order to find eggplant germplasm with a high potential for health promotion. A genome-wide association study (GWAS) was conducted to identify single nucleotide polymorphisms (SNPs) associated with variations in total phenolic content (TPC) and antioxidant activity in eggplants, including ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activity and ferric reducing antioxidant power (FRAP). TPC values varied from 14.19 to 842.90 mg gallic acid equivalent (GAE)/100 g of dry weight of eggplant fruit powder. TPC showed a strong positive correlation with both FRAP and ABTS (r = 0.89 *** and 0.77 ***, respectively). The GWAS identified 20 SNPs that were significantly associated out of 29,183 SNPs. Out of the 20 significant SNPs, 11 showed associations with TPC, 4 with ABTS activity, and 5 with FRAP. Among the SNPs associated with TPC, one SNP was found on each of Chromosomes 3, 4, 7, and 12. In contrast, Chromosome 5 comprised two SNPs associated to TPC. Furthermore, the gene encoding IRX12 laccase-4 on Chromosome 10 was found to contain five SNPs associated with TPC. Four significantly linked SNPs on Chromosomes 1 (1 SNP), 4 (2 SNPs), and 10 (1 SNP) were found to be related to ABTS activity. The identified SNPs will be further examined as markers for selecting desirable eggplant varieties and exploring the links between candidate genes, phenolic content, and antioxidant activity. The findings of this study could assist in further study and the development of eggplants with improved health advantages through targeted breeding.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jungro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Bichsaem Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sookyeong Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
14
|
Xiao X, Liu R, Gong J, Li P, Li Z, Gong W, Liu A, Ge Q, Deng X, Li S, Chen Q, Zhang H, Peng R, Peng Y, Shang H, Pan J, Shi Y, Lu Q, Yuan Y. Fine mapping and candidate gene analysis of qFL-A12-5: a fiber length-related QTL introgressed from Gossypium barbadense into Gossypium hirsutum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:48. [PMID: 36912959 DOI: 10.1007/s00122-023-04247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.
Collapse
Affiliation(s)
- Xianghui Xiao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juwu Gong
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Pengtao Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ziyin Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Hua Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke, 843900, Xinjiang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
15
|
Jareczek JJ, Grover CE, Wendel JF. Cotton fiber as a model for understanding shifts in cell development under domestication. FRONTIERS IN PLANT SCIENCE 2023; 14:1146802. [PMID: 36938017 PMCID: PMC10017751 DOI: 10.3389/fpls.2023.1146802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/21/2023] [Indexed: 05/27/2023]
Abstract
Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant.
Collapse
Affiliation(s)
- Josef J. Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
- Biology Department, Bellarmine University, Louisville, KY, United States
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Wang Z, Yu D, Morota G, Dhakal K, Singer W, Lord N, Huang H, Chen P, Mozzoni L, Li S, Zhang B. Genome-wide association analysis of sucrose and alanine contents in edamame beans. FRONTIERS IN PLANT SCIENCE 2023; 13:1086007. [PMID: 36816489 PMCID: PMC9935843 DOI: 10.3389/fpls.2022.1086007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The sucrose and Alanine (Ala) content in edamame beans significantly impacts the sweetness flavor of edamame-derived products as an important attribute to consumers' acceptance. Unlike grain-type soybeans, edamame beans are harvested as fresh beans at the R6 to R7 growth stages when beans are filled 80-90% of the pod capacity. The genetic basis of sucrose and Ala contents in fresh edamame beans may differ from those in dry seeds. To date, there is no report on the genetic basis of sucrose and Ala contents in the edamame beans. In this study, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) related to sucrose and Ala levels in edamame beans using an association mapping panel of 189 edamame accessions genotyped with a SoySNP50K BeadChip. A total of 43 and 25 SNPs was associated with sucrose content and Ala content in the edamame beans, respectively. Four genes (Glyma.10g270800, Glyma.08g137500, Glyma.10g268500, and Glyma.18g193600) with known effects on the process of sucrose biosynthesis and 37 novel sucrose-related genes were characterized. Three genes (Gm17g070500, Glyma.14g201100 and Glyma.18g269600) with likely relevant effects in regulating Ala content and 22 novel Ala-related genes were identified. In addition, by summarizing the phenotypic data of edamame beans from three locations in two years, three PI accessions (PI 532469, PI 243551, and PI 407748) were selected as the high sucrose and high Ala parental lines for the perspective breeding of sweet edamame varieties. Thus, the beneficial alleles, candidate genes, and selected PI accessions identified in this study will be fundamental to develop edamame varieties with improved consumers' acceptance, and eventually promote edamame production as a specialty crop in the United States.
Collapse
Affiliation(s)
- Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dajun Yu
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Gota Morota
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Kshitiz Dhakal
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - William Singer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nilanka Lord
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Pengyin Chen
- Fisher Delta Research Center, University of Missouri, Portageville, MO, United States
| | - Leandro Mozzoni
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:11. [PMID: 37313129 PMCID: PMC10248604 DOI: 10.1007/s11032-023-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
Ovule number (ON) produced during flower development determines the maximum number of seeds per silique and thereby affects crop productivity; however, the genetic basis of ON remains poorly understood in oilseed rape (Brassica napus). In this study, we genetically dissected the ON variations in a double haploid (DH) population and in natural population (NP) by linkage mapping and genome-wide association analysis. Phenotypic analysis showed that ON displayed normal distribution in both populations with the broad-sense heritability of 0.861 (DH population) and 0.930 (natural population). Linkage mapping identified 5 QTLs related to ON, including qON-A03, qON-A07, qON-A07-2, qON-A10, and qON-C06. Genome-wide association studies (GWAS) revealed 214, 48, and 40 significant single-nucleotide polymorphisms (SNPs) by individually using the single-locus model GLM and the multiple-locus model MrMLM and FASTMrMLM. The phenotypic variation explained (PVE) by these QTLs and SNPs ranged from 2.00-17.40% to 5.03-7.33%, respectively. Integration of the results from both strategies identified four consensus genomic regions associated with ON from the chromosomes A03, A07, and A10. Our results preliminarily resolved the genetic basis of ON and provides useful molecular markers for plant yield improvement in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01355-7.
Collapse
Affiliation(s)
- Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Wenhui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chenqi Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
18
|
Yasir M, Kanwal HH, Hussain Q, Riaz MW, Sajjad M, Rong J, Jiang Y. Status and prospects of genome-wide association studies in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1019347. [PMID: 36330239 PMCID: PMC9623101 DOI: 10.3389/fpls.2022.1019347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.
Collapse
Affiliation(s)
- Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hafiza Hamrah Kanwal
- School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
19
|
Li J, Xin W, Wang W, Zhao S, Xu L, Jiang X, Duan Y, Zheng H, Yang L, Liu H, Jia Y, Zou D, Wang J. Mapping of Candidate Genes in Response to Low Nitrogen in Rice Seedlings. RICE (NEW YORK, N.Y.) 2022; 15:51. [PMID: 36243857 PMCID: PMC9569405 DOI: 10.1186/s12284-022-00597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen is not only a macronutrient essential for crop growth and development, but also one of the most critical nutrients in farmland ecosystem. Insufficient nitrogen supply will lead to crop yield reduction, while excessive application of nitrogen fertilizer will cause agricultural and eco-environment damage. Therefore, mining low-nitrogen tolerant rice genes and improving nitrogen use efficiency are of great significance to the sustainable development of agriculture. This study was conducted by Genome-wide association study on a basis of two root morphological traits (root length and root diameter) and 788,396 SNPs of a natural population of 295 rice varieties. The transcriptome of low-nitrogen tolerant variety (Longjing 31) and low-nitrogen sensitive variety (Songjing 10) were sequenced between low and high nitrogen treatments. A total of 35 QTLs containing 493 genes were mapped. 3085 differential expressed genes were identified. Among these 493 genes, 174 genes showed different haplotype patterns. There were significant phenotype differences among different haplotypes of 58 genes with haplotype differences. These 58 genes were hypothesized as candidate genes for low nitrogen tolerance related to root morphology. Finally, six genes (Os07g0471300, Os11g0230400, Os11g0229300, Os11g0229400, Os11g0618300 and Os11g0229333) which expressed differentially in Longjing 31 were defined as more valuable candidate genes for low-nitrogen tolerance. The results revealed the response characteristics of rice to low-nitrogen, and provided insights into regulatory mechanisms of rice to nitrogen deficiency.
