1
|
Villano F, Balestrini R, Nerva L, Chitarra W. Harnessing microbes as sun cream against high light stress. THE NEW PHYTOLOGIST 2025; 245:450-457. [PMID: 39462775 DOI: 10.1111/nph.20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Plants rely on solar energy for growth through photosynthesis, yet excessive light intensity can induce physiological damage. Despite the considerable harm, inadequate attention has been directed toward understanding how plant-associated microorganisms mitigate this stress, and the impact of high light intensity on plant microbial communities remains underexplored. Through this Viewpoint, we aim to highlight the potential of microbial communities to enhance plant resilience and understand how light stress can shape plant microbiome. A full understanding of these dynamics is essential to design strategies that take advantage of microbial assistance to plants under light stress and to effectively manage the impact of changing light conditions on plant-microbe interactions.
Collapse
Affiliation(s)
- Filippo Villano
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources (IBBR), National Research Council (IBBR-CNR), Via G. Amendola 165/A, Bari (BA), 70126, Italy
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| |
Collapse
|
2
|
Stryker J, White E, Díaz-Almeyda E, Sidoti B, Oberle B. Tank formation transforms nitrogen metabolism of an epiphytic bromeliad and its phyllosphere bacteria. AMERICAN JOURNAL OF BOTANY 2024; 111:e16396. [PMID: 39187952 DOI: 10.1002/ajb2.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
PREMISE Up to half of tropical forest plant species grow on other plants. Lacking access to soils, vascular epiphytes have unique adaptations for mineral nutrition. Among the most distinctive is the tank growth form of certain large bromeliads, which absorb nutrients that are cycled by complex microbial communities in water trapped among their overlapping leaf bases. However, tanks form only after years of growth by juvenile plants, which must acquire nutrients differently. Understanding how nutrient dynamics change during tank bromeliad development can provide key insights into the role of microorganisms in the maintenance of tropical forest biodiversity. METHODS We evaluated variations in plant morphology, growth, foliar nitrogen physiology, and phyllosphere bacterial communities along a size gradient spanning the transition to tank formation in the threatened species Tillandsia utriculata. RESULTS Sequential morphological and growth phases coincided with the transition to tank formation when the longest leaf on plants was between 14 and 19 cm. Before this point, foliar ammonium concentrations were very high, but after, leaf segments absorbed significantly more nitrate. Leaf-surface bacterial communities tracked ontogenetic changes in plant morphology and nitrogen metabolism, with less-diverse communities in tankless plants distinguished by a high proportion of taxa implicated in ureolysis, nitrogen fixation, and methanotrophy, whereas nitrate reduction characterized communities on individuals that could form a tank. CONCLUSIONS Coupled changes in plant morphology, physiology, and microbiome function facilitate the transition between alternative nutritional modes in tank bromeliads. Comparing bromeliads across life stages and habitats may illuminate how nitrogen-use varies across scales.
Collapse
Affiliation(s)
- Jade Stryker
- New College of Florida, 5800 Bay Shore Road, Sarasota, 34243, FL, USA
| | - Elizabeth White
- New College of Florida, 5800 Bay Shore Road, Sarasota, 34243, FL, USA
- University of Florida, 3215 Hull Road, Gainesville, 32611, FL, USA
| | - Erika Díaz-Almeyda
- New College of Florida, 5800 Bay Shore Road, Sarasota, 34243, FL, USA
- California State University San Marcos, 333 South Twin Oaks Valley Road, San Marcos, 92096, CA, USA
| | - Brian Sidoti
- Kampong of The National Tropical Botanical Garden, 4013 South Douglas Road, Miami, 33133, FL, USA
| | - Brad Oberle
- New College of Florida, 5800 Bay Shore Road, Sarasota, 34243, FL, USA
- Marie Selby Botanical Garden, 1534 Mound Street, Sarasota, 34236, FL, USA
- New York Botanical Garden, 2900 Southern Boulevard, Bronx, 10458, NY, USA
| |
Collapse
|
3
|
Rousseau M, Siegenthaler A, Skidmore AK, de Groot GA, Laros I. Further reduction in soil bacterial diversity under severe acidification in European temperate forests. EUROPEAN JOURNAL OF SOIL SCIENCE 2024; 75:e70005. [PMID: 39583947 PMCID: PMC11579971 DOI: 10.1111/ejss.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH <4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%-9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%-0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair.
Collapse
Affiliation(s)
- Mélody Rousseau
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andjin Siegenthaler
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andrew K. Skidmore
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - G. Arjen de Groot
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Ivo Laros
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Yu Z, Wang D, Zhang B, Mao H, Wang Z, Yan Z, Tao C, Deng X, Shen Q, Li R. Bacillus velezensis SQR9 promotes plant growth through colonization and rhizosphere-phyllosphere bacteria interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13250. [PMID: 38575119 PMCID: PMC10994692 DOI: 10.1111/1758-2229.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
The rhizosphere and phyllosphere of plants are home to a diverse range of microorganisms that play pivotal roles in ecosystem services. Consequently, plant growth-promoting bacteria (PGPB) are extensively utilized as inoculants to enhance plant growth and boost productivity. Despite this, the interactions between the rhizosphere and phyllosphere, which are influenced by PGPB inoculation, have not been thoroughly studied to date. In this study, we inoculated Bacillus velezensis SQR9, a PGPB, into the bulk soil, rhizosphere or phyllosphere, and subsequently examined the bacterial communities in the rhizosphere and phyllosphere using amplicon sequencing. Our results revealed that PGPB inoculation increased its abundance in the corresponding compartment, and all treatments demonstrated plant growth promotion effects. Further analysis of the sequencing data indicated that the presence of PGPB exerted a more significant impact on bacterial communities in both the rhizosphere and phyllosphere than in the inoculation compartment. Notably, the PGPB stimulated similar rhizosphere-beneficial microbes regardless of the inoculation site. We, therefore, conclude that PGPB can promote plant growth both directly and indirectly through the interaction between the rhizosphere and phyllosphere, leading to the enrichment of beneficial microorganisms.
Collapse
Affiliation(s)
- Zhao Yu
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Dongsheng Wang
- Nanjing Institute of Vegetable ScienceNanjingJiangsuPeople's Republic of China
| | - Bo Zhang
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Hancheng Mao
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Zhe Wang
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Zhiguang Yan
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Chengyuan Tao
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Xuhui Deng
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Qirong Shen
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| | - Rong Li
- The Sanya Institute of Nanjing Agricultural University, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic‐Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving FertilizersNanjing Agricultural UniversityNanjingJiangsuPeople's Republic of China
| |
Collapse
|
5
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Nimsi KA, Arya H, Manjusha K, Kathiresan K. Multifarious plant growth-promoting traits of mangrove yeasts: growth enhancement in mangrove seedlings (Rhizophora mucronata) for conservation. Arch Microbiol 2024; 206:192. [PMID: 38522061 DOI: 10.1007/s00203-024-03913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Plant Growth-Promoting Yeasts (PGPY) have garnered significant attention in recent years; however, research on PGPY from mangroves remains a largely unexplored frontier. This study, therefore, focused on exploring the multifaceted plant growth-promoting (PGP) capabilities of yeasts isolated from mangroves of Puthuvype and Kumbalam. The present work found that manglicolous yeasts exhibited diverse hydrolytic properties, with the predominance of lipolytic activity, in addition to other traits such as phosphate solubilization, and production of indole acetic acid, siderophore, ammonia, catalase, nitrate, and hydrogen cyanide. After screening for 15 PGP traits, three strains P 9, PV 23, and KV 35 were selected as the most potent ones. These strains also exhibited antagonistic activity against fungal phytopathogens and demonstrated resilience to abiotic stresses, making them not only promising biocontrol agents but also suited for field application. The potent strains P 9, PV 23, and KV 35 were molecularly identified as Candida tropicalis, Debaryomyces hansenii, and Aureobasidium melanogenum, respectively. The potential of these strains in enhancing the growth performance of mangrove seedlings of Rhizophora mucronata, was demonstrated using the pot-experiment. The results suggested that the consortium of three potent strains (P 9, PV 23, and KV 35) was more effective in increasing the number of shoot branches (89.2%), plant weight (87.5%), root length (83.3%), shoot height (57.9%) and total leaf area (35.1%) than the control seedlings. The findings of this study underscore the significant potential of manglicolous yeasts in contributing to mangrove conservation and restoration efforts, offering a comprehensive understanding of their diverse plant growth-promoting mechanisms and highlighting their valuable role in sustainable ecosystem management.
