1
|
Sayari M, Dolatabadian A, El-Shetehy M, Daayf F. Genomic insights into Verticillium: a review of progress in the genomics era. Front Microbiol 2024; 15:1463779. [PMID: 39464398 PMCID: PMC11502406 DOI: 10.3389/fmicb.2024.1463779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Genomics has emerged as a great tool in enhancing our understanding of the biology of Verticillium species and their interactions with the host plants. Through different genomic approaches, researchers have gained insights into genes, pathways and virulence factors that play crucial roles in both Verticillium pathogenesis and the defense responses of their host organisms. This review emphasizes the significance of genomics in uncovering the mechanisms that underlie pathogenicity, virulence, and host resistance in Verticillium fungi. Our goal is to summarize recent discoveries in Verticillium research highlighting progress made in comprehending the biology and interactions of Verticillium fungi. The integration of genomics into Verticillium studies has the potential to open avenues for developing strategies to control diseases and produce crop varieties resistant to verticillium, thereby offering sustainable solutions for enhancing agricultural productivity.
Collapse
Affiliation(s)
- M. Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A. Dolatabadian
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M. El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - F. Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Ma XY, Zhou XH, Liu BB, Zhang YJ, Zhu H, Li Y, Wang ZS, Dai XF, Chen JY, Su ZQ, Li R. Transcriptome analysis of Gossypium hirsutum cultivar Zhongzhimian No.2 uncovers the gene regulatory networks involved in defense against Verticillium dahliae. BMC PLANT BIOLOGY 2024; 24:457. [PMID: 38797823 PMCID: PMC11129388 DOI: 10.1186/s12870-024-05165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Cotton is globally important crop. Verticillium wilt (VW), caused by Verticillium dahliae, is the most destructive disease in cotton, reducing yield and fiber quality by over 50% of cotton acreage. Breeding resistant cotton cultivars has proven to be an efficient strategy for improving the resistance of cotton to V. dahliae. However, the lack of understanding of the genetic basis of VW resistance may hinder the progress in deploying elite cultivars with proven resistance. RESULTS We planted the VW-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2) in an artificial greenhouse and disease nursery. ZZM2 cotton was subsequently subjected to transcriptome sequencing after Vd991 inoculation (6, 12, 24, 48, and 72 h post-inoculation). Several differentially expressed genes (DEGs) were identified in response to V. dahliae infection, mainly involved in resistance processes, such as flavonoid and terpenoid quinone biosynthesis, plant hormone signaling, MAPK signaling, phenylpropanoid biosynthesis, and pyruvate metabolism. Compared to the susceptible cultivar Junmian No.1 (J1), oxidoreductase activity and reactive oxygen species (ROS) production were significantly increased in ZZM2. Furthermore, gene silencing of cytochrome c oxidase subunit 1 (COX1), which is involved in the oxidation-reduction process in ZZM2, compromised its resistance to V. dahliae, suggesting that COX1 contributes to VW resistance in ZZM2. CONCLUSIONS Our data demonstrate that the G. hirsutum cultivar ZZM2 responds to V. dahliae inoculation through resistance-related processes, especially the oxidation-reduction process. This enhances our understanding of the mechanisms regulating the ZZM2 defense against VW.
Collapse
Affiliation(s)
- Xi-Yue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Xiao-Han Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P.R. China
| | - Bin-Bin Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Ye-Jing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - He Zhu
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Yue Li
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Zi-Sheng Wang
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Zhen-Qi Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P.R. China.
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
3
|
Liu R, Tan X, Wang Y, Lin F, Li P, Rahman FU, Sun L, Jiang J, Fan X, Liu C, Zhang Y. The cysteine-rich receptor-like kinase CRK10 targeted by Coniella diplodiella effector CdE1 contributes to white rot resistance in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3026-3039. [PMID: 38318854 DOI: 10.1093/jxb/erae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.
Collapse
Affiliation(s)
- Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chonghuai Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ying Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| |
Collapse
|
4
|
Liu H, Li X, Yin Z, Hu J, Xie L, Wu H, Han S, Li B, Zhang H, Li C, Li L, Zhang F, Tan G. Identification and characterization of the CRK gene family in the wheat genome and analysis of their expression profile in response to high temperature-induced male sterility. PeerJ 2024; 12:e17370. [PMID: 38737737 PMCID: PMC11086307 DOI: 10.7717/peerj.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Xiaoyi Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Zehui Yin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Junmin Hu
- Jiaozuo Seed Management Station, Jiaozuo, Henan Province, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huifang Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
| | - Guangxuan Tan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| |
Collapse
|
5
|
Zameer R, Alwutayd KM, Alshehri D, Mubarik MS, Li C, Yu C, Li Z. Identification of cysteine-rich receptor-like kinase gene family in potato: revealed StCRLK9 in response to heat, salt and drought stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23320. [PMID: 38723163 DOI: 10.1071/fp23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.