Collapse
Affiliation(s)
- Jia Li
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Weiping Wang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Shijiao Zhao
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Lu Xu
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Xingdong Jiang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yuxuan Duan
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yan Jia
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University/Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
20
|
Egan LM, Stiller WN. The Past, Present, and Future of Host Plant Resistance in Cotton: An Australian Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:895877. [PMID: 35873986 PMCID: PMC9297922 DOI: 10.3389/fpls.2022.895877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program. The program has seen success in releasing cultivars resistant to Bacterial blight, Verticillium wilt, Fusarium wilt, and Cotton bunchy top. However, emerging biotic threats such as Black root rot and secondary pests, are becoming more frequent in Australian cotton production systems. The uptake of tools and breeding methods, such as genomic selection, high throughput phenomics, gene editing, and landscape genomics, paired with the continued utilization of sources of resistance from Gossypium germplasm, will be critical for the future of cotton breeding. This review celebrates the success of HPR breeding activities in the CSIRO cotton breeding program and maps a pathway for the future in developing resistant cultivars.
Collapse
|
21
|
Zhu Y, Thyssen GN, Abdelraheem A, Teng Z, Fang DD, Jenkins JN, McCarty JC, Wedegaertner T, Hake K, Zhang J. A GWAS identified a major QTL for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a MAGIC population of Upland cotton and a meta-analysis of QTLs for Fusarium wilt resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2297-2312. [PMID: 35577933 DOI: 10.1007/s00122-022-04113-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/20/2022] [Indexed: 05/16/2023]
Abstract
A major QTL conferring resistance to Fusarium wilt race 4 in a narrow region of chromosome D02 was identified in a MAGIC population of 550 RILs of Upland cotton. Numerous studies have been conducted to investigate the genetic basis of Fusarium wilt (FW, caused by Fusarium oxysporum f. sp. vasinfectum, FOV) resistance using bi-parental and association mapping populations in cotton. In this study, a multi-parent advanced generation inter-cross (MAGIC) population of 550 recombinant inbred lines (RILs), together with their 11 Upland cotton (Gossypium hirsutum) parents, was used to identify QTLs for FOV race 4 (FOV4) resistance. Among the parents, Acala Ultima, M-240 RNR, and Stoneville 474 were the most resistant, while Deltapine Acala 90, Coker 315, and Stoneville 825 were the most susceptible. Twenty-two MAGIC lines were consistently resistant to FOV4. Through a genome-wide association study (GWAS) based on 473,516 polymorphic SNPs, a major FOV4 resistance QTL within a narrow region on chromosomes D02 was detected, allowing identification of 14 candidate genes. Additionally, a meta-analysis of 133 published FW resistance QTLs showed a D subgenome and individual chromosome bias and no correlation between homeologous chromosome pairs. This study represents the first GWAS study using a largest genetic population and the most comprehensive meta-analysis for FW resistance in cotton. The results illustrated that 550 lines were not enough for high resolution mapping to pinpoint a candidate gene, and experimental errors in phenotyping cotton for FW resistance further compromised the accuracy and precision in QTL localization and identification of candidate genes. This study identified FOV4-resistant parents and MAGIC lines, and the first major QTL for FOV4 resistance in Upland cotton, providing useful information for developing FOV4-resistant cultivars and further genomic studies towards identification of causal genes for FOV4 resistance in cotton.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience and Cotton Chemistry and Utilization Research Units, USDA-ARS-SRRC, New Orleans, LA, USA
| | - Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Zonghua Teng
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, USA
| | - Johnie N Jenkins
- Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, USA
| | - Jack C McCarty
- Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, USA
| | | | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
22
|
Feng Z, Li L, Tang M, Liu Q, Ji Z, Sun D, Liu G, Zhao S, Huang C, Zhang Y, Zhang G, Yu S. Detection of Stable Elite Haplotypes and Potential Candidate Genes of Boll Weight Across Multiple Environments via GWAS in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:929168. [PMID: 35769298 PMCID: PMC9234699 DOI: 10.3389/fpls.2022.929168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 05/02/2023]
Abstract
Boll weight (BW) is a key determinant of yield component traits in cotton, and understanding the genetic mechanism of BW could contribute to the progress of cotton fiber yield. Although many yield-related quantitative trait loci (QTLs) responsible for BW have been determined, knowledge of the genes controlling cotton yield remains limited. Here, association mapping based on 25,169 single-nucleotide polymorphisms (SNPs) and 2,315 insertions/deletions (InDels) was conducted to identify high-quality QTLs responsible for BW in a global collection of 290 diverse accessions, and BW was measured in nine different environments. A total of 19 significant markers were detected, and 225 candidate genes within a 400 kb region (± 200 kb surrounding each locus) were predicted. Of them, two major QTLs with highly phenotypic variation explanation on chromosomes A08 and D13 were identified among multiple environments. Furthermore, we found that two novel candidate genes (Ghir_A08G009110 and Ghir_D13G023010) were associated with BW and that Ghir_D13G023010 was involved in artificial selection during cotton breeding by population genetic analysis. The transcription level analyses showed that these two genes were significantly differentially expressed between high-BW accession and low-BW accession during the ovule development stage. Thus, these results reveal valuable information for clarifying the genetic basics of the control of BW, which are useful for increasing yield by molecular marker-assisted selection (MAS) breeding in cotton.