Collapse
Affiliation(s)
- K A Nimsi
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, 682506, India
| | - H Arya
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, 682506, India
| | - K Manjusha
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, 682506, India.
| | - K Kathiresan
- Faculty of Marine Sciences, Center for Advanced Study in Marine Biology, Annamalai University, Chidambaram, Tamil Nadu, 608502, India
| |
Collapse
|
7
|
Peng D, Wang Z, Tian J, Wang W, Guo S, Dai X, Yin H, Li L. Phyllosphere bacterial community dynamics in response to bacterial wildfire disease: succession and interaction patterns. FRONTIERS IN PLANT SCIENCE 2024; 15:1331443. [PMID: 38533399 PMCID: PMC10963427 DOI: 10.3389/fpls.2024.1331443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Plants interact with complex microbial communities in which microorganisms play different roles in plant development and health. While certain microorganisms may cause disease, others promote nutrient uptake and resistance to stresses through a variety of mechanisms. Developing plant protection measures requires a deeper comprehension of the factors that influence multitrophic interactions and the organization of phyllospheric communities. High-throughput sequencing was used in this work to investigate the effects of climate variables and bacterial wildfire disease on the bacterial community's composition and assembly in the phyllosphere of tobacco (Nicotiana tabacum L.). The samples from June (M1), July (M2), August (M3), and September (M4) formed statistically separate clusters. The assembly of the whole bacterial population was mostly influenced by stochastic processes. PICRUSt2 predictions revealed genes enriched in the M3, a period when the plant wildfire disease index reached climax, were associated with the development of the wildfire disease (secretion of virulence factor), the enhanced metabolic capacity and environmental adaption. The M3 and M4 microbial communities have more intricate molecular ecological networks (MENs), bursting with interconnections within a densely networked bacterial population. The relative abundances of plant-beneficial and antagonistic microbes Clostridiales, Bacillales, Lactobacillales, and Sphingobacteriales, showed significant decrease in severally diseased sample (M3) compared to the pre-diseased samples (M1/M2). Following the results of MENs, we further test if the correlating bacterial pairs within the MEN have the possibility to share functional genes and we have unraveled 139 entries of such horizontal gene transfer (HGT) events, highlighting the significance of HGT in shaping the adaptive traits of plant-associated bacteria across the MENs, particularly in relation to host colonization and pathogenicity.
Collapse
Affiliation(s)
- Deyuan Peng
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Zhenhua Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Jinyan Tian
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Wei Wang
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Shijie Guo
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Xi Dai
- Zhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
8
|
Kong D, Ye Z, Dai M, Ma B, Tan X. Light Intensity Modulates the Functional Composition of Leaf Metabolite Groups and Phyllosphere Prokaryotic Community in Garden Lettuce ( Lactuca sativa L.) Plants at the Vegetative Stage. Int J Mol Sci 2024; 25:1451. [PMID: 38338730 PMCID: PMC10855689 DOI: 10.3390/ijms25031451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024] Open
Abstract
Light intensity primarily drives plant growth and morphogenesis, whereas the ecological impact of light intensity on the phyllosphere (leaf surface and endosphere) microbiome is poorly understood. In this study, garden lettuce (Lactuca sativa L.) plants were grown under low, medium, and high light intensities. High light intensity remarkably induced the leaf contents of soluble proteins and chlorophylls, whereas it reduced the contents of leaf nitrate. In comparison, medium light intensity exhibited the highest contents of soluble sugar, cellulose, and free amino acids. Meanwhile, light intensity resulted in significant changes in the composition of functional genes but not in the taxonomic compositions of the prokaryotic community (bacteria and archaea) in the phyllosphere. Notably, garden lettuce plants under high light intensity treatment harbored more sulfur-cycling mdh and carbon-cycling glyA genes than under low light intensity, both of which were among the 20 most abundant prokaryotic genes in the leaf phyllosphere. Furthermore, the correlations between prokaryotic functional genes and lettuce leaf metabolite groups were examined to disclose their interactions under varying light intensities. The relative abundance of the mdh gene was positively correlated with leaf total chlorophyll content but negatively correlated with leaf nitrate content. In comparison, the relative abundance of the glyA gene was positively correlated with leaf total chlorophyll and carotenoids. Overall, this study revealed that the functional composition of the phyllosphere prokaryotic community and leaf metabolite groups were tightly linked in response to changing light intensities. These findings provided novel insights into the interactions between plants and prokaryotic microbes in indoor farming systems, which will help optimize environmental management in indoor farms and harness beneficial plant-microbe relationships for crop production.
Collapse
Affiliation(s)
- Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| | - Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| |
Collapse
|
9
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Schmidt JE, Puig AS, DuVal AE, Pfeufer EE. Phyllosphere microbial diversity and specific taxa mediate within-cultivar resistance to Phytophthora palmivora in cacao. mSphere 2023; 8:e0001323. [PMID: 37603690 PMCID: PMC10597403 DOI: 10.1128/msphere.00013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/08/2023] [Indexed: 08/23/2023] Open
Abstract
The oomycete pathogen Phytophthora palmivora, which causes black pod rot (BPR) on cacao (Theobroma cacao L.), is responsible for devastating yield losses worldwide. Genetic variation in resistance to Phytophthora spp. is well documented among cacao cultivars, but variation has also been observed in the incidence of BPR even among trees of the same cultivar. In light of evidence that the naturally occurring phyllosphere microbiome can influence foliar disease resistance in other host-pathogen systems, it was hypothesized that differences in the phyllosphere microbiome between two field accessions of the cultivar Gainesville II 164 could be responsible for their contrasting resistance to P. palmivora. Bacterial alpha diversity was higher but fungal alpha diversity was lower in the more resistant accession MITC-331, and the accessions harbored phyllosphere microbiomes with distinct community compositions. Six bacterial and 82 fungal amplicon sequence variants (ASVs) differed in relative abundance between MITC-333 and MITC-331, including bacterial putative biocontrol agents and a high proportion of fungal pathogens, and nine fungal ASVs were correlated with increased lesion development. The roles of contrasting light availability and host mineral nutrition, particularly potassium, are also discussed. Results of this preliminary study can be used to guide research into microbiome-informed integrated pest management strategies effective against Phytophthora spp. in cacao. IMPORTANCE Up to 40% of the world's cacao is lost each year to diseases, the most devastating of which is black pod rot, caused by Phytophthora palmivora. Though disease resistance is often attributed to cacao genotypes (i.e., disease-resistant rootstocks), this study highlights the role of the microbiome in contributing to differences in resistance even among accessions of the same cacao cultivar. Future studies of plant-pathogen interactions may need to account for variation in the host microbiome, and optimizing the cacao phyllosphere microbiome could be a promising new direction for P. palmivora resistance research.
Collapse
Affiliation(s)
| | - Alina S. Puig
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Fort Detrick, Frederick, Maryland, USA
| | | | - Emily E. Pfeufer
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
11
|
Liu HQ, Zhao ZL, Li HJ, Yu SJ, Cong L, Ding LL, Ran C, Wang XF. Accurate prediction of huanglongbing occurrence in citrus plants by machine learning-based analysis of symbiotic bacteria. FRONTIERS IN PLANT SCIENCE 2023; 14:1129508. [PMID: 37313258 PMCID: PMC10258322 DOI: 10.3389/fpls.2023.1129508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/02/2023] [Indexed: 06/15/2023]
Abstract
Huanglongbing (HLB), the most prevalent citrus disease worldwide, is responsible for substantial yield and economic losses. Phytobiomes, which have critical effects on plant health, are associated with HLB outcomes. The development of a refined model for predicting HLB outbreaks based on phytobiome markers may facilitate early disease detection, thus enabling growers to minimize damages. Although some investigations have focused on differences in the phytobiomes of HLB-infected citrus plants and healthy ones, individual studies are inappropriate for generating common biomarkers useful for detecting HLB on a global scale. In this study, we therefore obtained bacterial information from several independent datasets representing hundreds of citrus samples from six continents and used these data to construct HLB prediction models based on 10 machine learning algorithms. We detected clear differences in the phyllosphere and rhizosphere microbiomes of HLB-infected and healthy citrus samples. Moreover, phytobiome alpha diversity indices were consistently higher for healthy samples. Furthermore, the contribution of stochastic processes to citrus rhizosphere and phyllosphere microbiome assemblies decreased in response to HLB. Comparison of all constructed models indicated that a random forest model based on 28 bacterial genera in the rhizosphere and a bagging model based on 17 bacterial species in the phyllosphere predicted the health status of citrus plants with almost 100% accuracy. Our results thus demonstrate that machine learning models and phytobiome biomarkers may be applied to evaluate the health status of citrus plants.