Collapse
Affiliation(s)
- Roshan Zameer
- School of Life Sciences, Henan University, Kaifeng, China
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Cheng Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chengde Yu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Fatima K, Sadaqat M, Azeem F, Rao MJ, Albekairi NA, Alshammari A, Tahir ul Qamar M. Integrated omics and machine learning-assisted profiling of cysteine-rich-receptor-like kinases from three peanut spp . revealed their role in multiple stresses. Front Genet 2023; 14:1252020. [PMID: 37799143 PMCID: PMC10547876 DOI: 10.3389/fgene.2023.1252020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Arachis hypogaea (peanut) is a leading oil and protein-providing crop with a major food source in many countries. It is mostly grown in tropical regions and is largely affected by abiotic and biotic stresses. Cysteine-rich receptor-like kinases (CRKs) is a family of transmembrane proteins that play important roles in regulating stress-signaling and defense mechanisms, enabling plants to tolerate stress conditions. However, almost no information is available regarding this gene family in Arachis hypogaea and its progenitors. This study conducts a pangenome-wide investigation of A. hypogaea and its two progenitors, A. duranensis and A. ipaensis CRK genes (AhCRKs, AdCRKs, and AiCRKs). The gene structure, conserved motif patterns, phylogenetic history, chromosomal distribution, and duplication were studied in detail, showing the intraspecies structural conservation and evolutionary patterns. Promoter cis-elements, protein-protein interactions, GO enrichment, and miRNA targets were also predicted, showing their potential functional conservation. Their expression in salt and drought stresses was also comprehensively studied. The CRKs identified were divided into three groups, phylogenetically. The expansion of this gene family in peanuts was caused by both types of duplication: tandem and segmental. Furthermore, positive as well as negative selection pressure directed the duplication process. The peanut CRK genes were also enriched in hormones, light, development, and stress-related elements. MicroRNA (miRNA) also targeted the AhCRK genes, which suggests the regulatory association of miRNAs in the expression of these genes. Transcriptome datasets showed that AhCRKs have varying expression levels under different abiotic stress conditions. Furthermore, the multi-stress responsiveness of the AhCRK genes was evaluated using a machine learning-based method, Random Forest (RF) classifier. The 3D structures of AhCRKs were also predicted. Our study can be utilized in developing a detailed understanding of the stress regulatory mechanisms of the CRK gene family in peanuts and its further studies to improve the genetic makeup of peanuts to thrive better under stress conditions.
Collapse
Affiliation(s)
- Kinza Fatima
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Sadaqat
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Farrukh Azeem
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| |
Collapse
|
7
|
Li R, Ma XY, Zhang YJ, Zhang YJ, Zhu H, Shao SN, Zhang DD, Klosterman SJ, Dai XF, Subbarao KV, Chen JY. Genome-wide identification and analysis of a cotton secretome reveals its role in resistance against Verticillium dahliae. BMC Biol 2023; 21:166. [PMID: 37542270 PMCID: PMC10403859 DOI: 10.1186/s12915-023-01650-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xi-Yue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye-Jing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhu
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Sheng-Nan Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
8
|
Lecona AM, Nanjareddy K, Blanco L, Piazza V, Vera-Núñez JA, Lara M, Arthikala MK. CRK12: A Key Player in Regulating the Phaseolus vulgaris- Rhizobium tropici Symbiotic Interaction. Int J Mol Sci 2023; 24:11720. [PMID: 37511479 PMCID: PMC10380779 DOI: 10.3390/ijms241411720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a type of receptor-like kinases (RLKs) that are important for pathogen resistance, extracellular reactive oxygen species (ROS) signaling, and programmed cell death in plants. In a previous study, we identified 46 CRK family members in the Phaseolus vulgaris genome and found that CRK12 was highly upregulated under root nodule symbiotic conditions. To better understand the role of CRK12 in the Phaseolus-Rhizobia symbiotic interaction, we functionally characterized this gene by overexpressing (CRK12-OE) and silencing (CRK12-RNAi) it in a P. vulgaris hairy root system. We found that the constitutive expression of CRK12 led to an increase in root hair length and the expression of root hair regulatory genes, while silencing the gene had the opposite effect. During symbiosis, CRK12-RNAi resulted in a significant reduction in nodule numbers, while CRK12-OE roots showed a dramatic increase in rhizobial infection threads and the number of nodules. Nodule cross sections revealed that silenced nodules had very few infected cells, while CRK12-OE nodules had enlarged infected cells, whose numbers had increased compared to controls. As expected, CRK12-RNAi negatively affected nitrogen fixation, while CRK12-OE nodules fixed 1.5 times more nitrogen than controls. Expression levels of genes involved in symbiosis and ROS signaling, as well as nitrogen export genes, supported the nodule phenotypes. Moreover, nodule senescence was prolonged in CRK12-overexpressing roots. Subcellular localization assays showed that the PvCRK12 protein localized to the plasma membrane, and the spatiotemporal expression patterns of the CRK12-promoter::GUS-GFP analysis revealed a symbiosis-specific expression of CRK12 during the early stages of rhizobial infection and in the development of nodules. Our findings suggest that CRK12, a membrane RLK, is a novel regulator of Phaseolus vulgaris-Rhizobium tropici symbiosis.
Collapse
Affiliation(s)
- Antonino M Lecona
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León 37689, GTO, Mexico
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León 37689, GTO, Mexico
| | - Lourdes Blanco
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, MOR, Mexico
| | - Valeria Piazza
- Centro de Investigaciones en Óptica A. C., Loma del Bosque 115, León 37150, GTO, Mexico
| | - José Antonio Vera-Núñez
- Departamento Biotecnología, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato 36821, GTO, Mexico
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, MOR, Mexico
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León 37689, GTO, Mexico
| |
Collapse
|
9
|
Zhang Y, Tian H, Chen D, Zhang H, Sun M, Chen S, Qin Z, Ding Z, Dai S. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. TRENDS IN PLANT SCIENCE 2023; 28:776-794. [PMID: 37105805 DOI: 10.1016/j.tplants.2023.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) belong to a large DUF26-containing receptor-like kinase (RLK) family. They play key roles in immunity, abiotic stress response, and growth and development. How CRKs regulate diverse processes is a long-standing question. Recent studies have advanced our understanding of the molecular mechanisms underlying CRK functions in Ca2+ influx, reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) cascade activation, callose deposition, stomatal immunity, and programmed cell death (PCD). We review the CRK structure-function relationship with a focus on the roles of CRKs in immunity, the abiotic stress response, and the growth-stress tolerance tradeoff. We provide a critical analysis and synthesis of how CRKs control sophisticated regulatory networks that determine diverse plant phenotypic outputs.