Collapse
Affiliation(s)
- Zhen Feng
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Libei Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou, China
| | - Qibao Liu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zihan Ji
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Dongli Sun
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guodong Liu
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuqi Zhao
- Huanggang Academy of Agricultural Sciences, Huanggang, China
| | - Chenjue Huang
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Yanan Zhang
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guizhi Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuxun Yu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
23
|
Wu J, Mao L, Tao J, Wang X, Zhang H, Xin M, Shang Y, Zhang Y, Zhang G, Zhao Z, Wang Y, Cui M, Wei L, Song X, Sun X. Dynamic Quantitative Trait Loci Mapping for Plant Height in Recombinant Inbred Line Population of Upland Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:914140. [PMID: 35769288 PMCID: PMC9235862 DOI: 10.3389/fpls.2022.914140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Plant height (PH) is a key plant architecture trait for improving the biological productivity of cotton. Ideal PH of cotton is conducive to lodging resistance and mechanized harvesting. To detect quantitative trait loci (QTL) and candidate genes of PH in cotton, a genetic map was constructed with a recombinant inbred line (RIL) population of upland cotton. PH phenotype data under nine environments and three best linear unbiased predictions (BLUPs) were used for QTL analyses. Based on restriction-site-associated DNA sequence (RAD-seq), the genetic map contained 5,850 single-nucleotide polymorphism (SNP) markers, covering 2,747.12 cM with an average genetic distance of 0.47 cM. Thirty-seven unconditional QTL explaining 1.03-12.50% of phenotypic variance, including four major QTL and seven stable QTL, were identified. Twenty-eight conditional QTL explaining 3.27-28.87% of phenotypic variance, including 1 major QTL, were identified. Importantly, five QTL, including 4 stable QTL, were both unconditional and conditional QTL. Among the 60 PH QTL (including 39 newly identified), none of them were involved in the whole period of PH growth, indicating that QTL related to cotton PH development have dynamic expression characteristics. Based on the functional annotation of Arabidopsis homologous genes and transcriptome data of upland cotton TM-1, 14 candidate genes were predicted within 10 QTL. Our research provides valuable information for understanding the genetic mechanism of PH development, which also increases the economic production of cotton.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Lili Mao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Jincai Tao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest Agriculture and Forestry University, Xianyang, China
| | - Xiuxiu Wang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Ming Xin
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Yongqi Shang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Yanan Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | | | - Yiming Wang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Mingshuo Cui
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Liming Wei
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Xuezhen Sun
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| |
Collapse
|
24
|
Boopathi NM, Tiwari GJ, Jena SN, Nandhini K, Sri Subalakhshmi VKI, Shyamala P, Joshi B, Premalatha N, Rajeswari S. Identification of Stable and Multiple Environment Interaction QTLs and Candidate Genes for Fiber Productive Traits Under Irrigated and Water Stress Conditions Using Intraspecific RILs of Gossypium hirsutum var. MCU5 X TCH1218. FRONTIERS IN PLANT SCIENCE 2022; 13:851504. [PMID: 35519814 PMCID: PMC9062235 DOI: 10.3389/fpls.2022.851504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cotton productivity under water-stressed conditions is controlled by multiple quantitative trait loci (QTL). Enhancement of these productivity traits under water deficit stress is crucial for the genetic improvement of upland cotton, Gossypium hirsutum. In the present study, we constructed a genetic map with 504 single nucleotide polymorphisms (SNPs) covering a total span length of 4,416 cM with an average inter-marker distance of 8.76 cM. A total of 181 intra-specific recombinant inbred lines (RILs) were derived from a cross between G. hirsutum var. MCU5 and TCH1218 were used. Although 2,457 polymorphic SNPs were detected between the parents using the CottonSNP50K assay, only 504 SNPs were found to be useful for the construction of the genetic map. In the SNP genotyping, a large number of SNPs showed either >20% missing data, duplication, or segregation distortion. However, the mapped SNPs of this study showed collinearity with the physical map of the reference genome (G. hirsutum var.TM-1), indicating that there was no chromosomal rearrangement within the studied mapping population. RILs were evaluated under multi-environments and seasons for which the phenotypic data were acquired. A total of 53 QTL controlling plant height (PH), number of sympodial branches, boll number (BN), and boll weight (BW) were dissected by QTL analysis under irrigated and water stress conditions. Additionally, it was found that nine QTL hot spots not only co-localized for more than one investigated trait but were also stable with major QTL, i.e., with > 10% of phenotypic variation. One QTL hotspot on chromosome 22 flanked by AX-182254626-AX-182264770 with a span length of 89.4 cM co-localized with seven major and stable QTL linked to a number of sympodial branches both under irrigated and water stress conditions. In addition, putative candidate genes associated with water stress in the QTL hotspots were identified. Besides, few QTL from the hotspots were previously reported across various genetic architects in cotton validating the potential applications of these identified QTL for cotton breeding and improvement. Thus, the major and stable QTL identified in the present study would improve the cotton productivity under water-limited environments through marker-assisted selection.
Collapse
Affiliation(s)
| | - Gopal Ji Tiwari
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Satya Narayan Jena
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Kemparaj Nandhini
- Department of Cotton, CPBG, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Pilla Shyamala
- Department of Plant Biotechnology, CPMB&B, Tamil Nadu Agricultural University, Coimbatore, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - S. Rajeswari
- Department of Cotton, CPBG, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
25
|
Zhao N, Wang W, Grover CE, Jiang K, Pan Z, Guo B, Zhu J, Su Y, Wang M, Nie H, Xiao L, Guo A, Yang J, Cheng C, Ning X, Li B, Xu H, Adjibolosoo D, Aierxi A, Li P, Geng J, Wendel JF, Kong J, Hua J. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:691-710. [PMID: 34800075 PMCID: PMC8989498 DOI: 10.1111/pbi.13747] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs. Phylogenetic and population structure analyses revealed two major gene pools and a third admixed subgroup derived from geographical dissemination and interbreeding. We conducted a genome-wide association study (GWAS) of 15 traits including fibre quality, yield, disease resistance, maturity and plant architecture. The highest number of associated loci was for fibre quality, followed by disease resistance and yield. Using gene expression analyses and VIGS transgenic experiments, we confirmed the roles of five candidate genes regulating four key traits, that is disease resistance, fibre length, fibre strength and lint percentage. Geographical and temporal considerations demonstrated selection for the superior fibre quality (fibre length and fibre strength), and high lint percentage in improving G. barbadense in China. Pedigree selection breeding increased Fusarium wilt disease resistance and separately improved fibre quality and yield. Our work provides a foundation for understanding genomic variation and selective breeding of Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIAUSA
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhuanxia Pan
- Institute of Cotton ResearchShanxi Agricultural UniversityShanxiChina
| | - Baosheng Guo
- Cotton Research InstituteHebei Academy of Agriculture and Forestry SciencesHebeiChina
| | - Jiahui Zhu
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Meng Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Hushuai Nie
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Li Xiao
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Anhui Guo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jing Yang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xinmin Ning
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Haijiang Xu
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Daniel Adjibolosoo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Pengbo Li
- Institute of Cotton ResearchShanxi Agricultural UniversityShanxiChina
| | - Junyi Geng
- Cotton Research InstituteHebei Academy of Agriculture and Forestry SciencesHebeiChina
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIAUSA
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
26
|
Zhang Y, Zhang H, Zhao H, Xia Y, Zheng X, Fan R, Tan Z, Duan C, Fu Y, Li L, Ye J, Tang S, Hu H, Xie W, Yao X, Guo L. Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biol 2022; 23:86. [PMID: 35346318 PMCID: PMC8962237 DOI: 10.1186/s13059-022-02647-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Background Brassica napus is an important vegetable oil source worldwide. Seed coat content is a complex quantitative trait that negatively correlates with the seed oil content in B. napus. Results Here we provide insights into the genetic basis of natural variation of seed coat content by transcriptome-wide association studies (TWAS) and genome-wide association studies (GWAS) using 382 B. napus accessions. By population transcriptomic analysis, we identify more than 700 genes and four gene modules that are significantly associated with seed coat content. We also characterize three reliable quantitative trait loci (QTLs) controlling seed coat content by GWAS. Combining TWAS and correlation networks of seed coat content-related gene modules, we find that BnaC07.CCR-LIKE (CCRL) and BnaTT8s play key roles in the determination of the trait by modulating lignin biosynthesis. By expression GWAS analysis, we identify a regulatory hotspot on chromosome A09, which is involved in controlling seed coat content through BnaC07.CCRL and BnaTT8s. We then predict the downstream genes regulated by BnaTT8s using multi-omics datasets. We further experimentally validate that BnaCCRL and BnaTT8 positively regulate seed coat content and lignin content. BnaCCRL represents a novel identified gene involved in seed coat development. Furthermore, we also predict the key genes regulating carbon allocation between phenylpropane compounds and oil during seed development in B. napus. Conclusions This study helps us to better understand the complex machinery of seed coat development and provides a genetic resource for genetic improvement of seed coat content in B. napus breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02647-5.