Collapse
Affiliation(s)
- Hao-Qiang Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Ze-long Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, China
| | - Hong-Jun Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Shi-Jiang Yu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Lin Cong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Li-Li Ding
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Chun Ran
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| | - Xue-Feng Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, National Engineering Research Center for Citrus, Chongqing, China
| |
Collapse
|
12
|
Wang L, Wu X, Xing Q, Zhao Y, Yu B, Ma Y, Wang F, Qi H. PIF8-WRKY42-mediated salicylic acid synthesis modulates red light induced powdery mildew resistance in oriental melon. PLANT, CELL & ENVIRONMENT 2023; 46:1726-1742. [PMID: 36759948 DOI: 10.1111/pce.14560] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Light signals and plant hormones are involved in regulating the growth, development and stress resistance of plants; however, it remains unclear whether light affects hormones and thus pathogen resistance in oriental melon. Here, we found that red light promoted salicylic acid (SA) accumulation and powdery mildew resistance by activating the transcription of CmICS, the key gene for SA biosynthesis, and silencing CmICS seriously weakened the induction effect of red light on powdery mildew resistance in oriental melon leaves. Further studies showed that red light induced the expression of CmWRKY42 under powdery mildew stress, and CmWRKY42 directly bound to the CmICS promoter to activate its expression and promote the accumulation of SA under red light. Furthermore, we found that PHYTOCHROME INTERACTING FACTOR 8 (PIF8), as a negative regulator of SA biosynthesis, inhibits CmWRKY42 transcriptional activation by binding to the CmWRKY42 promoter, and thus inhibits transcriptional activation of CmICS by CmWRKY42. Also, CmPIF8 binds to the CmICS promoter and directly inhibits its transcription. In conclusion, our study revealed a new molecular mechanism of the relationship between red light-SA-powdery mildew resistance and provided a theoretical basis for resistance breeding of oriental melon.
Collapse
Affiliation(s)
- Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaping Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Bo Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| |
Collapse
|
13
|
Hammerschmiedt T, Holatko J, Zelinka R, Kintl A, Skarpa P, Bytesnikova Z, Richtera L, Mustafa A, Malicek O, Brtnicky M. The combined effect of graphene oxide and elemental nano-sulfur on soil biological properties and lettuce plant biomass. FRONTIERS IN PLANT SCIENCE 2023; 14:1057133. [PMID: 36998685 PMCID: PMC10043190 DOI: 10.3389/fpls.2023.1057133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The impact of graphene oxide (GO) nanocarbon on soil properties is mixed, with both negative and positive effects. Although it decreases the viability of some microbes, there are few studies on how its single amendment to soil or in combination with nanosized sulfur benefits soil microorganisms and nutrient transformation. Therefore, an eight-week pot experiment was carried out under controlled conditions (growth chamber with artificial light) in soil seeded with lettuce (Lactuca sativa) and amended with GO or nano-sulfur on their own or their several combinations. The following variants were tested: (I) Control, (II) GO, (III) Low nano-S + GO, (IV) High nano-S + GO, (V) Low nano-S, (VI) High nano-S. Results revealed no significant differences in soil pH, dry plant aboveground, and root biomass among all five amended variants and the control group. The greatest positive effect on soil respiration was observed when GO was used alone, and this effect remained significant even when it was combined with high nano-S. Low nano-S plus a GO dose negatively affected some of the soil respiration types: NAG_SIR, Tre_SIR, Ala_SIR, and Arg_SIR. Single GO application was found to enhance arylsulfatase activity, while the combination of high nano-S and GO not only enhanced arylsulfatase but also urease and phosphatase activity in the soil. The elemental nano-S probably counteracted the GO-mediated effect on organic carbon oxidation. We partially proved the hypothesis that GO-enhanced nano-S oxidation increases phosphatase activity.
Collapse
Affiliation(s)
- Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Radim Zelinka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| |
Collapse
|
14
|
Vitale L, Vitale E, Francesca S, Lorenz C, Arena C. Plant-Growth Promoting Microbes Change the Photosynthetic Response to Light Quality in Spinach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1149. [PMID: 36904009 PMCID: PMC10005764 DOI: 10.3390/plants12051149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, the combined effect of plant growth under different light quality and the application of plant-growth-promoting microbes (PGPM) was considered on spinach (Spinacia oleracea L.) to assess the influence of these factors on the photosynthetic performance. To pursue this goal, spinach plants were grown in a growth chamber at two different light quality regimes, full-spectrum white light (W) and red-blue light (RB), with (I) or without (NI) PGPM-based inoculants. Photosynthesis-light response curves (LRC) and photosynthesis-CO2 response curves (CRC) were performed for the four growth conditions (W-NI, RB-NI, W-I, and RB-I). At each step of LRC and CRC, net photosynthesis (PN), stomatal conductance (gs), Ci/Ca ratio, water use efficiency (WUEi), and fluorescence indexes were calculated. Moreover, parameters derived from the fitting of LRC, such as light-saturated net photosynthesis (PNmax), apparent light efficiency (Qpp), and dark respiration (Rd), as well as the Rubisco large subunit amount, were also determined. In not-inoculated plants, the growth under RB- regime improved PN compared to W-light because it increased stomatal conductance and favored the Rubisco synthesis. Furthermore, the RB regime also stimulates the processes of light conversion into chemical energy through chloroplasts, as indicated by the higher values of Qpp and PNmax in RB compared to W plants. On the contrary, in inoculated plants, the PN enhancement was significantly higher in W (30%) than in RB plants (17%), which showed the highest Rubisco content among all treatments. Our results indicate that the plant-growth-promoting microbes alter the photosynthetic response to light quality. This issue must be considered when PGPMs are used to improve plant growth performance in a controlled environment using artificial lighting.
Collapse
Affiliation(s)
- Luca Vitale
- National Research Council, Department of Biology, Agriculture and Food Sciences, Institute for Agricultural and Forestry Systems in the Mediterranean, P. le E. Fermi 1, 80055 Portici, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Christian Lorenz
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
15
|
Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling. Nat Commun 2023; 14:713. [PMID: 36759607 PMCID: PMC9911384 DOI: 10.1038/s41467-023-36382-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Many plant pathogens induce water-soaked lesions in infected tissues. In the case of Pseudomonas syringae (Pst), water-soaking effectors stimulate abscisic acid (ABA) production and signaling, resulting in stomatal closure. This reduces transpiration, increases water accumulation, and induces an apoplastic microenvironment favorable for bacterial growth. Stomata are sensitive to environmental conditions, including light. Here, we show that a period of darkness is required for water-soaking, and that a constant light regime abrogates stomatal closure by Pst. We find that constant light induces resistance to Pst, and that this effect requires salicylic acid (SA). Constant light did not alter effector-induced accumulation of ABA, but induced greater SA production, promoting stomatal opening despite the presence of ABA. Furthermore, application of a SA analog was sufficient to prevent pathogen-induced stomatal closure and water-soaking. Our results suggest potential approaches for interfering with a common virulence strategy, as well as providing a physiological mechanism by which SA functions in defense against pathogens.
Collapse
|
16
|
Zhang Y, Li X, Lu L, Huang F, Liu H, Zhang Y, Yang L, Usman M, Li S. Urbanization Reduces Phyllosphere Microbial Network Complexity and Species Richness of Camphor Trees. Microorganisms 2023; 11:microorganisms11020233. [PMID: 36838198 PMCID: PMC9966171 DOI: 10.3390/microorganisms11020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Studies on microbial communities associated with foliage in natural ecosystems have grown in number in recent years yet have rarely focused on urban ecosystems. With urbanization, phyllosphere microorganisms in the urban environment have come under pressures from increasing human activities. To explore the effects of urbanization on the phyllosphere microbial communities of urban ecosystems, we investigated the phyllosphere microbial structure and the diversity of camphor trees in eight parks along a suburban-to-urban gradient. The results showed that the number of ASVs (amplicon sequence variants), unique on the phyllosphere microbial communities of three different urbanization gradients, was 4.54 to 17.99 times higher than that of the shared ASVs. Specific microbial biomarkers were also found for leaf samples from each urbanization gradient. Moreover, significant differences (R2 = 0.133, p = 0.005) were observed in the phyllosphere microbial structure among the three urbanization gradients. Alpha diversity and co-occurrence patterns of bacterial communities showed that urbanization can strongly reduce the complexity and species richness of the phyllosphere microbial network of camphor trees. Correlation analysis with environmental factors showed that leaf total carbon (C), nitrogen (N), and sulfur (S), as well as leaf C/N, soil pH, and artificial light intensity at night (ALIAN) were the important drivers in determining the divergence of phyllosphere microbial communities across the urbanization gradient. Together, we found that urbanization can affect the composition of the phyllosphere bacterial community of camphor trees, and that the interplay between human activities and plant microbial communities may contribute to shaping the urban microbiome.