Collapse
Affiliation(s)
- Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daniel Chen
- MD Program of Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sixue Chen
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
10
|
Nanda S, Rout P, Ullah I, Nag SR, Reddy VV, Kumar G, Kumar R, He S, Wu H. Genome-wide identification and molecular characterization of CRK gene family in cucumber (Cucumis sativus L.) under cold stress and sclerotium rolfsii infection. BMC Genomics 2023; 24:219. [PMID: 37101152 PMCID: PMC10131431 DOI: 10.1186/s12864-023-09319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The plant cysteine-rich receptor-like kinases (CRKs) are a large family having multiple roles, including defense responses under both biotic and abiotic stress. However, the CRK family in cucumbers (Cucumis sativus L.) has been explored to a limited extent. In this study, a genome-wide characterization of the CRK family has been performed to investigate the structural and functional attributes of the cucumber CRKs under cold and fungal pathogen stress. RESULTS A total of 15 C. sativus CRKs (CsCRKs) have been characterized in the cucumber genome. Chromosome mapping of the CsCRKs revealed that 15 genes are distributed in cucumber chromosomes. Additionally, the gene duplication analysis of the CsCRKs yielded information on their divergence and expansion in cucumbers. Phylogenetic analysis divided the CsCRKs into two clades along with other plant CRKs. Functional predictions of the CsCRKs suggested their role in signaling and defense response in cucumbers. The expression analysis of the CsCRKs by using transcriptome data and via qRT-PCR indicated their involvement in both biotic and abiotic stress responses. Under the cucumber neck rot pathogen, Sclerotium rolfsii infection, multiple CsCRKs exhibited induced expressions at early, late, and both stages. Finally, the protein interaction network prediction results identified some key possible interacting partners of the CsCRKs in regulating cucumber physiological processes. CONCLUSIONS The results of this study identified and characterized the CRK gene family in cucumbers. Functional predictions and validation via expression analysis confirmed the involvement of the CsCRKs in cucumber defense response, especially against S. rolfsii. Moreover, current findings provide better insights into the cucumber CRKs and their involvement in defense responses.
Collapse
Affiliation(s)
- Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Priyadarshini Rout
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Ikram Ullah
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Swapna Rani Nag
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Velagala Veerraghava Reddy
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Gagan Kumar
- Krishi Vigyan Kendra, Narkatiaganj, Dr. Rajendra Prasad Central Agricultural University, Pusa Samastipur, Bihar, 848125, India
| | - Ritesh Kumar
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, India
| | - Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Hongzhi Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
11
|
Zhou S, Luo Q, Nie Z, Wang C, Zhu W, Hong Y, Zhao J, Pei B, Ma W. CRK41 Modulates Microtubule Depolymerization in Response to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1285. [PMID: 36986973 PMCID: PMC10051889 DOI: 10.3390/plants12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Qiuling Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Changhui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baolei Pei
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
12
|
Silamparasan D, Chang IF, Jinn TL. Calcium-dependent protein kinase CDPK16 phosphorylates serine-856 of glutamate receptor-like GLR3.6 protein leading to salt-responsive root growth in Arabidopsis . FRONTIERS IN PLANT SCIENCE 2023; 14:1093472. [PMID: 36818849 PMCID: PMC9935832 DOI: 10.3389/fpls.2023.1093472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Calcium-permeable channels in the plasma membrane play vital roles in plant growth, development, and response to environmental stimuli. Arabidopsis possesses 20 glutamate receptor-like proteins that share similarities with animal ionotropic glutamate receptors and mediate Ca2+ influx in plants. Calcium-dependent protein kinases (CDPKs) phosphorylate serine (Ser)-860 of glutamate receptor-like (GLR)3.7 protein, which interacts with 14-3-3ω and plays an essential role in salt and abscisic acid response in Arabidopsis by modulating Ca2+ signaling. However, the significance of CDPK- mediated phosphorylation status of Ser residues of GLR3.6 with regard to the functioning of GLR3.6 remains to be elucidated. In this study, we performed an in vitro kinase assay using CDPK16 and peptides containing the 14-3-3ω interacting domain of GLR3.6. We showed that Ser861/862 of GLR3.6 are required for the interaction with 14-3-3ω and that Ser856 of GLR3.6 is specifically phosphorylated by CDPK16 but not by CDPK3 and CDPK34. In addition, the expression of GLR3.6 was quickly downregulated by salt stress, and plants of glr3.6 mutants and GLR3.6-overexpression lines presented shorter and longer root lengths, respectively, under normal growth conditions than Col. Overexpression of the GLR3.6-Ser856 to Ala mutation resulted in a less sensitive phenotype in response to salt stress similar to glr3.6. Our results indicated that the Ser861/862 residues of GLR3.6 are required for interaction with 14-3-3ω. Additionally, the phosphorylation status of Ser856 residue of GLR3.6, which is mediated specifically by CDPK16, regulates root growth in normal and salt stress and conditions.
Collapse
Affiliation(s)
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsung-Luo Jinn
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Hussain A, Farooq M, Naqvi RZ, Aslam MQ, Siddiqui HA, Amin I, Liu C, Liu X, Scheffler J, Asif M, Mansoor S. Whole-Genome Resequencing Deciphers New Insight Into Genetic Diversity and Signatures of Resistance in Cultivated Cotton Gossypium hirsutum. Mol Biotechnol 2023; 65:34-51. [PMID: 35778659 DOI: 10.1007/s12033-022-00527-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023]
Abstract
Cotton is an important crop that produces fiber and cottonseed oil for the textile and oil industry. However, cotton leaf curl virus disease (CLCuD) stress is limiting its yield in several Asian countries. In this study, we have sequenced Mac7 accession, a Gossypium hirsutum resistance source against several biotic stresses. By aligning with the Gossypium hirsutum (AD1) 'TM-1' genome, a total of 4.7 and 1.2 million SNPs and InDels were identified in the Mac7 genome. The gene ontology and metabolic pathway enrichment indicated SNPs and InDels role in nucleotide bindings, secondary metabolite synthesis, and plant-pathogen interaction pathways. Furthermore, the RNA-seq data in different tissues and qPCR expression profiling under CLCuD provided individual gene roles in resistant and susceptible accessions. Interestingly, the differential NLR genes demonstrated higher expression in resistant plants rather than in susceptible plants expression. The current resequencing results may provide primary data to identify DNA resistance markers which will be helpful in marker-assisted breeding for development of Mac7-derived resistance lines.