Collapse
|
27
|
Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, Deng X, Pengtao L, Shi Y, Haroon M, Gong W, Ren M, Yuan Y. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front Genet 2022; 12:642595. [PMID: 35401652 PMCID: PMC8988190 DOI: 10.3389/fgene.2021.642595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
Lack of precise information about the candidate genes involved in a complex quantitative trait is a major obstacle in the cotton fiber quality improvement, and thus, overall genetic gain in conventional phenotypic selection is low. Recent molecular interventions and advancements in genome sequencing have led to the development of high-throughput molecular markers, quantitative trait locus (QTL) fine mapping, and single nucleotide polymorphisms (SNPs). These advanced tools have resolved the existing bottlenecks in trait-specific breeding. This review demonstrates the significance of chromosomes 3, 7, 9, 11, and 12 of sub-genomes A and D carrying candidate genes for fiber quality. However, chromosome 7 carrying SNPs for stable and potent QTLs related to fiber quality provides great insights for fiber quality-targeted research. This information can be validated by marker-assisted selection (MAS) and transgene in Arabidopsis and subsequently in cotton.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | | | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Li Pengtao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Youlu Yuan
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| |
Collapse
|
28
|
Wu L, Jia B, Pei W, Wang L, Ma J, Wu M, Song J, Yang S, Xin Y, Huang L, Feng P, Zhang J, Yu J. Quantitative Trait Locus Analysis and Identification of Candidate Genes Affecting Seed Size and Shape in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 13:837984. [PMID: 35392518 PMCID: PMC8981304 DOI: 10.3389/fpls.2022.837984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Seed size and shape are key agronomic traits affecting seedcotton yield and seed quality in cotton (Gossypium spp.). However, the genetic mechanisms that regulate the seed physical traits in cotton are largely unknown. In this study, an interspecific backcross inbred line (BIL) population of 250 BC1F7 lines, derived from the recurrent parent Upland CRI36 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), was used to investigate the genetic basis of cotton seed physical traits via quantitative trait locus (QTL) mapping and candidate gene identification. The BILs were tested in five environments, measuring eight seed size and shape-related traits, including 100-kernel weight, kernel length width and their ratio, kernel area, kernel girth, kernel diameter, and kernel roundness. Based on 7,709 single nucleotide polymorphic (SNP) markers, a total of 49 QTLs were detected and each explained 2.91-35.01% of the phenotypic variation, including nine stable QTLs mapped in at least three environments. Based on pathway enrichment, gene annotation, genome sequence, and expression analysis, five genes encoding starch synthase 4, transcription factor PIF7 and MYC4, ubiquitin-conjugating enzyme E27, and THO complex subunit 4A were identified as candidate genes that might be associated with seed size and shape. Our research provides valuable information to improve seed physical traits in cotton breeding.
Collapse
Affiliation(s)
- Luyao Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yue Xin
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Huang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
29
|
Hussain A, Asif N, Pirzada AR, Noureen A, Shaukat J, Burhan A, Zaynab M, Ali E, Imran K, Ameen A, Mahmood MA, Nazar A, Mukhtar MS. Genome wide study of cysteine rich receptor like proteins in Gossypium sp. Sci Rep 2022; 12:4885. [PMID: 35318409 PMCID: PMC8941122 DOI: 10.1038/s41598-022-08943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cysteine-rich receptor-like-kinases (CRKs), a transmembrane subfamily of receptor-like kinase, play crucial roles in plant adaptation. As such cotton is the major source of fiber for the textile industry, but environmental stresses are limiting its growth and production. Here, we have performed a deep computational analysis of CRKs in five Gossypium species, including G. arboreum (60 genes), G. raimondii (74 genes), G. herbaceum (65 genes), G. hirsutum (118 genes), and G. barbadense (120 genes). All identified CRKs were classified into 11 major classes and 43 subclasses with the finding of several novel CRK-associated domains including ALMT, FUSC_2, Cript, FYVE, and Pkinase. Of these, DUF26_DUF26_Pkinase_Tyr was common and had elevated expression under different biotic and abiotic stresses. Moreover, the 35 land plants comparison identified several new CRKs domain-architectures. Likewise, several SNPs and InDels were observed in CLCuD resistant G. hirsutum. The miRNA target side prediction and their expression profiling in different tissues predicted miR172 as a major CRK regulating miR. The expression profiling of CRKs identified multiple clusters with co-expression under certain stress conditions. The expression analysis under CLCuD highlighted the role of GhCRK057, GhCRK059, GhCRK058, and GhCRK081 in resistant accession. Overall, these results provided primary data for future potential functional analysis as well as a reference study for other agronomically important crops.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan.
| | - Naila Asif
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Abdul Rafay Pirzada
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Azka Noureen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.,PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Javeria Shaukat
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Akif Burhan
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, China
| | - Ejaz Ali
- Center of Excellence in Molecular Biology, University of Punjab, Lahore, 54000, Pakistan
| | - Koukab Imran
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Muhammad Arslan Mahmood
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Aquib Nazar
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - M Shahid Mukhtar
- Department of Biology, the University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
30
|
Li L, Sun Z, Zhang Y, Ke H, Yang J, Li Z, Wu L, Zhang G, Wang X, Ma Z. Development and Utilization of Functional Kompetitive Allele-Specific PCR Markers for Key Genes Underpinning Fiber Length and Strength in Gossypium hirsutum L. FRONTIERS IN PLANT SCIENCE 2022; 13:853827. [PMID: 35360312 PMCID: PMC8964280 DOI: 10.3389/fpls.2022.853827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 05/16/2023]
Abstract
Fiber length (FL) and fiber strength (FS) are the important indicators of fiber quality in cotton. Longer and stronger fibers are preferred for manufacturing finer yarns in the textile industry. Functional markers (FMs) designed from polymorphic sites within gene sequences attributing to phenotypic variation are highly efficient when used for marker-assisted selection (MAS) in breeding superior varieties with longer FL and higher FS. The aims of this study were to develop FMs via kompetitive allele-specific PCR (KASP) assays and to validate the efficacy of the FMs for allele discrimination and the potential value in practice application. We used four single-nucleotide polymorphism markers and 360 cotton accessions and found that two FMs, namely, D11_24030087 and A07_72204443, could effectively differentiate accessions of different genotypes with higher consistency to phenotype. The appeared frequencies of varieties harbored Hap2 (elite alleles G and T) with longer FL (> the mean of accessions with non-elite allele, 28.50 mm) and higher FS (> the mean of accessions with non-elite allele, 29.06 cN•tex-1) were 100 and 72.7%, respectively, which was higher than that of varieties harbored only on a single elite allele (G or T, 77.9 or 61.9%), suggesting a favorable haplotype for selecting varieties with superior FL and FS. These FMs could be valuable for the high-throughput selection of superior materials by providing genotypic information in cotton breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| |
Collapse
|
31
|
Zhou G, Liu T, Wang Y, Qu H, Shu D, Jia X, Luo C. Genome-Wide Association Studies Provide Insight Into the Genetic Determination for Hyperpigmentation of the Visceral Peritoneum in Broilers. Front Genet 2022; 13:820297. [PMID: 35299951 PMCID: PMC8921551 DOI: 10.3389/fgene.2022.820297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Hyperpigmentation of the visceral peritoneum (HVP) has been becoming one of the most challenging problems in yellow-feathered chicken production, which seriously affected chicken carcass quality traits. Detecting which genes dominantly impact pigmentation in the peritoneum tissues is of great benefit to the genetic improvement of HVP. To investigate the genetic mechanism of HVP in yellow-feathered broilers, genome-wide association studies (GWASs) were conducted in the F2 generation of a cross broiler population with 395 birds. A total of 115,706 single-nucleotide polymorphisms (SNPs) of 122,415 were retained to identify quantitative trait loci (QTL) associated to HVP in chicken. The GWAS results based on the logistic mixed model (LMM) revealed that a narrow genomic location on chromosomes 1 (49.2–51.3 Mb) was significantly associated (p ≤ 4.32 × 10−7) with HVP, which contained 23 SNP makers related to 14 functional genes (MFNG, POLDIP3, POLR2F, PICK1, PDXP, SGSM3, RANGAP1, MYH9, RPL3, GALP3, LGALS1, MICALL1, ATF4, and CYP2D6). Four highly associated (p < 10−5) haplotype blocks of 0.80 kb (two SNPs), 0.06 kb (two SNPs), 0.95 kb (two SNPs), and 0.03 kb (two SNPs) were identified with two, two, four, and four distinct haplotypes, respectively. As a melanoma-associated gene, CYP2D6 were also possibly involved in the development of HVP occurring in chicken with two significant variations (rs314284996 and rs317955795) in the promoter regions. Further tests revealed that the expression of CYP2D6 was obviously higher in the visceral peritoneum tissue of chicken with HVP than that in the normal group (p < 0.05). Our results provide a novel clue to understand the genetic mechanism of HVP generation in chicken, and the mapped QTL or candidate genes might serve for genomic selection to improve carcass quality in the yellow-feathered chicken industry.