Collapse
Affiliation(s)
- Yifang Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaomin Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
- Correspondence: (L.L.); (S.L.)
| | - Fuyi Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hao Liu
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou 215123, China
| | - Yu Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Luhua Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Correspondence: (L.L.); (S.L.)
| |
Collapse
|
17
|
do Carmo PHF, Garcia MT, Figueiredo-Godoi LMA, Lage ACP, da Silva NS, Junqueira JC. Metal Nanoparticles to Combat Candida albicans Infections: An Update. Microorganisms 2023; 11:microorganisms11010138. [PMID: 36677430 PMCID: PMC9861183 DOI: 10.3390/microorganisms11010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Candidiasis is an opportunistic mycosis with high annual incidence worldwide. In these infections, Candida albicans is the chief pathogen owing to its multiple virulence factors. C. albicans infections are usually treated with azoles, polyenes and echinocandins. However, these antifungals may have limitations regarding toxicity, relapse of infections, high cost, and emergence of antifungal resistance. Thus, the development of nanocarrier systems, such as metal nanoparticles, has been widely investigated. Metal nanoparticles are particulate dispersions or solid particles 10-100 nm in size, with unique physical and chemical properties that make them useful in biomedical applications. In this review, we focus on the activity of silver, gold, and iron nanoparticles against C. albicans. We discuss the use of metal nanoparticles as delivery vehicles for antifungal drugs or natural compounds to increase their biocompatibility and effectiveness. Promisingly, most of these nanoparticles exhibit potential antifungal activity through multi-target mechanisms in C. albicans cells and biofilms, which can minimize the emergence of antifungal resistance. The cytotoxicity of metal nanoparticles is a concern, and adjustments in synthesis approaches or coating techniques have been addressed to overcome these limitations, with great emphasis on green synthesis.
Collapse
Affiliation(s)
- Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
- Correspondence: ; Tel.: +55-12-3497-9033
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | - Lívia Mara Alves Figueiredo-Godoi
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | | | - Newton Soares da Silva
- Department of Environmental Engineering, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
18
|
Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun Integr Biol 2022; 15:209-225. [PMID: 35967908 PMCID: PMC9367660 DOI: 10.1080/19420889.2022.2082736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are present in the universe and they play role in beneficial and harmful to human life, society, and environments. Plant microbiome is a broad term in which microbes are present in the rhizo, phyllo, or endophytic region and play several beneficial and harmful roles with the plant. To know of these microorganisms, it is essential to be able to isolate purification and identify them quickly under laboratory conditions. So, to improve the microbial study, several tools and techniques such as microscopy, rRNA, or rDNA sequencing, fingerprinting, probing, clone libraries, chips, and metagenomics have been developed. The major benefits of these techniques are the identification of microbial community through direct analysis as well as it can apply in situ. Without tools and techniques, we cannot understand the roles of microbiomes. This review explains the tools and their roles in the understanding of microbiomes and their ecological diversity in environments.
Collapse
Affiliation(s)
- Enespa
- Department of Plant Pathology, School of Agriculture, SMPDC, University of Lucknow, Lucknow, India
| | - Prem Chandra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, India
| |
Collapse
|
19
|
Pajares‐Murgó M, Garrido JL, Perea AJ, López‐García Á, Alcántara JM. Biotic filters driving the differentiation of decomposer, epiphytic and pathogenic phyllosphere fungi across plant species. OIKOS 2022. [DOI: 10.1111/oik.09624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mariona Pajares‐Murgó
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| | - José L. Garrido
- Dept of Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ), CSIC Granada Spain
- Dept of Ecología Evolutiva, Estación Biológica de Doñana (EBD), CSIC Sevilla Spain
| | - Antonio J. Perea
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| | - Álvaro López‐García
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Dept of Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ), CSIC Granada Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| | - Julio M. Alcántara
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| |
Collapse
|
20
|
Studying Plant-Insect Interactions through the Analyses of the Diversity, Composition, and Functional Inference of Their Bacteriomes. Microorganisms 2022; 11:microorganisms11010040. [PMID: 36677331 PMCID: PMC9863603 DOI: 10.3390/microorganisms11010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both the plant Datura inoxia and its specialist insect Lema daturaphila were characterised using 16S sRNA gene amplicon sequencing. Specifically, the bacteriomes associated with seeds, leaves, eggs, guts, and frass were described and compared. Then, the functions of the most abundant bacterial lineages found in the samples were inferred. Finally, the patterns of co-abundance among both bacteriomes were determined following a multilayer network approach. In accordance with our hypothesis, most genera were shared between plants and insects, but their abundances differed significantly within the samples collected. In the insect tissues, the most abundant genera were Pseudomonas (24.64%) in the eggs, Serratia (88.46%) in the gut, and Pseudomonas (36.27%) in the frass. In contrast, the most abundant ones in the plant were Serratia (40%) in seeds, Serratia (67%) in foliar endophytes, and Hymenobacter (12.85%) in foliar epiphytes. Indeed, PERMANOVA analysis showed that the composition of the bacteriomes was clustered by sample type (F = 9.36, p < 0.001). Functional inferences relevant to the interaction showed that in the plant samples, the category of Biosynthesis of secondary metabolites was significantly abundant (1.4%). In turn, the category of Xenobiotics degradation and metabolism was significantly present (2.5%) in the insect samples. Finally, the phyla Proteobacteria and Actinobacteriota showed a pattern of co-abundance in the insect but not in the plant, suggesting that the co-abundance and not the presence−absence patterns might be more important when studying ecological interactions.
Collapse
|
21
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
22
|
Correia C, Magnani F, Pastore C, Cellini A, Donati I, Pennisi G, Paucek I, Orsini F, Vandelle E, Santos C, Spinelli F. Red and Blue Light Differently Influence Actinidia chinensis Performance and Its Interaction with Pseudomonas syringae pv. Actinidiae. Int J Mol Sci 2022; 23:13145. [PMID: 36361938 PMCID: PMC9658526 DOI: 10.3390/ijms232113145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 03/08/2024] Open
Abstract
Light composition modulates plant growth and defenses, thus influencing plant-pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R-50%B (50R) and 25%R-75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses.
Collapse
Affiliation(s)
- Cristiana Correia
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Federico Magnani
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Chiara Pastore
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Pennisi
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Ivan Paucek
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Francesco Orsini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Conceição Santos
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Francesco Spinelli
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
23
|
Tohno M, Tanizawa Y, Sawada H, Sakamoto M, Ohkuma M, Kobayashi H. A novel species of lactic acid bacteria, Ligilactobacillus pabuli sp. nov., isolated from alfalfa silage. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we isolated a novel strain of lactic acid bacteria, AF129T, from alfalfa silage prepared locally in Morioka, Iwate, Japan. Polyphasic taxonomy was used to characterize the bacterial strain. The bacterium was rod-shaped, Gram-stain-positive, non-spore-forming and catalase-negative. The strain grew at various temperatures (15–40°C) and pH levels (4.0–8.0). The optimum growth conditions were a temperature of 30°C and a pH of 6.0. AF129T exhibited growth at salt (NaCl) concentrations of up to 6.5 % (w/v). The G+C content of the strain’s genomic DNA was 41.5 %. The major fatty acids were C16 : 0, C18 : 1ω9c, C19 : 0cyclo ω8c and summed feature 8. 16S rRNA gene sequencing revealed that AF129T represents a member of the genus
Ligilactobacillus
and it has higher sequence similarities with
Ligilactobacillus pobuzihii
(98.4 %),
Ligilactobacillus acidipiscis
(97.5 %) and
Ligilactobacillus salitolerans
(97.4 %). The digital DNA–DNA hybridization values for AF129T and phylogenetically related species of the genus
Ligilactobacillus
ranged from 19.8% to 24.1%. The average nucleotide identity of the strain with its closely related taxa was lower than the threshold (95 %–96 %) used for species differentiation. In the light of the above-mentioned physiological, genotypic, chemotaxonomic and phylogenetic evidence, we confirm that AF129T represents a member of the genus
Ligilactobacillus
and constitutes a novel species; we propose the name Ligilactobacillus pabuli sp. nov. for this species. The type strain is AF129T =MAFF 518002T =JCM 34518T=BCRC 81335T.