Collapse
Affiliation(s)
- Athar Hussain
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.,Bioinformatics Group, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | | | - Xin Liu
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Jodi Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service, USDA-ARS), 141 Experimental Station Road, Stoneville, MS, USA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.
| |
Collapse
|
14
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Zhao X, Qu D, Wang L, Gao Y, An N, Wang A, Li Y, Yang J, Wu F, Su H. Genome-wide identification of cysteine-rich receptor-like kinases in sweet cherry reveals that PaCRK1 enhances sweet cherry resistance to salt stress. PLANT CELL REPORTS 2022; 41:2037-2088. [PMID: 35904590 DOI: 10.1007/s00299-022-02907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Forty PaCRKs have been identified from sweet cherry and overexpression PaCRK1 in sweet cherry enhances its resistance to salt stress. Cysteine-rich receptor-like kinases (CRKs), a large subgroup of the receptor-like kinases, play an important role in plant development and stress response. However, knowledge about CRKs and its function against adverse environmental stresses in sweet cherry were lacking. In this study, 40 PaCRKs were identified from sweet cherry (Prunus avium) genome database. Phylogenetic analysis indicated that PaCRKs could be classified into six subgroups. Transcriptome analysis showed that the expression levels of most PaCRKs were changed under external environmental stresses. Functional study showed that PaCRK1 overexpression could enhance Arabidopsis and sweet cherry tolerance to salt stress. Moreover, biochemical analysis showed that PaCRK1 increased salt tolerance of sweet cherry by regulating the expression of antioxidation-related genes and their enzyme activities. This study provides a comprehensive understanding of PaCRKs in sweet cherry and elucidates the potential role of PaCRKs in response to various environmental stimuli.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dehui Qu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Yuanhui Gao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ningning An
- Yantai Laishan Garden Construction and Maintenance Center, Yantai, 264003, China
| | - Aiping Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yaxin Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China.
- The Institute of Ecological Garden, Ludong University, Yantai, 264025, China.
| |
Collapse
|
16
|
Hussain A, Asif N, Pirzada AR, Noureen A, Shaukat J, Burhan A, Zaynab M, Ali E, Imran K, Ameen A, Mahmood MA, Nazar A, Mukhtar MS. Genome wide study of cysteine rich receptor like proteins in Gossypium sp. Sci Rep 2022; 12:4885. [PMID: 35318409 PMCID: PMC8941122 DOI: 10.1038/s41598-022-08943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cysteine-rich receptor-like-kinases (CRKs), a transmembrane subfamily of receptor-like kinase, play crucial roles in plant adaptation. As such cotton is the major source of fiber for the textile industry, but environmental stresses are limiting its growth and production. Here, we have performed a deep computational analysis of CRKs in five Gossypium species, including G. arboreum (60 genes), G. raimondii (74 genes), G. herbaceum (65 genes), G. hirsutum (118 genes), and G. barbadense (120 genes). All identified CRKs were classified into 11 major classes and 43 subclasses with the finding of several novel CRK-associated domains including ALMT, FUSC_2, Cript, FYVE, and Pkinase. Of these, DUF26_DUF26_Pkinase_Tyr was common and had elevated expression under different biotic and abiotic stresses. Moreover, the 35 land plants comparison identified several new CRKs domain-architectures. Likewise, several SNPs and InDels were observed in CLCuD resistant G. hirsutum. The miRNA target side prediction and their expression profiling in different tissues predicted miR172 as a major CRK regulating miR. The expression profiling of CRKs identified multiple clusters with co-expression under certain stress conditions. The expression analysis under CLCuD highlighted the role of GhCRK057, GhCRK059, GhCRK058, and GhCRK081 in resistant accession. Overall, these results provided primary data for future potential functional analysis as well as a reference study for other agronomically important crops.
Collapse
Affiliation(s)
- Athar Hussain
- Genomics Lab, School of Food and Agricultural Sciences (SFAS), University of Management and Technology (UMT), Lahore, 54000, Pakistan.
| | - Naila Asif
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Abdul Rafay Pirzada
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Azka Noureen
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan.,PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Javeria Shaukat
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Akif Burhan
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, China
| | - Ejaz Ali
- Center of Excellence in Molecular Biology, University of Punjab, Lahore, 54000, Pakistan
| | - Koukab Imran
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Ayesha Ameen
- Office of Research Innovation and Commercialization, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - Muhammad Arslan Mahmood
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, 38000, Pakistan
| | - Aquib Nazar
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54000, Pakistan
| | - M Shahid Mukhtar
- Department of Biology, the University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
17
|
Wu T, Guo F, Xu G, Yu J, Zhang L, Wei X, Zhu X, Zhang Z. The Receptor-like Kinase TaCRK-7A Inhibits Fusarium pseudograminearum Growth and Mediates Resistance to Fusarium Crown Rot in Wheat. BIOLOGY 2021; 10:biology10111122. [PMID: 34827115 PMCID: PMC8614996 DOI: 10.3390/biology10111122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023]
Abstract
The fungus F. pseudograminearum can cause the destructive disease Fusarium crown rot (FCR) of wheat, an important staple crop. Functional roles of FCR resistance genes in wheat are largely unknown. In the current research, we characterized the antifungal activity and positive-regulatory function of the cysteine-rich repeat receptor-like kinase TaCRK-7A in the defense against F. pseudograminearum in wheat. Antifungal assays showed that the purified TaCRK-7A protein inhibited the growth of F. pseudograminearum. TaCRK-7A transcript abundance was elevated after F. pseudograminearum attack and was positively related to FCR-resistance levels of wheat cultivars. Intriguingly, knocking down of TaCRK-7A transcript increased susceptibility of wheat to FCR and decreased transcript levels of defense-marker genes in wheat. Furthermore, the transcript abundances of TaCRK-7A and its modulated-defense genes were responsive to exogenous jasmonate treatment. Taken together, these results suggest that TaCRK-7A can directly inhibit F. pseudograminearum growth and mediates FCR-resistance by promoting the expression of wheat defense genes in the jasmonate pathway. Thus, TaCRK-7A is a potential gene resource in FCR-resistant wheat breeding program.