Collapse
Affiliation(s)
- Guangyuan Zhou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianfei Liu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinzheng Jia
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- *Correspondence: Xinzheng Jia, ; Chenglong Luo,
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xinzheng Jia, ; Chenglong Luo,
| |
Collapse
|
32
|
Hu D, He S, Jia Y, Nazir MF, Sun G, Geng X, Pan Z, Wang L, Chen B, Li H, Ge Y, Pang B, Du X. Genome-wide association study for seedling biomass-related traits in Gossypium arboreum L. BMC PLANT BIOLOGY 2022; 22:54. [PMID: 35086471 PMCID: PMC8793229 DOI: 10.1186/s12870-022-03443-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/11/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Seedling stage plant biomass is usually used as an auxiliary trait to study plant growth and development or stress adversities. However, few molecular markers and candidate genes of seedling biomass-related traits were found in cotton. RESULT Here, we collected 215 Gossypium arboreum accessions, and investigated 11 seedling biomass-related traits including the fresh weight, dry weight, water content, and root shoot ratio. A genome-wide association study (GWAS) utilizing 142,5003 high-quality SNPs identified 83 significant associations and 69 putative candidate genes. Furthermore, the transcriptome profile of the candidate genes emphasized higher expression of Ga03G1298, Ga09G2054, Ga10G1342, Ga11G0096, and Ga11G2490 in four representative cotton accessions. The relative expression levels of those five genes were further verified by qRT-PCR. CONCLUSIONS The significant SNPs, candidate genes identified in this study are expected to lay a foundation for studying the molecular mechanism for early biomass development and related traits in Asian cotton.
Collapse
Affiliation(s)
- Daowu Hu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yinhua Jia
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Mian Faisal Nazir
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Xiaoli Geng
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Zhaoe Pan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Liru Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Baojun Chen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Hongge Li
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Yuting Ge
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Baoyin Pang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China.
| |
Collapse
|
33
|
Li Y, Mo T, Ran L, Zeng J, Wang C, Liang A, Dai Y, Wu Y, Zhong Z, Xiao Y. Genome resequencing-based high-density genetic map and QTL detection for yield and fiber quality traits in diploid Asiatic cotton (Gossypium arboreum). Mol Genet Genomics 2022; 297:199-212. [PMID: 35048185 DOI: 10.1007/s00438-021-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Cotton is the most important fiber crop in the world. Asiatic cotton (Gossypium arboreum, genome A2) is a diploid cotton species producing spinnable fibers and important germplasm for cotton breeding and a significant model for fiber biology. However, the genetic map of Asiatic cotton has been lagging behind tetraploid cottons, as well as other stable crops. This study aimed to construct a high-density SNP genetic map and to map QTLs for important yield and fiber quality traits. Using a recombinant inbred line (RIL) population and genome resequencing technology, we constructed a high-density genetic map that covered 1980.17 cM with an average distance of 0.61 cM between adjacent markers. QTL analysis revealed a total of 297 QTLs for 13 yield and fiber quality traits in three environments, explaining 5.0-37.4% of the phenotypic variance, among which 75 were stably detected in two or three environments. Besides, 47 QTL clusters, comprising 131 QTLs for representative traits, were identified. Our works laid solid foundation for fine mapping and cloning of QTL for yield and fiber quality traits in Asiatic cotton.
Collapse
Affiliation(s)
- Yaohua Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Tong Mo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Lingfang Ran
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Chuannan Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Aimin Liang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yonglu Dai
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yiping Wu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Ziman Zhong
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China
| | - Yuehua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Southwest University Southern Campus, Tiansheng Rd No. 2, Beibei, Chongqing, 400716, China.
| |
Collapse
|
34
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
35
|
Li WX, Wang P, Zhao H, Sun X, Yang T, Li H, Hou Y, Liu C, Siyal M, Raja veesar R, Hu B, Ning H. QTL for Main Stem Node Number and Its Response to Plant Densities in 144 Soybean FW-RILs. FRONTIERS IN PLANT SCIENCE 2021; 12:666796. [PMID: 34489989 PMCID: PMC8417731 DOI: 10.3389/fpls.2021.666796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Although the main stem node number of soybean [Glycine max (L.) Merr. ] is an important yield-related trait, there have been limited studies on the effect of plant density on the identification of quantitative trait loci (QTL) for main stem node number (MSNN). To address this issue, here, 144 four-way recombinant inbred lines (FW-RILs) derived from Kenfeng 14, Kenfeng 15, Heinong 48, and Kenfeng 19 were used to identify QTL for MSNN with densities of 2.2 × 105 (D1) and 3 × 105 (D2) plants/ha in five environments by linkage and association studies. As a result, the linkage and association studies identified 40 and 28 QTL in D1 and D2, respectively, indicating the difference in QTL in various densities. Among these QTL, five were common in the two densities; 36 were singly identified for response to density; 12 were repeatedly identified by both response to density and phenotype of two densities. Thirty-one were repeatedly detected across various methods, densities, and environments in the linkage and association studies. Among the 24 common QTL in the linkage and association studies, 15 explained a phenotypic variation of more than 10%. Finally, Glyma.06G094400, Glyma.06G147600, Glyma.19G160800.1, and Glyma.19G161100 were predicted to be associated with MSNN. These findings will help to elucidate the genetic basis of MSNN and improve molecular assistant selection in high-yield soybean breeding.
Collapse
Affiliation(s)
- Wen-Xia Li
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ping Wang
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- High Education Institute, Huaiyin Institute of Technology, Huai'an, China
| | - Hengxing Zhao
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xu Sun
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Tao Yang
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Haoran Li
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yongqin Hou
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Cuiqiao Liu
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Mahfishan Siyal
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Rameez Raja veesar
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Bo Hu
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hailong Ning
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
36
|
Jiang X, Fan L, Li P, Zou X, Zhang Z, Fan S, Gong J, Yuan Y, Shang H. Co-expression network and comparative transcriptome analysis for fiber initiation and elongation reveal genetic differences in two lines from upland cotton CCRI70 RIL population. PeerJ 2021; 9:e11812. [PMID: 34327061 PMCID: PMC8308610 DOI: 10.7717/peerj.11812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.