Collapse
Affiliation(s)
- Masanori Tohno
- Research Center of Genetic Resources, Core Technology Research Headquarters, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Sawada
- Research Center of Genetic Resources, Core Technology Research Headquarters, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| |
Collapse
|
24
|
Zhang M, Peng C, Sun W, Dong R, Hao J. Effects of Variety, Plant Location, and Season on the Phyllosphere Bacterial Community Structure of Alfalfa (Medicago sativa L.). Microorganisms 2022; 10:microorganisms10102023. [PMID: 36296299 PMCID: PMC9610643 DOI: 10.3390/microorganisms10102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Plant phyllosphere bacteria are vital for plant health and productivity and are affected by both abiotic and biotic factors. In this study, we surveyed the structure of the phyllosphere bacterial community associated with alfalfa. For two varieties of alfalfa, forty-eight samples of phyllosphere communities were collected at two locations over four seasons in 2020. Proteobacteria and actinobacteria were associated with the dominating phylum in the bacterial communities of the alfalfa phyllosphere. Sphingomonas was the most abundant genus-level bacteria, followed by Methylobacterium, Burkholderia-Caballeronia-Paraburkholderia, and Pseudomonas. Sampling time had a greater affect than site and variety on alfalfa surface microorganisms. The variation in phyllosphere bacterial community assembly was mostly explained by the season–site interaction (43%), season–variety interaction (35%), and season (28%). Variety, site–variety interaction, and season–site–variety interactions did not have a meaningful effect on phyllosphere bacterial diversity and community structure. The bacterial community in the phyllosphere of alfalfa showed seasonal changes over time. The environmental factors that contributed most to the phyllosphere bacterial community of alfalfa were temperature and sunshine duration, which were significantly positively correlated with most of the dominant bacterial genera in the alfalfa phyllosphere.
Collapse
|
25
|
Santamaría‐Hernando S, López‐Maroto Á, Galvez‐Roldán C, Munar‐Palmer M, Monteagudo‐Cascales E, Rodríguez‐Herva J, Krell T, López‐Solanilla E. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. MOLECULAR PLANT PATHOLOGY 2022; 23:1433-1445. [PMID: 35689388 PMCID: PMC9452764 DOI: 10.1111/mpp.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Foliar bacterial pathogens have to penetrate the plant tissue and access the interior of the apoplast in order to initiate the pathogenic phase. The entry process is driven by chemotaxis towards plant-derived compounds in order to locate plant openings. However, information on plant signals recognized by bacterial chemoreceptors is scarce. Here, we show that the perception of GABA and l-Pro, two abundant components of the tomato apoplast, through the PsPto-PscC chemoreceptor drives the entry of Pseudomonas syringae pv. tomato into the tomato apoplast. The recognition of both compounds by PsPto-PscC caused chemoattraction to both amino acids and participated in the regulation of GABA catabolism. Mutation of the PsPto-PscC chemoreceptor caused a reduced chemotactic response towards these compounds which in turn impaired entry and reduced virulence in tomato plants. Interestingly, GABA and l-Pro levels significantly increase in tomato plants upon pathogen infection and are involved in the regulation of the plant defence response. This is an example illustrating how bacteria respond to plant signals produced during the interaction as cues to access the plant apoplast and to ensure efficient infection.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Álvaro López‐Maroto
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Clara Galvez‐Roldán
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Martí Munar‐Palmer
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Elizabet Monteagudo‐Cascales
- Departamento de Protección AmbientalEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - José‐Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadridSpain
| | - Tino Krell
- Departamento de Protección AmbientalEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadridSpain
| |
Collapse
|
26
|
Leaf-Associated Epiphytic Fungi of Gingko biloba, Pinus bungeana and Sabina chinensis Exhibit Delicate Seasonal Variations. J Fungi (Basel) 2022; 8:jof8060631. [PMID: 35736114 PMCID: PMC9225447 DOI: 10.3390/jof8060631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-leaf surface on Earth harbors complex microbial communities that influence plant productivity and health. To gain a detailed understanding of the assembly and key drivers of leaf microbial communities, especially for leaf-associated fungi, we investigated leaf-associated fungal communities in two seasons for three plant species at two sites by high-throughput sequencing. The results reveal a strong impact of growing season and plant species on fungal community composition, exhibiting clear temporal patterns in abundance and diversity. For the deciduous tree Gingko biloba, the number of enriched genera in May was much higher than that in October. The number of enriched genera in the two evergreen trees Pinus bungeana and Sabina chinensis was slightly higher in October than in May. Among the genus-level biomarkers, the abundances of Alternaria, Cladosporium and Filobasidium were significantly higher in October than in May in the three tree species. Additionally, network correlations between the leaf-associated fungi of G. biloba were more complex in May than those in October, containing extra negative associations, which was more obvious than the network correlation changes of leaf-associated fungi of the two evergreen plant species. Overall, the fungal diversity and community composition varied significantly between different growing seasons and host plant species.
Collapse
|
27
|
Sahu KP, Kumar A, Sakthivel K, Reddy B, Kumar M, Patel A, Sheoran N, Gopalakrishnan S, Prakash G, Rathour R, Gautam RK. Deciphering core phyllomicrobiome assemblage on rice genotypes grown in contrasting agroclimatic zones: implications for phyllomicrobiome engineering against blast disease. ENVIRONMENTAL MICROBIOME 2022; 17:28. [PMID: 35619157 PMCID: PMC9134649 DOI: 10.1186/s40793-022-00421-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - K Sakthivel
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Ganesan Prakash
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, 176062, India
| | - R K Gautam
- Division of Field Crop Improvement and Protection, ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, 744101, India
| |
Collapse
|
28
|
Vincent SA, Ebertz A, Spanu PD, Devlin PF. Salicylic Acid-Mediated Disturbance Increases Bacterial Diversity in the Phyllosphere but Is Overcome by a Dominant Core Community. Front Microbiol 2022; 13:809940. [PMID: 35283825 PMCID: PMC8908428 DOI: 10.3389/fmicb.2022.809940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Plant microbiomes and immune responses have coevolved through history, and this applies just as much to the phyllosphere microbiome and defense phytohormone signaling. When in homeostasis, the phyllosphere microbiome confers benefits to its host. However, the phyllosphere is also dynamic and subject to stochastic events that can modulate community assembly. Investigations into the impact of defense phytohormone signaling on the microbiome have so far been limited to culture-dependent studies; or focused on the rhizosphere. In this study, the impact of the foliar phytohormone salicylic acid (SA) on the structure and composition of the phyllosphere microbiome was investigated. 16S rRNA amplicons were sequenced from aerial tissues of two Arabidopsis mutants that exhibit elevated SA signaling through different mechanisms. SA signaling was shown to increase community diversity and to result in the colonization of rare, satellite taxa in the phyllosphere. However, a stable core community remained in high abundance. Therefore, we propose that SA signaling acts as a source of intermediate disturbance in the phyllosphere. Predictive metagenomics revealed that the SA-mediated microbiome was enriched for antibiotic biosynthesis and the degradation of a diverse range of xenobiotics. Core taxa were predicted to be more motile, biofilm-forming and were enriched for traits associated with microbe-microbe communication; offering potential mechanistic explanation of their success despite SA-mediated phyllospheric disturbance.
Collapse
Affiliation(s)
- Stacey A. Vincent
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Andreas Ebertz
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Pietro D. Spanu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Paul F. Devlin
- Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|
29
|
Longa CMO, Antonielli L, Bozza E, Sicher C, Pertot I, Perazzolli M. Plant organ and sampling time point determine the taxonomic structure of microbial communities associated to apple plants in the orchard environment. Microbiol Res 2022; 258:126991. [DOI: 10.1016/j.micres.2022.126991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
|
30
|
Sahu KP, Patel A, Kumar M, Sheoran N, Mehta S, Reddy B, Eke P, Prabhakaran N, Kumar A. Integrated Metabarcoding and Culturomic-Based Microbiome Profiling of Rice Phyllosphere Reveal Diverse and Functional Bacterial Communities for Blast Disease Suppression. Front Microbiol 2021; 12:780458. [PMID: 34917058 PMCID: PMC8669949 DOI: 10.3389/fmicb.2021.780458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pierre Eke
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
31
|
The Role of Surfactin Production by Bacillus velezensis on Colonization, Biofilm Formation on Tomato Root and Leaf Surfaces and Subsequent Protection (ISR) against Botrytis cinerea. Microorganisms 2021; 9:microorganisms9112251. [PMID: 34835375 PMCID: PMC8626045 DOI: 10.3390/microorganisms9112251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Many aspects regarding the role of lipopeptides (LPs) in bacterial interaction with plants are not clear yet. Of particular interest is the LP family of surfactin, immunogenic molecules involved in induced systemic resistance (ISR) and the bacterial colonization of plant surfaces. We hypothesize that the concentration of surfactin produced by a strain correlates directly with its ability to colonize and persist on different plant surfaces, which conditions its capacity to trigger ISR. We used two Bacillus velezensis strains (BBC023 and BBC047), whose antagonistic potential in vitro is practically identical, but not on plant surfaces. The surfactin production of BBC047 is 1/3 higher than that of BBC023. Population density and SEM images revealed stable biofilms of BBC047 on leaves and roots, activating ISR on both plant surfaces. Despite its lower surfactin production, strain BBC023 assembled stable biofilms on roots and activated ISR. However, on leaves only isolated, unstructured populations were observed, which could not activate ISR. Thus, the ability of a strain to effectively colonize a plant surface is not only determined through its production of surfactin. Multiple aspects, such as environmental stressors or compensation mechanisms may influence the process. Finally, the importance of surfactin lies in its impacts on biofilm formation and stable colonization, which finally enables its activity as an elicitor of ISR.