Collapse
Affiliation(s)
- Tianci Wu
- Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (F.G.); (X.W.)
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Feilong Guo
- Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (F.G.); (X.W.)
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Gangbiao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (J.Y.); (L.Z.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (J.Y.); (L.Z.)
| | - Xuening Wei
- Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (F.G.); (X.W.)
| | - Xiuliang Zhu
- Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (F.G.); (X.W.)
- Correspondence: (X.Z.); (Z.Z.)
| | - Zengyan Zhang
- Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.W.); (F.G.); (X.W.)
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
18
|
Transcriptome Analysis of a Cotton Cultivar Provides Insights into the Differentially Expressed Genes Underlying Heightened Resistance to the Devastating Verticillium Wilt. Cells 2021; 10:cells10112961. [PMID: 34831184 PMCID: PMC8616101 DOI: 10.3390/cells10112961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
Cotton is an important economic crop worldwide. Verticillium wilt (VW) caused by Verticillium dahliae (V. dahliae) is a serious disease in cotton, resulting in massive yield losses and decline of fiber quality. Breeding resistant cotton cultivars is an efficient but elaborate method to improve the resistance of cotton against V. dahliae infection. However, the functional mechanism of several excellent VW resistant cotton cultivars is poorly understood at present. In our current study, we carried out RNA-seq to discover the differentially expressed genes (DEGs) in the roots of susceptible cotton Gossypium hirsutum cultivar Junmian 1 (J1) and resistant cotton G.hirsutum cultivar Liaomian 38 (L38) upon Vd991 inoculation at two time points compared with the mock inoculated control plants. The potential function of DEGs uniquely expressed in J1 and L38 was also analyzed by GO enrichment and KEGG pathway associations. Most DEGs were assigned to resistance-related functions. In addition, resistance gene analogues (RGAs) were identified and analyzed for their role in the heightened resistance of the L38 cultivar against the devastating Vd991. In summary, we analyzed the regulatory network of genes in the resistant cotton cultivar L38 during V. dahliae infection, providing a novel and comprehensive insight into VW resistance in cotton.
Collapse
|
19
|
Guo F, Wu T, Shen F, Xu G, Qi H, Zhang Z. The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6904-6919. [PMID: 34254642 DOI: 10.1093/jxb/erab328] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/10/2021] [Indexed: 05/19/2023]
Abstract
Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat (Triticum aestivum). However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unknown. In this study, by comparative transcriptomic analysis we identified a novel cysteine-rich receptor-like kinase (CRK)-encoding gene, designated as TaCRK3, and investigated its role in defense against R. cerealis. TaCRK3 transcript abundance was significantly elevated by R. cerealis and exogenous ethylene treatments. Silencing of TaCRK3 significantly compromised resistance to R. cerealis and repressed expression of an ethylene biosynthesis enzyme-encoding gene, ACO2, and a subset of defense-associated genes in wheat, whose transcript levels are up-regulated by ethylene stimulus. TaCRK3 protein was localized at the plasma membrane in wheat. Noticeably, both the heterologously expressed TaCRK3 protein and its partial peptide harboring two DUF26 (DOMAIN OF UNKNOWN FUNCTION 26) domains could inhibit growth of R. cerealis mycelia. These results suggest that TaCRK3 mediates wheat resistance to R. cerealis through direct antifungal activity and heightening the expression of defense-associated genes in the ethylene signaling pathway. Moreover, its DUF26 domains are required for the antifungal activity of TaCRK3. Our results reveal that TaCRK3 is a promising gene for breeding wheat varieties with resistance to R. cerealis.