Collapse
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Liqiang Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Fang L, Zhao T, Hu Y, Si Z, Zhu X, Han Z, Liu G, Wang S, Ju L, Guo M, Mei H, Wang L, Qi B, Wang H, Guan X, Zhang T. Divergent improvement of two cultivated allotetraploid cotton species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1325-1336. [PMID: 33448110 PMCID: PMC8313128 DOI: 10.1111/pbi.13547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 05/21/2023]
Abstract
Interspecific genomic variation can provide a genetic basis for local adaptation and domestication. A series of studies have presented its role of interspecific haplotypes and introgressions in adaptive traits, but few studies have addressed their role in improving agronomic character. Two allotetraploid Gossypium species, Gossypium barbadense (Gb) and G. hirsutum (Gh) originating from the Americas, are cultivated independently. Here, through sequencing and the comparison of one GWAS panel in 229 Gb accessions and two GWAS panels in 491 Gh accessions, we found that most associated loci or functional haplotypes for agronomic traits were highly divergent, representing the strong divergent improvement between Gb and Gh. Using a comprehensive interspecific haplotype map, we revealed that six interspecific introgressions from Gh to Gb were significantly associated with the phenotypic performance of Gb, which could explain 5%-40% of phenotypic variation in yield and fibre qualities. In addition, three introgressions overlapped with six associated loci in Gb, indicating that these introgression regions were under further selection and stabilized during improvement. A single interspecific introgression often possessed yield-increasing potential but decreased fibre qualities, or the opposite, making it difficult to simultaneously improve yield and fibre qualities. Our study not only has proved the importance of interspecific functional haplotypes or introgressions in the divergent improvement of Gb and Gh, but also supports their potential value in further human-mediated hybridization or precision breeding.
Collapse
Affiliation(s)
- Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Guizhen Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Henan Province Seed StationZhengzhouChina
| | - Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Longzhen Ju
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Menglan Guo
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Bowen Qi
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Heng Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
38
|
Solomon AM, Kim TG, Han K, Lee HY, Patil A, Siddique MI, Ahn J, Kang BC. Fine Mapping and Candidate Gene Identification for the CapUp Locus Controlling Fruit Orientation in Pepper ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2021; 12:675474. [PMID: 34262581 PMCID: PMC8273576 DOI: 10.3389/fpls.2021.675474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The orientation of fruits is a distinguishing morphological feature of pepper (Capsicum spp.) varieties. The pendent (downward curved) growth of the fruit stalks, known as pedicels, is highly correlated with fruit weight and pedicel length. A previous genetic analysis revealed that the pendent fruit orientation is governed by a dominant gene, and incomplete inheritance is also observed in some Capsicum accessions. To identify and localize this gene, a single quantitative trait locus (QTL) analysis was performed on one F2 and two recombinant inbred line (RIL) populations, and a genome-wide association study (GWAS) was performed using a core collection. Common QTL regions associated with fruit orientation were detected on chromosome 12. A total of 187,966 SNPs were identified in a genotyping-by-sequencing (GBS) for GWAS analysis of 196 Capsicum annuum, 25 Capsicum baccatum, 21 Capsicum chinense, and 14 Capsicum frutescens accessions, representing the germplasm collection of South Korea. The results of these analyses enabled us to narrow down the CapUp region of interest to 200-250 Mbp on chromosome 12. Seven candidate genes were found to be located between two markers that were completely cosegregated with the fruit orientation phenotype. The findings and markers developed in this study will be helpful for additional understanding of pepper fruit development and breeding for fruit orientation.
Collapse
Affiliation(s)
- Abate Mekonnen Solomon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Tae-Gun Kim
- Interdisciplinary Program in Agricultural Genomics, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Koeun Han
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hea-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Abhinandan Patil
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Irfan Siddique
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Egan LM, Hofmann RW, Ghamkhar K, Hoyos-Villegas V. Prospects for Trifolium Improvement Through Germplasm Characterisation and Pre-breeding in New Zealand and Beyond. FRONTIERS IN PLANT SCIENCE 2021; 12:653191. [PMID: 34220882 PMCID: PMC8242581 DOI: 10.3389/fpls.2021.653191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Trifolium is the most used pastoral legume genus in temperate grassland systems, and a common feature in meadows and open space areas in cities and parks. Breeding of Trifolium spp. for pastoral production has been going on for over a century. However, the breeding targets have changed over the decades in response to different environmental and production pressures. Relatively small gains have been made in Trifolium breeding progress. Trifolium breeding programmes aim to maintain a broad genetic base to maximise variation. New Zealand is a global hub in Trifolium breeding, utilising exotic germplasm imported by the Margot Forde Germplasm Centre. This article describes the history of Trifolium breeding in New Zealand as well as the role and past successes of utilising genebanks in forage breeding. The impact of germplasm characterisation and evaluation in breeding programmes is also discussed. The history and challenges of Trifolium breeding and its effect on genetic gain can be used to inform future pre-breeding decisions in this genus, as well as being a model for other forage legumes.
Collapse
Affiliation(s)
- Lucy M. Egan
- CSIRO Agriculture and Food, Narrabri, NSW, Australia
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Rainer W. Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Kioumars Ghamkhar
- AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - Valerio Hoyos-Villegas
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Nazir MF, He S, Ahmed H, Sarfraz Z, Jia Y, Li H, Sun G, Iqbal MS, Pan Z, Du X. Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens. J Genet Genomics 2021; 48:473-484. [PMID: 34272194 DOI: 10.1016/j.jgg.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton (cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haris Ahmed
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zareen Sarfraz
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gaofei Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Muhammad Shahid Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Cotton Research Institute, Ayub Agricultural Research Institute, Multan 60000, Pakistan
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
41
|
Li J, Yuan D, Wang P, Wang Q, Sun M, Liu Z, Si H, Xu Z, Ma Y, Zhang B, Pei L, Tu L, Zhu L, Chen LL, Lindsey K, Zhang X, Jin S, Wang M. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biol 2021; 22:119. [PMID: 33892774 PMCID: PMC8063427 DOI: 10.1186/s13059-021-02351-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Millennia of directional human selection has reshaped the genomic architecture of cultivated cotton relative to wild counterparts, but we have limited understanding of the selective retention and fractionation of genomic components. RESULTS We construct a comprehensive genomic variome based on 1961 cottons and identify 456 Mb and 357 Mb of sequence with domestication and improvement selection signals and 162 loci, 84 of which are novel, including 47 loci associated with 16 agronomic traits. Using pan-genome analyses, we identify 32,569 and 8851 non-reference genes lost from Gossypium hirsutum and Gossypium barbadense reference genomes respectively, of which 38.2% (39,278) and 14.2% (11,359) of genes exhibit presence/absence variation (PAV). We document the landscape of PAV selection accompanied by asymmetric gene gain and loss and identify 124 PAVs linked to favorable fiber quality and yield loci. CONCLUSIONS This variation repertoire points to genomic divergence during cotton domestication and improvement, which informs the characterization of favorable gene alleles for improved breeding practice using a pan-genome-based approach.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Daojun Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ling-Ling Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
42
|
Hafeez A, Razzaq A, Ahmed A, Liu A, Qun G, Junwen L, Shi Y, Deng X, Zafar MM, Ali A, Gong W, Yuan Y. Identification of hub genes through co-expression network of major QTLs of fiber length and strength traits in multiple RIL populations of cotton. Genomics 2021; 113:1325-1337. [PMID: 33713821 DOI: 10.1016/j.ygeno.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
The present study demonstrated a de novo correlation among fiber quality genes in multiple RIL populations including sGK9708 × 0-153, LMY22 × LY343 and Lumianyan28 × Xinluzao24. The current study was conducted to identify the major common QTLs including fiber length and strength, and to identify the co-expression networks of fiber length and strength QTLs harbored genes to target the hub genes. The RNA-seq data of sGK9708 × 0-153 population highlighted 50 and 48 candidate genes of fiber length and fiber strength QTLs. A total of 29 and 21 hub genes were identified in fiber length and strength co-expression network modules. The absolute values of correlation coefficient close to 1 resulted highly positive correlation among hub genes. Results also suggested that the gene correlation significantly influence the gene expression at different fiber development stages. These results might provide useful reference for further experiments in multiple RIL populations and suggest potential candidate genes for functional studies in cotton.