Collapse
|
32
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
33
|
Balsells-Llauradó M, Torres R, Vall-llaura N, Casals C, Teixidó N, Usall J. Light Intensity Alters the Behavior of Monilinia spp. in vitro and the Disease Development on Stone Fruit-Pathogen Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:666985. [PMID: 34567018 PMCID: PMC8455894 DOI: 10.3389/fpls.2021.666985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The development of brown rot caused by the necrotrophic fungi Monilinia spp. in stone fruit under field and postharvest conditions depends, among others, on environmental factors. The effect of temperature and humidity are well studied but there is little information on the role of light in disease development. Herein, we studied the effect of two lighting treatments and a control condition (darkness) on: (i) several growth parameters of two Monilinia spp. (M. laxa and M. fructicola) grown in vitro and (ii) the light effect in their capacity to rot the fruit (nectarines) when exposed to the different lighting treatments. We also assessed the effect of such abiotic factors in the development of the disease on inoculated nectarines during postharvest storage. Evaluations also included testing the effect of fruit bagging on disease development as well as on ethylene production. Under in vitro conditions, lighting treatments altered colony morphology and conidiation of M. laxa but this effect was less acute in M. fructicola. Such light-induced changes under in vitro development also altered the capacity of M. laxa and M. fructicola to infect nectarines, with M. laxa becoming less virulent. The performance of Monilinia spp. exposed to treatments was also determined in vivo by inoculating four bagged or unbagged nectarine cultivars, indicating an impaired disease progression. Incidence and lesion diameter of fruit exposed to the different lighting treatments during postharvest showed that the effect of the light was intrinsic to the nectarine cultivar but also Monilinia spp. dependent. While lighting treatments reduced M. laxa incidence, they enhanced M. fructicola development. Preharvest conditions such as fruit bagging also impaired the ethylene production of inoculated fruit, which was mainly altered by M. laxa and M. fructicola, while the bag and light effects were meaningless. Thus, we provide several indications of how lighting treatments significantly alter Monilinia spp. behavior both in vitro and during the interaction with stone fruit. This study highlights the importance of modulating the lighting environment as a potential strategy to minimize brown rot development on stone fruit and to extent the shelf-life period of fruit in postharvest, market, and consumer's house.
Collapse
|
34
|
Lu S, He R, Zhao D, Zeng J, Huang X, Li K, Yu Z, Wu QL. Effects of shading levels on the composition and co-occurrence patterns of bacterioplankton and epibiotic bacterial communities of Cabomba caroliniana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147286. [PMID: 33932676 DOI: 10.1016/j.scitotenv.2021.147286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Epibiotic bacterial community colonized on the plant leaf plays important roles in promoting plant growth and nutrient absorption, but is sensitive to environmental changes. As one of the most important environmental factors affecting the growth of plants and photosynthetic microorganisms, light may affect the diversity, composition, and interactions of the epibiotic bacterial community. Submerged plants in the aquatic ecosystem may be more sensitive to light intensity variations compared to the terrestrial plants since they usually receive less light. However, the effects of light on the interactions between the submerged plants and their epibiotic microbial communities remain uncertain. Here we used the 16S rRNA gene high-throughput sequencing to investigate the diversity and composition of the bacterioplankton and epibiotic bacterial communities of the Cabomba caroliniana under four different shading levels. A total of 24 water and leaf samples were collected from the experimental microcosms near Lake Taihu. We found the epibiotic bacterial community possessed a higher diversity than that of the bacterioplankton community, although the alpha diversity of the bacterioplankton community was more susceptible to different levels of shading. SourceTracker analysis revealed that with the increase of shading, the colonization of bacterioplankton to epibiotic bacteria decreased. Network analysis showed that the bacterial community network at 50% shading level had the lowest modularity and highest clustering coefficient compared to the bacterial community networks of other shading levels. Our findings provided new understandings of the effects of different light intensities on the epibiotic bacterial communities of submerged macrophytes.
Collapse
Affiliation(s)
- Shijie Lu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China.
| | - Xiaolong Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Czékus Z, Kukri A, Hamow KÁ, Szalai G, Tari I, Ördög A, Poór P. Activation of Local and Systemic Defence Responses by Flg22 Is Dependent on Daytime and Ethylene in Intact Tomato Plants. Int J Mol Sci 2021; 22:ijms22158354. [PMID: 34361121 PMCID: PMC8348740 DOI: 10.3390/ijms22158354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
- Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary
| | - András Kukri
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Kamirán Áron Hamow
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, 2462 Martonvásár, Hungary; (K.Á.H.); (G.S.)
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, 2462 Martonvásár, Hungary; (K.Á.H.); (G.S.)
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary; (Z.C.); (A.K.); (I.T.); (A.Ö.)
- Correspondence:
| |
Collapse
|
36
|
Al Ashhab A, Meshner S, Alexander-Shani R, Dimerets H, Brandwein M, Bar-Lavan Y, Winters G. Temporal and Spatial Changes in Phyllosphere Microbiome of Acacia Trees Growing in Arid Environments. Front Microbiol 2021; 12:656269. [PMID: 34322096 PMCID: PMC8312645 DOI: 10.3389/fmicb.2021.656269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The evolutionary relationships between plants and their microbiomes are of high importance to the survival of plants in general and even more in extreme conditions. Changes in the plant's microbiome can affect plant development, growth, fitness, and health. Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate, phenology, and seasonality on the epiphytic and endophytic microbiome of acacia trees. One hundred thirty-nine leaf samples were collected throughout the sampling year and were assessed using 16S rDNA gene amplified with five different primers (targeting different gene regions) and sequenced (150 bp paired-end) on an Illumina MiSeq sequencing platform. Results: Epiphytic bacterial diversity indices (Shannon-Wiener, Chao1, Simpson, and observed number of operational taxonomic units) were found to be nearly double compared to endophyte counterparts. Epiphyte and endophyte communities were significantly different from each other in terms of the composition of the microbial associations. Interestingly, the epiphytic bacterial diversity was similar in the two acacia species, but the canopy sides and sample months exhibited different diversity, whereas the endophytic bacterial communities were different in the two acacia species but similar throughout the year. Abiotic factors, such as air temperature and precipitation, were shown to significantly affect both epiphyte and endophytes communities. Bacterial community compositions showed that Firmicutes dominate A. raddiana, and Proteobacteria dominate A. tortilis; these bacterial communities consisted of only a small number of bacterial families, mainly Bacillaceae and Comamonadaceae in the endophyte for A. raddiana and A. tortilis, respectively, and Geodematophilaceae and Micrococcaceae for epiphyte bacterial communities, respectively. Interestingly, ~60% of the obtained bacterial classifications were unclassified below family level (i.e., "new"). Conclusions: These results shed light on the unique desert phyllosphere microbiome highlighting the importance of multiple genotypic and abiotic factors in shaping the epiphytic and endophytic microbial communities. This study also shows that only a few bacterial families dominate both epiphyte and endophyte communities, highlighting the importance of climate change (precipitation, air temperature, and humidity) in affecting arid land ecosystems where acacia trees are considered keystone species.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- Dead Sea and Arava Science Center, Masada, Israel.,Ben-Gurion University of the Negev, Eilat Campus, Be'er Sheva, Israel
| | | | | | | | - Michael Brandwein
- Dead Sea and Arava Science Center, Masada, Israel.,Biofilm Research Laboratory, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Gidon Winters
- Dead Sea and Arava Science Center, Masada, Israel.,Ben-Gurion University of the Negev, Eilat Campus, Be'er Sheva, Israel
| |
Collapse
|
37
|
Jat SL, Suby SB, Parihar CM, Gambhir G, Kumar N, Rakshit S. Microbiome for sustainable agriculture: a review with special reference to the corn production system. Arch Microbiol 2021; 203:2771-2793. [PMID: 33884458 DOI: 10.1007/s00203-021-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Microbial diversity formed by ages of evolution in soils plays an important role in sustainability of crop production by enriching soil and alleviating biotic and abiotic stresses. This diversity is as an essential part of the agro-ecosystems, which is being pushed to edges by pumping agrochemicals and constant soil disturbances. Consequently, efficiency of cropping system has been decreasing, aggravated further by the increased incidence of abiotic stresses due to changes in climatic patterns. Thus, the sustainability of agriculture is at stake. Understanding the microbiota inhabiting phyllosphere, endosphere, spermosphere, rhizosphere, and non-rhizosphere, and its utilization could be a sustainable crop production strategy. This review explores the available information on diversity of beneficial microbes in agricultural ecosystem and synthesizes their commercial uses in agriculture. Microbiota in agro-ecosystem works by nutrient acquisition, enhancing nutrient availability, water uptake, and amelioration of abiotic and abiotic stresses. External application of such beneficial microbiota or microbial consortia helps in boosting plant growth and provides resistance to drought, salinity, heavy metal, high-temperature and radiation stress in various crop plants. These have been instrumental in enhancing tolerance to diseases, insect pest and nematodes in various cropping system. However, studies on the microbiome in revolutionary production systems like conservation agriculture and protected cultivation, which use lesser agrochemicals, are limited and if exploited can provide valuable input in sustainable agriculture production.