Collapse
Affiliation(s)
- Feilong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Tianci Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Fangdi Shen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ningbo Polytechnic, Ningbo, China
| | - Gangbiao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Haijun Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Li T, Chen G, Zhang Q. VvXYLP02 confers gray mold resistance by amplifying jasmonate signaling pathway in Vitis vinifera. PLANT SIGNALING & BEHAVIOR 2021; 16:1940019. [PMID: 34254885 PMCID: PMC8331025 DOI: 10.1080/15592324.2021.1940019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/22/2023]
Abstract
Xylogen-like proteins (XYLPs) are essential for plant growth, development, and stress responses. However, little is known about the XYLP gene family in grape and its protective effects against gray mold a destructive disease caused by Botrytis cinerea. We identified and characterized six common XYLPs in the Vitis vinifera genome (VvXYLPs). VvXYLP expression pattern analyses with B. cinerea infection showed that VvXYLP02 was significantly up-regulated in the resistant genotype but down-regulated or only slightly up-regulated in the susceptible genotype. VvXYLP02 overexpression in Arabidopsis thaliana significantly increased resistance to B. cinerea, indicating that the candidate gene has functional importance. Furthermore, JA treatment significantly up-regulated VvXYLP02 expression in V. vinifera. JA-responsive genes were also up-regulated in VvXYLP02 overexpression lines in A. thaliana under B. cinerea inoculation. These findings suggest that VvXYLP02, which is induced by JA upon the pathogen infection, enhances JA dependent response to enforce plant resistance against gray mold disease.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- CONTACT Li Tinggang Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, No. 1-27, Shanda South Road, Jinan250100, China
| | - Guangxia Chen
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
21
|
Mou S, Meng Q, Gao F, Zhang T, He W, Guan D, He S. A cysteine-rich receptor-like protein kinase CaCKR5 modulates immune response against Ralstonia solanacearum infection in pepper. BMC PLANT BIOLOGY 2021; 21:382. [PMID: 34412592 PMCID: PMC8375189 DOI: 10.1186/s12870-021-03150-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/28/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cysteine-rich receptor-like kinases (CRKs) represent a large subfamily of receptor-like kinases and play vital roles in diverse physiological processes in regulating plant growth and development. RESULTS CaCRK5 transcripts were induced in pepper upon the infection of Ralstonia solanacearum and treatment with salicylic acid. The fusions between CaCRK5 and green fluorescence protein were targeted to the plasma membrane. Suppression of CaCRK5 via virus-induced gene silencing (VIGS) made pepper plants significantly susceptible to R. solanacearum infection, which was accompanied with decreased expression of defense related genes CaPR1, CaSAR8.2, CaDEF1 and CaACO1. Overexpression of CaCRK5 increased resistance against R. solanacearum in Nicotiana benthamiana. Furthermore, electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with quantitative real-time PCR analysis revealed that a homeodomain zipper I protein CaHDZ27 can active the expression of CaCRK5 through directly binding to its promoter. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses suggested that CaCRK5 heterodimerized with the homologous member CaCRK6 on the plasma membrane. CONCLUSIONS Our data revealed that CaCRK5 played a positive role in regulating immune responses against R. solanacearum infection in pepper.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Qianqian Meng
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Feng Gao
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Tingting Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Weihong He
- College of Life Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
- Key Laboratory of Plant Genetic Improvement, National Education Minister, Comprehensive Utilization Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
- College of Agriculture Science, Fujian Agriculture and Forestry University, Fujian, 350002, Fuzhou, People's Republic of China.
| |
Collapse
|
22
|
Cai X, Jiang Z, Tang L, Zhang S, Li X, Wang H, Liu C, Chi J, Zhang X, Zhang J. Genome-wide characterization of carotenoid oxygenase gene family in three cotton species and functional identification of GaNCED3 in drought and salt stress. J Appl Genet 2021; 62:527-543. [PMID: 34109531 DOI: 10.1007/s13353-021-00634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Cotton that serves natural fiber for the textile industry is an important industrial crop. However, abiotic stress imposed a significant negative impact on yield and quality of cotton fiber. Carotenoid cleavage oxygenases (CCOs) that specifically catalyze the cleavage of carotenoid are essential for plant growth and development and abiotic stress response. While information of cotton CCOs and their potential functions in abiotic stress is still far from satisfactory, which imposes restrictions on application in genetic breeding for stress resistance. In this study, 15, 15, and 30 CCOs were identified from Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively. Phylogenetic relationship indicated that CCO genes could be classified into two groups (NCEDs and CCDs). Cis-elements prediction showed that there were 18 types of stress-related cis-elements in promoter regions. Analysis with transcriptome data revealed tissue-specific expression pattern of cotton CCOs. qRT-PCR analysis revealed only that GhNCED3a_A/D and GhNCED3c_A/D had strong response to drought, salt, and cold stress, while GhCCD1_A/D and GhCCD4_A showed relatively slight expression changes. Virus-induced gene silencing of GaNCED3a, the ortholog gene of GhNCED3a_A/D, suggested that silenced plants exhibited decreased resistance not only to drought but also to salt, with significantly reduced proline content, and high malondialdehyde content and water loss rate. In addition, stress response genes RD29A, DREB1A, and SOS1 significantly downregulated under drought and salt stress in silenced plants compared to control plants, indicating that GaNCED3a played an important role in drought and salt response. The results provided valuable insights into function analysis of cotton CCOs in abiotic stress response, and suggested potential benefit genes for stress-resistant breeding.
Collapse
Affiliation(s)
- Xiao Cai
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | | | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | - Sujun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | - Jina Chi
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China.,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China. .,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China.
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, 050051, Hebei, China. .,National Cotton Improvement Center Hebei Branch, Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, 050051, Hebei, China.
| |
Collapse
|
23
|
Espeit L, Rozand V, Millet GY, Gondin J, Maffiuletti NA, Lapole T. Influence of wide-pulse neuromuscular electrical stimulation frequency and superimposed tendon vibration on occurrence and magnitude of extra torque. J Appl Physiol (1985) 2021; 131:302-312. [PMID: 34080917 DOI: 10.1152/japplphysiol.00968.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-frequency and high-frequency wide-pulse neuromuscular electrical stimulation (NMES) can generate extra torque (ET) via afferent pathways. Superimposing tendon vibration (TV) to NMES can increase the activation of these afferent pathways and favor ET generation. Knowledge of the characteristics of ET is essential to implement these stimulation paradigms in clinical practice. Thus, we aimed to investigate the effects of frequency and TV superimposition on the occurrence and magnitude of ET in response to wide-pulse NMES. NMES-induced isometric plantar flexion torque was recorded in 30 healthy individuals who performed five NMES protocols: wide-pulse low-frequency (1 ms; 20 Hz; WPLF) and wide-pulse high-frequency (1 ms; 100 Hz; WPHF) without and with superimposed TV (1 mm; 100 Hz) and conventional NMES (50 µs; 20 Hz; reference protocol). Each NMES protocol consisted of three 20-s trains interspersed by 90 s of rest, with NMES intensity being adjusted to reach 10% of maximal voluntary contraction. The ET occurrence was similar for WPLF and WPHF (P = 0.822). In the responders, the ET magnitude was greater for WPHF than WPLF (P < 0.001). There was no effect of superimposed TV on ET characteristics. This study reported an effect of NMES frequency on ET magnitude, whereas TV superimposition did not affect this parameter. In the context of our experimental design decisions, the present findings question the clinical use of wide-pulse NMES and its combination with superimposed TV. Yet, further research is needed to maximize force production through the occurrence and magnitude of ET.NEW & NOTEWORTHY This study is the first to assess the effect of stimulation frequency and superimposed tendon vibration on extra torque characteristics generated by wide-pulse neuromuscular electrical stimulation. The percentage of subjects showing extra torque (i.e., considered as responders) was similar for low-frequency and high-frequency wide-pulse neuromuscular electrical stimulation. In the responders, the extra torque was greater for high-frequency than for low-frequency wide-pulse neuromuscular electrical stimulation. The superimposition of tendon vibration had no effect on extra torque occurrence or magnitude.