Collapse
Affiliation(s)
- Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China; Sindh Agriculture University Tandojam, 70060 Hyderabad, Sindh, Pakistan
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Aijaz Ahmed
- Sindh Agriculture University Tandojam, 70060 Hyderabad, Sindh, Pakistan
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ge Qun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Li Junwen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China.
| |
Collapse
|
43
|
Pei W, Song J, Wang W, Ma J, Jia B, Wu L, Wu M, Chen Q, Qin Q, Zhu H, Hu C, Lei H, Gao X, Hu H, Zhang Y, Zhang J, Yu J, Qu Y. Quantitative Trait Locus Analysis and Identification of Candidate Genes for Micronaire in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2021; 12:763016. [PMID: 34777444 PMCID: PMC8579039 DOI: 10.3389/fpls.2021.763016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
Cotton is the most important fiber crop and provides indispensable natural fibers for the textile industry. Micronaire (MIC) is determined by fiber fineness and maturity and is an important component of fiber quality. Gossypium barbadense L. possesses long, strong and fine fibers, while upland cotton (Gossypium hirsutum L.) is high yielding with high MIC and widely cultivated worldwide. To identify quantitative trait loci (QTLs) and candidate genes for MIC in G. barbadense, a population of 250 backcross inbred lines (BILs), developed from an interspecific cross of upland cotton CRI36 × Egyptian cotton (G. barbadense) Hai7124, was evaluated in 9 replicated field tests. Based on a high-density genetic map with 7709 genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers, 25 MIC QTLs were identified, including 12 previously described QTLs and 13 new QTLs. Importantly, two stable MIC QTLs (qMIC-D03-2 on D03 and qMIC-D08-1 on D08) were identified. Of a total of 338 genes identified within the two QTL regions, eight candidate genes with differential expression between TM-1 and Hai7124 were identified. Our research provides valuable information for improving MIC in cotton breeding.
Collapse
Affiliation(s)
- Wenfeng Pei
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jikun Song
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Luyao Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qin Qin
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Haiyong Zhu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Chengcheng Hu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Hai Lei
- Seed Management Station, Department of Agriculture and Rural Affairs of Xinjiang, Urumqi, China
| | - Xuefei Gao
- Join Hope Seed Co., Ltd., Changji, China
| | - Haijun Hu
- Join Hope Seed Co., Ltd., Changji, China
| | - Yu Zhang
- Join Hope Seed Co., Ltd., Changji, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Jinfa Zhang,
| | - Jiwen Yu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiwen Yu,
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- Yanying Qu,
| |
Collapse
|
44
|
New Transcriptome-Based SNP Markers for Noug ( Guizotia abyssinica) and Their Conversion to KASP Markers for Population Genetics Analyses. Genes (Basel) 2020; 11:genes11111373. [PMID: 33233626 PMCID: PMC7709008 DOI: 10.3390/genes11111373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
The development and use of genomic resources are essential for understanding the population genetics of crops for their efficient conservation and enhancement. Noug (Guizotia abyssinica) is an economically important oilseed crop in Ethiopia and India. The present study sought to develop new DNA markers for this crop. Transcriptome sequencing was conducted on two genotypes and 628 transcript sequences containing 959 single nucleotide polymorphisms (SNPs) were developed. A competitive allele-specific PCR (KASP) assay was developed for the SNPs and used for genotyping of 24 accessions. A total of 554 loci were successfully genotyped across the accessions, and 202 polymorphic loci were used for population genetics analyses. Polymorphism information content (PIC) of the loci varied from 0.01 to 0.37 with a mean of 0.24, and about 49% of the loci showed significant deviation from the Hardy-Weinberg equilibrium. The mean expected heterozygosity was 0.27 suggesting moderately high genetic variation within accessions. Low but significant differentiation existed among accessions (FST = 0.045, p < 0.0001). Landrace populations from isolated areas may have useful mutations and should be conserved and used in breeding this crop. The genomic resources developed in this study were shown to be useful for population genetics research and can also be used in, e.g., association genetics.
Collapse
|
45
|
Liu S, Zhong H, Meng X, Sun T, Li Y, Pinson SRM, Chang SKC, Peng Z. Genome-wide association studies of ionomic and agronomic traits in USDA mini core collection of rice and comparative analyses of different mapping methods. BMC PLANT BIOLOGY 2020; 20:441. [PMID: 32972357 PMCID: PMC7513512 DOI: 10.1186/s12870-020-02603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rice is an important human staple food vulnerable to heavy metal contamination leading to serious concerns. High yield with low heavy metal contamination is a common but highly challenging goal for rice breeders worldwide due to lack of genetic knowledge and markers. RESULTS To identify candidate QTLs and develop molecular markers for rice yield and heavy metal content, a total of 191 accessions from the USDA Rice mini-core collection with over 3.2 million SNPs were employed to investigate the QTLs. Sixteen ionomic and thirteen agronomic traits were analyzed utilizing two univariate (GLM and MLM) and two multivariate (MLMM and FarmCPU) GWAS methods. 106, 47, and 97 QTLs were identified for ionomics flooded, ionomics unflooded, and agronomic traits, respectively, with the criterium of p-value < 1.53 × 10- 8, which was determined by the Bonferroni correction for p-value of 0.05. While 49 (~ 20%) of the 250 QTLs were coinciding with previously reported QTLs/genes, about 201 (~ 80%) were new. In addition, several new candidate genes involved in ionomic and agronomic traits control were identified by analyzing the DNA sequence, gene expression, and the homologs of the QTL regions. Our results further showed that each of the four GWAS methods can identify unique as well as common QTLs, suggesting that using multiple GWAS methods can complement each other in QTL identification, especially by combining univariate and multivariate methods. CONCLUSIONS While 49 previously reported QTLs/genes were rediscovered, over 200 new QTLs for ionomic and agronomic traits were found in the rice genome. Moreover, multiple new candidate genes for agronomic and ionomic traits were identified. This research provides novel insights into the genetic basis of both ionomic and agronomic variations in rice, establishing the foundation for marker development in breeding and further investigation on reducing heavy-metal contamination and improving crop yields. Finally, the comparative analysis of the GWAS methods showed that each method has unique features and different methods can complement each other.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shannon R M Pinson
- Dale Bumpers National Rice Research Center, USDA ARS, Stuttgart, AR, 72160, USA
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Coastal and Research Extension Center, Mississippi State University, Pascagoula, MS, 39567, USA
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA.
| |
Collapse
|
46
|
Petit J, Salentijn EMJ, Paulo MJ, Denneboom C, van Loo EN, Trindade LM. Elucidating the Genetic Architecture of Fiber Quality in Hemp ( Cannabis sativa L.) Using a Genome-Wide Association Study. Front Genet 2020; 11:566314. [PMID: 33093845 PMCID: PMC7527631 DOI: 10.3389/fgene.2020.566314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023] Open
Abstract
Hemp (Cannabis sativa L.) is a bast-fiber crop with a great potential in the emerging bio-based economy. Yet, hemp breeding for fiber quality is restricted and that is mainly due to the limited knowledge of the genetic architecture of its fiber quality. A panel of 123 hemp accessions, with large phenotypic variability, was used to study the genetic basis of seven cell wall and bast fiber traits relevant to fiber quality. These traits showed large genetic variance components and high values of broad sense heritability in this hemp panel, as concluded from the phenotypic evaluation across three test locations with contrasting environments. The hemp panel was genotyped using restriction site associated DNA sequencing (RAD-seq). Subsequently, a large set (> 600,000) of selected genome-wide single nucleotide polymorphism (SNP) markers was used for a genome-wide association study (GWAS) approach to get insights into quantitative trait loci (QTLs) controlling fiber quality traits. In absence of a complete hemp genome sequence, identification of QTLs was based on the following characteristics: (i) association level to traits, (ii) fraction of explained trait variance, (iii) collinearity between QTLs, and (iv) detection across different environments. Using this approach, 16 QTLs were identified across locations for different fiber quality traits, including contents of glucose, glucuronic acid, mannose, xylose, lignin, and bast fiber content. Among them, six were found across the three environments. The genetic markers composing the QTLs that are common across locations are valuable tools to develop novel genotypes of hemp with improved fiber quality. Underneath the QTLs, 12 candidate genes were identified which are likely to be involved in the biosynthesis and modification of monosaccharides, polysaccharides, and lignin. These candidate genes were suggested to play an important role in determining fiber quality in hemp. This study provides new insights into the genetic architecture of fiber traits, identifies QTLs and candidate genes that form the basis for molecular breeding for high fiber quality hemp cultivars.