Collapse
Affiliation(s)
- S L Jat
- ICAR-Indian Institute of Maize Research, Ludhiana, India.
| | - S B Suby
- ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - C M Parihar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Naveen Kumar
- ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, Ludhiana, India.
| |
Collapse
|
38
|
Ishak S, Dormontt E, Young JM. Microbiomes in forensic botany: a review. Forensic Sci Med Pathol 2021; 17:297-307. [PMID: 33830453 DOI: 10.1007/s12024-021-00362-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
Fragments of botanical material can often be found at crime scenes (on live and dead bodies, or on incriminating objects) and can provide circumstantial evidence on various aspects of forensic investigations such as determining crime scene locations, times of death or possession of illegal species. Morphological and genetic analysis are the most commonly applied methods to analyze plant fragment evidence but are limited by their low capacity to differentiate between potential source locations, especially at local scales. Here, we review the current applications and limitations of current plant fragment analysis for forensic investigations and introduce the potential of microbiome analysis to complement the existing forensic plant fragment analysis toolkit. The potential for plant fragment provenance identification at geographic scales meaningful to forensic investigations warrants further investigation of the phyllosphere microbiome in this context. To that end we identify three key areas of future research: 1) Retrieval of microbial DNA of sufficient quality and quantity from botanical material; 2) Variability of the phyllosphere microbiome at different taxonomic and spatial scales, with explicit reference to assignment capacity; 3) Impacts on assignment capacity of time, seasonality and movement of fragments between locations. The development of robust microbiome analysis tools for forensic purposes in botanical material could increase the evidentiary value of the botanical evidence commonly encountered in casework, aiding in the identification of crime scene locations.
Collapse
Affiliation(s)
- Sarah Ishak
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Eleanor Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer M Young
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd Allah EF, Singh BK. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions. Microbiol Res 2021; 248:126763. [PMID: 33892241 DOI: 10.1016/j.micres.2021.126763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Ensuring food security in an environmentally sustainable way is a global challenge. To achieve this agriculture productivity requires increasing by 70 % under increasingly harsh climatic conditions without further damaging the environmental quality (e.g. reduced use of agrochemicals). Most governmental and inter-governmental agencies have highlighted the need for alternative approaches that harness natural resource to address this. Use of beneficial phytomicrobiome, (i.e. microbes intimately associated with plant tissues) is considered as one of the viable solutions to meet the twin challenges of food security and environmental sustainability. A diverse number of important microbes are found in various parts of the plant, i.e. root, shoot, leaf, seed, and flower, which play significant roles in plant health, development and productivity, and could contribute directly to improving the quality and quantity of food production. The phytomicrobiome can also increase productivity via increased resource use efficiency and resilience to biotic and abiotic stresses. In this article, we explore the role of phytomicrobiome in plant health and how functional properties of microbiome can be harnessed to increase agricultural productivity in environmental-friendly approaches. However, significant technical and translation challenges remain such as inconsistency in efficacy of microbial products in field conditions and a lack of tools to manipulate microbiome in situ. We propose pathways that require a system-based approach to realize the potential to phytomicrobiome in contributing towards food security. We suggest if these technical and translation constraints could be systematically addressed, phytomicrobiome can significantly contribute towards the sustainable increase in agriculture productivity and food security.
Collapse
Affiliation(s)
- Gowardhan Kumar Chouhan
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arpan Mukherjee
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Brajesh Kumar Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW, 2750, Sydney, Australia
| |
Collapse
|
40
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
41
|
The Effect of Supplementary LED Lighting on the Morphological and Physiological Traits of Miniature Rosa × Hybrida 'Aga' and the Development of Powdery Mildew ( Podosphaera pannosa) under Greenhouse Conditions. PLANTS 2021; 10:plants10020417. [PMID: 33672400 PMCID: PMC7926578 DOI: 10.3390/plants10020417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
We investigated the growth traits, flower bud formation, photosynthetic performance, and powdery mildew development in miniature Rosa × hybrida 'Aga' plants grown in the greenhouse under different light-emitting diode (LED) light spectra. Fluorescence-based sensors that detect the maximum photochemical efficiency of photosystem II (PS II) as well as chlorophyll and flavonol indices were used in this study. Five different LED light treatments as a supplement to natural sunlight with red (R), blue (B), white (W), RBW+FR (far-red) (high R:FR), and RBW+FR (low R:FR) were used. Control plants were illuminated only by natural sunlight. Plants were grown under different spectra of LED lighting and the same photosynthetic photon flux density (PPFD) (200 µmol m-2 s-1) at a photoperiod of 18 h. Plants grown under both RBW+FR lights were the highest, and had the greatest total shoot length, irrespective of R:FR. These plants also showed the highest maximum quantum yield of PS II (average 0.805) among the light treatments. Red monochromatic light and RBW+FR at high R:FR stimulated flower bud formation. Moreover, plants grown under red LEDs were more resistant to Podosphaera pannosa than those grown under other light treatments. The increased flavonol index in plants exposed to monochromatic blue light, compared to the W and control plants, did not inhibit powdery mildew development.
Collapse
|
42
|
Lajoie G, Kembel SW. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradient. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Geneviève Lajoie
- Département des sciences biologiques Université du Québec à Montréal 141, Avenue du Président‐Kennedy Montréal QuébecH2X 1Y4Canada
| | - Steven W. Kembel
- Département des sciences biologiques Université du Québec à Montréal 141, Avenue du Président‐Kennedy Montréal QuébecH2X 1Y4Canada
| |
Collapse
|
43
|
Light-Photoreceptors and Proteins Related to Monilinia laxa Photoresponses. J Fungi (Basel) 2021; 7:jof7010032. [PMID: 33430380 PMCID: PMC7827745 DOI: 10.3390/jof7010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/25/2023] Open
Abstract
Light represents a ubiquitous source of information for organisms to evaluate their environment. The influence of light on colony growth and conidiation was determined for three Monilinia laxa isolates. The highest mycelial growth rate was observed under red light for the three M. laxa isolates, followed by green light, daylight or darkness. However, reduced sporulation levels were observed in darkness and red light, but conidiation enhancement was found under daylight, black and green light with more hours of exposure to light. Putative photoreceptors for blue (white-collar and cryptochromes), green (opsins), and red light (phytochromes) were identified, and the photoresponse-related regulatory family of velvet proteins. A unique ortholog for each photoreceptor was found, and their respective domain architecture was highly conserved. Transcriptional analyses of uncovered sets of genes were performed under daylight or specific color light, and both in time course illumination, finding light-dependent triggered gene expression of MlVEL2, MlPHY2, MlOPS2, and MlCRY2, and color light as a positive inductor of MlVEL3, MlVEL4, MlPHY1, and MlCRY1 expression. M. laxa has a highly conserved set of photoreceptors with other light-responsive fungi. Our phenotypic analyses and the existence of this light-sensing machinery suggest transcriptional regulatory systems dedicated to modulating the development and dispersion of this pathogen.