Collapse
Affiliation(s)
- Loïc Espeit
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France
| | - Vianney Rozand
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France
| | - Guillaume Y Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France.,Institut Universitaire de France, Paris, France
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| | | | - Thomas Lapole
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France
| |
Collapse
|
24
|
Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat Commun 2021; 12:433. [PMID: 33469010 PMCID: PMC7815785 DOI: 10.1038/s41467-020-20685-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The poverty of disease resistance gene reservoirs limits the breeding of crops for durable resistance against evolutionary dynamic pathogens. Zymoseptoria tritici which causes Septoria tritici blotch (STB), represents one of the most genetically diverse and devastating wheat pathogens worldwide. No fully virulent Z. tritici isolates against synthetic wheats carrying the major resistant gene Stb16q have been identified. Here, we use comparative genomics, mutagenesis and complementation to identify Stb16q, which confers broad-spectrum resistance against Z. tritici. The Stb16q gene encodes a plasma membrane cysteine-rich receptor-like kinase that was recently introduced into cultivated wheat and which considerably slows penetration and intercellular growth of the pathogen.
Collapse
Affiliation(s)
- Cyrille Saintenac
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Florence Cambon
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Lamia Aouini
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.169077.e0000 0004 1937 2197Present Address: Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Els Verstappen
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands
| | - Seyed Mahmoud Tabib Ghaffary
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,Present Address: Seed and Plant Improvement Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, AREEO, Dezful, Iran
| | - Théo Poucet
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France ,grid.11480.3c0000000121671098Present Address: Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain ,grid.412041.20000 0001 2106 639XPresent Address: Université de Bordeaux, 146 rue Leo-Saignat, Bordeaux, Cedex 33076 France
| | - William Marande
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France
| | - Hélène Berges
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France ,grid.508749.7Present Address: Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA 02139 USA
| | - Steven Xu
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Maëlle Jaouannet
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Julien Alassimone
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland ,grid.5690.a0000 0001 2151 2978Present Address: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón Madrid, Spain
| | - Justin Faris
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Gert Kema
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen University (Laboratory of Phytopathology), 6700AA Wageningen, The Netherlands
| | - Oliver Robert
- Florimond-Desprez, 3 rue Florimond-Desprez, BP 41, 59242 Cappelle-en-Pevele, France
| | - Thierry Langin
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| |
Collapse
|
25
|
Li T, Zhang Q, Jiang X, Li R, Dhar N. Cotton CC-NBS-LRR Gene GbCNL130 Confers Resistance to Verticillium Wilt Across Different Species. FRONTIERS IN PLANT SCIENCE 2021; 12:695691. [PMID: 34567025 PMCID: PMC8456104 DOI: 10.3389/fpls.2021.695691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Verticillium wilt (VW) is a destructive disease in cotton caused by Verticillium dahliae and has a significant impact on yield and quality. In the absence of safe and effective chemical control, VW is difficult to manage. Thus, at present, developing resistant varieties is the most economical and effective method of controlling Verticillium wilt of cotton. The CC-NBS-LRR (CNL) gene family is an important class of plant genes involved in disease resistance. This study identified 141 GbCNLs in Gossypium barbadense genome, with 37.5% (53 genes) GbCNLs enriched in 12 gene clusters (GC01-GC12) based on gene distribution in the chromosomes. Especially, seven GbCNLs from two largest clusters (GC11 and GC12) were significantly upregulated in the resistant cultivar (Hai No. 7124) and the susceptible (Giza No. 57). Virus-induced gene silencing of GbCNL130 in G. barbadense, one typical gene in the gene cluster 12 (GC12), significantly altered the response to VW, compromising plant resistance to V. dahliae. In contrast, GbCNL130 overexpression significantly increased the resistance to VW in the wild-type Arabidopsis thaliana. Based on our research findings presented here, we conclude that GbCNL130 promotes resistance to VW by activating the salicylic acid (SA)-dependent defense response pathway resulting in strong accumulation of reactive oxygen species and upregulation of pathogenesis-related (PR) genes. In conclusion, our study resulted in the discovery of a new CNL resistance gene in cotton, GbCNL130, that confers resistance to VW across different hosts.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Tinggang Li,
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Li
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| |
Collapse
|
26
|
Zhang J, Hu HL, Wang XN, Yang YH, Zhang CJ, Zhu HQ, Shi L, Tang CM, Zhao MW. Dynamic infection of Verticillium dahliae in upland cotton. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:90-105. [PMID: 31419841 DOI: 10.1111/plb.13037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 05/26/2023]
Abstract
Verticillium wilt, an infection caused by the soilborne fungus Verticillium dahliae, is one of the most serious diseases in cotton. No effective control method against V. dahliae has been established, and the infection mechanism of V. dahliae in upland cotton remains unknown. GFP-tagged V. dahliae isolates with different pathogenic abilities were used to analyse the colonisation and infection of V. dahliae in the roots and leaves of different upland cotton cultivars, the relationships among infection processes, the immune responses and the resistance ability of different cultivars against V. dahliae. Here, we report a new infection model for V. dahliae in upland cotton plants. V. dahliae can colonise and infect any organ of upland cotton plants and then spread to the entire plant from the infected organ through the surface and interior of the organ. Vascular tissue was found to not be the sole transmission route of V. dahliae in cotton plants. In addition, the rate of infection of a V. dahliae isolate with strong pathogenicity was notably faster than that of an isolate with weak pathogenicity. The resistance of upland cotton to Verticillium wilt was related to the degree of the immune response induced in plants infected with V. dahliae. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - H-L Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-N Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Y-H Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-J Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - H-Q Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - L Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-M Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - M-W Zhao
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
28
|
Li TG, Wang BL, Yin CM, Zhang DD, Wang D, Song J, Zhou L, Kong ZQ, Klosterman SJ, Li JJ, Adamu S, Liu TL, Subbarao KV, Chen JY, Dai XF. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. MOLECULAR PLANT PATHOLOGY 2019; 20:857-876. [PMID: 30957942 DOI: 10.5897/ajmr11.781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, USA
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sabiu Adamu
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ting-Li Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, California, USA
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
29
|
Li T, Wang B, Yin C, Zhang D, Wang D, Song J, Zhou L, Kong Z, Klosterman SJ, Li J, Adamu S, Liu T, Subbarao KV, Chen J, Dai X. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt. MOLECULAR PLANT PATHOLOGY 2019; 20:857-876. [PMID: 30957942 PMCID: PMC6637886 DOI: 10.1111/mpp.12797] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.