Collapse
Affiliation(s)
- Jordi Petit
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Elma M J Salentijn
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, Netherlands
| | - Christel Denneboom
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Eibertus N van Loo
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M Trindade
- Wageningen UR Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
47
|
Pavan S, Delvento C, Ricciardi L, Lotti C, Ciani E, D'Agostino N. Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Front Genet 2020; 11:447. [PMID: 32587600 PMCID: PMC7299185 DOI: 10.3389/fgene.2020.00447] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
High-throughput genotyping boosts genome-wide association studies (GWAS) in crop species, leading to the identification of single-nucleotide polymorphisms (SNPs) associated with economically important traits. Choosing a cost-effective genotyping method for crop GWAS requires careful examination of several aspects, namely, the purpose and the scale of the study, crop-specific genomic features, and technical and economic matters associated with each genotyping option. Once genotypic data have been obtained, quality control (QC) procedures must be applied to avoid bias and false signals in genotype–phenotype association tests. QC for human GWAS has been extensively reviewed; however, QC for crop GWAS may require different actions, depending on the GWAS population type. Here, we review most popular genotyping methods based on next-generation sequencing (NGS) and array hybridization, and report observations that should guide the investigator in the choice of the genotyping method for crop GWAS. We provide recommendations to perform QC in crop species, and deliver an overview of bioinformatics tools that can be used to accomplish all needed tasks. Overall, this work aims to provide guidelines to harmonize those procedures leading to SNP datasets ready for crop GWAS.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, Section of Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Lotti
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
Genomic Insight into Differentiation and Selection Sweeps in the Improvement of Upland Cotton. PLANTS 2020; 9:plants9060711. [PMID: 32503111 PMCID: PMC7356552 DOI: 10.3390/plants9060711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Upland cotton is the most economically important fibre crop. The human-mediated selection has resulted in modern upland cultivars with higher yield and better fibre quality. However, changes in genome structure resulted from human-mediated selection are poorly understood. Comparative population genomics offers us tools to dissect the genetic history of domestication and helps to understand the genome-wide effects of human-mediated selection. Hereby, we report a comprehensive assessment of Gossypium hirsutum landraces, obsolete cultivars and modern cultivars based on high throughput genome-wide sequencing of the core set of genotypes. As a result of the genome-wide scan, we identified 93 differential regions and 311 selection sweeps associated with domestication and improvement. Furthermore, we performed genome-wide association studies to identify traits associated with the differential regions and selection sweeps. Our study provides a genetic basis to understand the domestication process in Chinese cotton cultivars. It also provides a comprehensive insight into changes in genome structure due to selection and improvement during the last century. We also identified multiple genome-wide associations (GWAS associations) for fibre yield, quality and other morphological characteristics.
Collapse
|
49
|
Li Z, Wang P, You C, Yu J, Zhang X, Yan F, Ye Z, Shen C, Li B, Guo K, Liu N, Thyssen GN, Fang DD, Lindsey K, Zhang X, Wang M, Tu L. Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. THE NEW PHYTOLOGIST 2020; 226:1738-1752. [PMID: 32017125 DOI: 10.1111/nph.16468] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/28/2020] [Indexed: 05/28/2023]
Abstract
The cotton fibre serves as a valuable experimental system to study cell wall synthesis in plants, but our understanding of the genetic regulation of this process during fibre development remains limited. We performed a genome-wide association study (GWAS) and identified 28 genetic loci associated with fibre quality in allotetraploid cotton. To investigate the regulatory roles of these loci, we sequenced fibre transcriptomes of 251 cotton accessions and identified 15 330 expression quantitative trait loci (eQTL). Analysis of local eQTL and GWAS data prioritised 13 likely causal genes for differential fibre quality in a transcriptome-wide association study (TWAS). Characterisation of distal eQTL revealed unequal genetic regulation patterns between two subgenomes, highlighted by an eQTL hotspot (Hot216) that established a genome-wide genetic network regulating the expression of 962 genes. The primary regulatory role of Hot216, and specifically the gene encoding a KIP-related protein, was found to be the transcriptional regulation of genes responsible for cell wall synthesis, which contributes to fibre length by modulating the developmental transition from rapid cell elongation to secondary cell wall synthesis. This study uncovered the genetic regulation of fibre-cell development and revealed the molecular basis of the temporal modulation of secondary cell wall synthesis during plant cell elongation.
Collapse
Affiliation(s)
- Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chunyuan You
- Cotton Research Institute, Shihezi Academy of Agriculture Science, Shihezi, 832000, Xinjiang, China
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiangnan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feilin Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Gregory N Thyssen
- Cotton Fibre Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fibre Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
50
|
Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J. Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:707-720. [PMID: 31446669 PMCID: PMC7004909 DOI: 10.1111/pbi.13237] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/15/2019] [Indexed: 05/02/2023]
Abstract
Fine mapping QTLs and identifying candidate genes for cotton fibre-quality and yield traits would be beneficial to cotton breeding. Here, we constructed a high-density genetic map by specific-locus amplified fragment sequencing (SLAF-seq) to identify QTLs associated with fibre-quality and yield traits using 239 recombinant inbred lines (RILs), which was developed from LMY22 (a high-yield Gossypium hirsutumL. cultivar) × LY343 (a superior fibre-quality germplasm with G. barbadenseL. introgressions). The genetic map spanned 3426.57 cM, including 3556 SLAF-based SNPs and 199 SSR marker loci. A total of 104 QTLs, including 67 QTLs for fibre quality and 37 QTLs for yield traits, were identified with phenotypic data collected from 7 environments. Among these, 66 QTLs were co-located in 19 QTL clusters on 12 chromosomes, and 24 QTLs were detected in three or more environments and determined to be stable. We also investigated the genomic components of LY343 and their contributions to fibre-related traits by deep sequencing the whole genome of LY343, and we found that genomic components from G. hirsutum races (which entered LY343 via its G. barbadense parent) contributed more favourable alleles than those from G. barbadense. We further identified six putative candidate genes for stable QTLs, including Gh_A03G1147 (GhPEL6), Gh_D07G1598 (GhCSLC6) and Gh_D13G1921 (GhTBL5) for fibre-length QTLs and Gh_D03G0919 (GhCOBL4), Gh_D09G1659 (GhMYB4) and Gh_D09G1690 (GhMYB85) for lint-percentage QTLs. Our results provide comprehensive insight into the genetic basis of the formation of fibre-related traits and would be helpful for cloning fibre-development-related genes as well as for marker-assisted genetic improvement in cotton.
Collapse
Affiliation(s)
- Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Juwu Gong
- State Key Laboratory of Cotton BiologyKey Laboratory of Biological and Genetic Breeding of CottonMinistry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Juan Zhou
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Jingjing Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Chengjie Zhao
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Mengjia Jiao
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Aiying Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Biological and Genetic Breeding of CottonMinistry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhaohai Du
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Youlu Yuan
- State Key Laboratory of Cotton BiologyKey Laboratory of Biological and Genetic Breeding of CottonMinistry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Shoujin Fan
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
- College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|