Collapse
|
44
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Santamaría‐Hernando S, Cerna‐Vargas JP, Martínez‐García PM, de Francisco‐de Polanco S, Nebreda S, Rodríguez‐Palenzuela P, Rodríguez‐Herva JJ, López‐Solanilla E. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1606-1619. [PMID: 33029921 PMCID: PMC7694672 DOI: 10.1111/mpp.13001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/01/2023]
Abstract
Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Jean Paul Cerna‐Vargas
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pedro Manuel Martínez‐García
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERAvenida Americo VespucioSevilleSpain
| | - Sofía de Francisco‐de Polanco
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones Científicas, Avenida Ramiro de MaeztuMadridSpain
| | - Sandra Nebreda
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pablo Rodríguez‐Palenzuela
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - José Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
46
|
zur Strassen T, Scharf A, Carus G, Carus M. Are New Food and Biomass Technologies More Sustainable? A Review. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.29232.tzs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Consiglieri E, Xu QZ, Zhao KH, Gärtner W, Losi A. The first molecular characterisation of blue- and red-light photoreceptors from Methylobacterium radiotolerans. Phys Chem Chem Phys 2020; 22:12434-12446. [PMID: 32458860 DOI: 10.1039/d0cp02014a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylobacteria are facultative methylotrophic phytosymbionts of great industrial and agronomical interest, and they are considered as opportunistic pathogens posing a health threat to humans. So far only a few reports mention photoreceptor coding sequences in Methylobacteria genomes, but no investigation at the molecular level has been performed yet. We here present comprehensive in silico research into potential photoreceptors in this bacterial phylum and report the photophysical and photochemical characterisation of two representatives of the most widespread photoreceptor classes, a blue-light sensing LOV (light, oxygen, voltage) protein and a red/far red light sensing BphP (biliverdin-binding bacterial phytochrome) from M. radiotolerans JCM 2831. Overall, both proteins undergo the expected light-triggered reactions, but peculiar features were also identified. The LOV protein Mr4511 has an extremely long photocycle and lacks a tryptophan conserved in ca. 75% of LOV domains. Mutation I37V accelerates the photocycle by one order of magnitude, while the Q112W change underscores the ability of tryptophan in this position to perform efficient energy transfer to the flavin chromophore. Time-resolved photoacoustic experiments showed that Mr4511 has a higher triplet quantum yield than other LOV domains and that the formation of the photoproduct results in a volume expansion, in sharp contrast to other LOV proteins. Mr4511 was found to be astonishingly resistant to denaturation by urea, still showing light-triggered reactions after incubation in urea for more than 20 h. The phytochrome MrBphP1 exhibits the so far most red-shifted absorption maxima for its Pr- and Pfr forms (λmax = 707 nm and 764 nm for the Pr and Pfr forms). The light-driven conversions in both directions occur with relatively high quantum yields of 0.2. Transient ns absorption spectroscopy (μs-ms time range) identifies the decay of the instantaneously formed lumi-intermediate, followed by only one additional intermediate before the formation of the respective final photoproducts for Pr-to-Pfr or Pfr-to-Pr photoconversion, in contrast to other BphPs. The relatively simple photoconversion patterns suggest the absence of the shunt pathways reported for other bacterial phytochromes.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany and State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| |
Collapse
|
48
|
The effect of wheat seedling density on photosynthesis may be associated with the phyllosphere microorganisms. Appl Microbiol Biotechnol 2020; 104:10265-10277. [PMID: 33026496 DOI: 10.1007/s00253-020-10934-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Wheat seedlings are significantly impacted by the presence of bacteria. However, bacteria are unavoidably growing together with wheat. The study aimed to reveal wheat photosynthesis, phyllosphere bacterial community composition, and a shift in the bacterial community following different density treatments in a closed artificial ecosystem. Here, we report the relationship between photosynthesis and bacterial community in wheat seedlings for different planting densities. In this closed artificial ecosystem, a total of 30 phyla were detected, with 17 of them were simultaneously present in four treatments, under high light intensity and carbon dioxide growth environment. The key phyla detected include Firmicutes, Proteobacteria, and Bacteroidetes. We found that planting densities significantly impacted the photosynthetic characteristics of wheat and bacterial genetic biodiversity, but not on species composition of the bacterial community. Network analysis shows that the phyllosphere bacteria network structures were characterized by the clustering coefficient and modularity. Network for the 1000 plants/m2 treatment group exhibits the highest levels of average clustering coefficient but lowest modularity and number of modules, among all plant densities tested. In addition, the network for the 1200 plants/m2 treatment group exhibits the best characteristics in terms of net photosynthesis rate and intrinsic water use efficiency, higher complex phyllosphere community network structures, higher abundance of Corynebacterium, and more function of "Amino acid metabolism", which encourages the plants to grow better. The findings presented in this work elucidated the role of plant density in the growth of phyllosphere bacteria during wheat seedlings and provided theoretical support for reasonable wheat density cultivation in closed artificial ecosystems and wheat field production.
Collapse
|
49
|
Moitinho MA, Souza DT, Chiaramonte JB, Bononi L, Melo IS, Taketani RG. The unexplored bacterial lifestyle on leaf surface. Braz J Microbiol 2020; 51:1233-1240. [PMID: 32363565 PMCID: PMC7455623 DOI: 10.1007/s42770-020-00287-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Social interactions impact microbial communities and these relationships are mediated by small molecules. The chemical ecology of bacteria on the phylloplane environment is still little explored. The harsh environmental conditions found on leaf surface require high metabolic performances of the bacteria in order to survive. That is interesting both for scientific fields of prospecting natural molecules and for the ecological studies. Important queries about the bacterial lifestyle on leaf surface remain not fully comprehended. Does the hostility of the environment increase the populations' cellular altruism by the production of molecules, which can benefit the whole community? Or does the reverse occur and the production of molecules related to competition between species is increased? Does the phylogenetic distance between the bacterial populations influence the chemical profile during social interactions? Do phylogenetically related bacteria tend to cooperate more than the distant ones? The phylloplane contains high levels of yet uncultivated microorganisms, and understanding the molecular basis of the social networks on this habitat is crucial to gain new insights on the ecology of the mysterious community members due to interspecies molecular dependence. Here, we review and discuss what is known about bacterial social interactions and their chemical lifestyle on leaf surface.
Collapse
Affiliation(s)
- Marta A Moitinho
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Danilo T Souza
- Laboratory of Mass Spectrometry Applied Natural Products Chemistry; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Josiane B Chiaramonte
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Laura Bononi
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Itamar S Melo
- Laboratory of Environmental Microbiology, EMBRAPA Environment, Brazilian Agricultural Research Corporation, SP 340, Km 127.5, Jaguariúna, São Paulo, 13820-000, Brazil
| | - Rodrigo G Taketani
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, 13418-900, Brazil.
- CETEM, Centre for Mineral Technology, MCTIC Ministry of Science, Technology, Innovation and Communication, Av. Pedro Calmon, 900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21941-908, Brazil.
| |
Collapse
|
50
|
Zervas A, Zeng Y, Madsen AM, Hansen LH. Genomics of Aerobic Photoheterotrophs in Wheat Phyllosphere Reveals Divergent Evolutionary Patterns of Photosynthetic Genes in Methylobacterium spp. Genome Biol Evol 2020; 11:2895-2908. [PMID: 31626703 PMCID: PMC6798729 DOI: 10.1093/gbe/evz204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 01/02/2023] Open
Abstract
Phyllosphere is a habitat to a variety of viruses, bacteria, fungi, and other microorganisms, which play a fundamental role in maintaining the health of plants and mediating the interaction between plants and ambient environments. A recent addition to this catalogue of microbial diversity was the aerobic anoxygenic phototrophs (AAPs), a group of widespread bacteria that absorb light through bacteriochlorophyll α (BChl a) to produce energy without fixing carbon or producing molecular oxygen. However, culture representatives of AAPs from phyllosphere and their genome information are lacking, limiting our capability to assess their potential ecological roles in this unique niche. In this study, we investigated the presence of AAPs in the phyllosphere of a winter wheat (Triticum aestivum L.) in Denmark by employing bacterial colony based infrared imaging and MALDI-TOF mass spectrometry (MS) techniques. A total of ∼4,480 colonies were screened for the presence of cellular BChl a, resulting in 129 AAP isolates that were further clustered into 21 groups based on MALDI-TOF MS profiling, representatives of which were sequenced using the Illumina NextSeq and Oxford Nanopore MinION platforms. Seventeen draft and four complete genomes of AAPs were assembled belonging in Methylobacterium, Rhizobium, Roseomonas, and a novel Alsobacter. We observed a diverging pattern in the evolutionary rates of photosynthesis genes among the highly homogenous AAP strains of Methylobacterium (Alphaproteobacteria), highlighting an ongoing genomic innovation at the gene cluster level.
Collapse
Affiliation(s)
- Athanasios Zervas
- Section of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Yonghui Zeng
- Section of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lars H Hansen
- Section of Environmental Microbiology and Biotechnology, Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Environmental Microbial Genomics Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|