Collapse
Affiliation(s)
- Ting‐Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Bao‐Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Chun‐Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Dan‐Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Zhi‐Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCaliforniaUSA
| | - Jun‐Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Sabiu Adamu
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Ting‐Li Liu
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingJiangsu210014China
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Jie‐Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| | - Xiao‐Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport Process, Ministry of AgricultureBeijing100193China
| |
Collapse
|
30
|
Genomic dissection and transcriptional profiling of Cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A. Int J Biol Macromol 2019; 134:316-329. [PMID: 31078592 DOI: 10.1016/j.ijbiomac.2019.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
Abstract
Cysteine-rich receptor-like kinases (CRK) constitute one of the largest subfamily of receptor-like kinases, which play crucial roles in plant development and stress response. In total, 43, 37, 36, 38 and 170 CRK genes including duplicated genes were identified in the genome of Brachypodium distachyon, Hordeum vulgare, Oryza sativa, Sorghum bicolor and Triticum aestivum, respectively. These CRK proteins were tightly clustered into four phylogenetic groups and exhibited close syntenic relationship among orthologous genes. Majority of CRK proteins contain a transmembrane domain for plasma membrane localization. The organization of exon/intron, domains and motifs were variably conserved. Tissue-specific expression suggested the involvement of certain CRK genes in plant development. Modulated expression revealed their specific stress-responsive functions. Co-expression and interaction analysis indicated their role in signaling. Ks value and divergence time analysis suggested duplication of TaCRK genes before the hybridization of T. aestivum sub-genomes. Expression comparison of duplicated TaCRK genes revealed functional retention, neofunctionalization or pseudo-functionalization. Recombinant expression of a stress-responsive gene TaCRK68-A in Escherichia coli and Saccharomyces cerevisiae displayed enhanced tolerance against heat, drought, cold and salinity stresses. The study suggested vital functions of CRKs during development and stresses, and provides the basis for functional characterization of each gene in future studies.
Collapse
|
31
|
Quezada EH, García GX, Arthikala MK, Melappa G, Lara M, Nanjareddy K. Cysteine-Rich Receptor-Like Kinase Gene Family Identification in the Phaseolus Genome and Comparative Analysis of Their Expression Profiles Specific to Mycorrhizal and Rhizobial Symbiosis. Genes (Basel) 2019; 10:genes10010059. [PMID: 30658517 PMCID: PMC6356535 DOI: 10.3390/genes10010059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023] Open
Abstract
Receptor-like kinases (RLKs) are conserved upstream signaling molecules that regulate several biological processes, including plant development and stress adaptation. Cysteine (C)-rich receptor-like kinases (CRKs) are an important class of RLK that play vital roles in disease resistance and cell death in plants. Genome-wide analyses of CRK genes have been carried out in Arabidopsis and rice, while functional characterization of some CRKs has been carried out in wheat and tomato in addition to Arabidopsis. A comprehensive analysis of the CRK gene family in leguminous crops has not yet been conducted, and our understanding of their roles in symbiosis is rather limited. Here, we report the comprehensive analysis of the PhaseolusCRK gene family, including identification, sequence similarity, phylogeny, chromosomal localization, gene structures, transcript expression profiles, and in silico promoter analysis. Forty-six CRK homologs were identified and phylogenetically clustered into five groups. Expression analysis suggests that PvCRK genes are differentially expressed in both vegetative and reproductive tissues. Further, transcriptomic analysis revealed that shared and unique CRK genes were upregulated during arbuscular mycorrhizal and rhizobial symbiosis. Overall, the systematic analysis of the PvCRK gene family provides valuable information for further studies on the biological roles of CRKs in various Phaseolus tissues during diverse biological processes, including Phaseolus-mycorrhiza/rhizobia symbiosis.
Collapse
Affiliation(s)
- Elsa-Herminia Quezada
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), C.P. 37684 León, Mexico.
| | - Gabriel-Xicoténcatl García
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), C.P. 37684 León, Mexico.
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), C.P. 37684 León, Mexico.
| | - Govindappa Melappa
- Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru 560 078, India.
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), C.P. 62271 Cuernavaca, Mexico.
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México (UNAM), C.P. 37684 León, Mexico.
| |
Collapse
|