1
|
Keret R, Drew DM, Hills PN. Xylem cell size regulation is a key adaptive response to water deficit in Eucalyptus grandis. TREE PHYSIOLOGY 2024; 44:tpae068. [PMID: 38896029 PMCID: PMC11247191 DOI: 10.1093/treephys/tpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.
Collapse
Affiliation(s)
- Rafael Keret
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
- Department of Forestry and Wood Sciences, Stellenbosch University, Bosman St, Stellenbosch 7599, South Africa
| | - David M Drew
- Department of Forestry and Wood Sciences, Stellenbosch University, Bosman St, Stellenbosch 7599, South Africa
| | - Paul N Hills
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
2
|
Gao X, Zhao B, Chen Z, Song W, Li Z, Wang X. The Impact of Urbanization on Tree Growth and Xylem Anatomical Characteristics. BIOLOGY 2023; 12:1373. [PMID: 37997972 PMCID: PMC10669791 DOI: 10.3390/biology12111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
In the context of the intensification of global urbanization, how urbanization (urban heat island effect and air pollution) affects urban tree growth is not fully understood. In this paper, the radial growth and xylem anatomical characteristics of three different tree species (Quercus mongolica, Fraxinus mandshurica, and Pinus sylvestris var. mongolica) in urban and rural areas of Harbin were compared by means of tree-ring anatomy. The results showed that there were significant differences in the growth of both broadleaf trees and conifers between urban and rural areas. The vessel number, cumulative area of vessels, and theoretical hydraulic conductivity of all tree species in rural areas were higher than those in urban areas, indicating that urbanization may have the effect of slowing down growth. However, broadleaf trees in urban areas had higher vessel density and a greater percentage of a conductive area within xylem and theoretical xylem-specific hydraulic conductivity. The thickness of cell walls and cell wall reinforcement index of P. sylvestris var. mongolica were strongly reduced by air pollution, implying that it may be more sensitive to urbanization. Compared to Q. mongolica, F. mandshurica showed less sensitivity to urbanization. Warming and drying climate in Harbin may be an important factor affecting tree growth.
Collapse
Affiliation(s)
- Xiaohui Gao
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Binqing Zhao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zecheng Chen
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Wenqi Song
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaochun Wang
- Aulin College, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Xiang Y, Kagawa A, Nagai S, Yasuda Y, Utsumi Y. The difference in the functional water flow network between the stem and current-year root cross-sectional surfaces in Salix gracilistyla stem xylem. TREE PHYSIOLOGY 2023; 43:1326-1340. [PMID: 37098160 DOI: 10.1093/treephys/tpad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 06/19/2023]
Abstract
The dye injection method has been applied to many species to analyze the xylem water transport pathway in trees. However, traditional dye injection methods introduced dye tracers from the surface of cut stems, including several annual rings. Furthermore, the traditional dye injection method did not evaluate radial water movement from the outermost annual rings to the inner annual rings. In this study, we assessed the difference in radial water movement visualized by an injected dye, between stem base cut and current-year root cut samples of Salix gracilistyla Miq., with current-year roots grown hydroponically. The results showed that the number of stained annual rings in the root cut samples was smaller than that in the stem cut samples, and the percentage of stained vessels in the root cut samples was significantly smaller than that in the stem base cut samples in the second and third annual rings. In the current-year root cut samples, water transport mainly occurred in the outermost rings from the current-year roots to leaves. In addition, the theoretical hydraulic conductivity of stained vessels in the stem cut samples was higher in the current-year root cut samples in the second and third annual rings. These findings indicate that the previously reported dye injection method using stem cut samples overestimated the water transport pathway in the inner part of the stems. Moreover, previous hydraulic conductivity measurement methods might not have considered the effects of radial resistance through the annual ring boundary, and they might have overestimated the hydraulic conductivity in the inner annual rings.
Collapse
Affiliation(s)
- Yan Xiang
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi Ward, Fukuoka city, Fukuoka, 819-0385, Japan
| | - Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, 1 Matsunosato, Tsukuba, Ibaraki 300-1244, Japan
| | - Satoshi Nagai
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Forestry and Forest Products Research Institute, 430 Yamasakicho Ikaba, Shiso, Hyogo 671-2515, Japan
| | - Yuko Yasuda
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, 1 Chome-21-24 Korimoto, Kagoshima City Kagoshima, 890-0065, Japan
| | - Yasuhiro Utsumi
- Kyushu University Forest, Kyushu University, 394-1 Tsubakuro, Sasaguri, Kasuya District, Fukuoka 811-2415, Japan
| |
Collapse
|
4
|
Ferdous J, Islam M, Rahman M. The role of tree size, wood anatomical and leaf stomatal traits in shaping tree hydraulic efficiency and safety in a South Asian tropical moist forest. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
5
|
Liu M, Zhao Y, Wang Y, Korpelainen H, Li C. Stem xylem traits and wood formation affect sex-specific responses to drought and rewatering in Populus cathayana. TREE PHYSIOLOGY 2022; 42:1350-1363. [PMID: 35137223 DOI: 10.1093/treephys/tpac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The increased frequency and intensity of drought pose great threats to the survival of trees, especially in dioecious tree species with sexual differences in mortality and biased sex ratios. The sex-specific mechanisms underlying stem xylem anatomy and function and carbon metabolism in drought resistance and recovery were investigated in dioecious Populus cathayana Rehder. The sex-specific drought resistance and subsequent recovery were linked to the xylem anatomy and carbon metabolism. Females had a greater xylem vessel area per vessel, biomass and theoretically hydraulic efficiency under well-watered conditions. Conversely, males had a lower xylem lumen area, but greater vessel numbers, and a higher cell wall thickness, suggesting a theoretically conservative water-use strategy and drought resistance. The recovery of photosynthetic ability after drought in males was largely dependent on the recovery of xylem function and the regulation of the xylem carbohydrate metabolism. Additionally, the number of upregulated genes related to xylem cell wall biogenesis was greater in males relative to females under drought stress and subsequent rewatering, which facilitated drought resistance and xylem function restoration in males. These results suggested that sex-specific drought resistance and restoration were related to xylem anatomy and function, carbohydrate metabolism and cell turgor maintenance.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Yang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Yuting Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
6
|
Arend M, Link RM, Zahnd C, Hoch G, Schuldt B, Kahmen A. Lack of hydraulic recovery as a cause of post-drought foliage reduction and canopy decline in European beech. THE NEW PHYTOLOGIST 2022; 234:1195-1205. [PMID: 35238410 PMCID: PMC9310744 DOI: 10.1111/nph.18065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/19/2022] [Indexed: 05/06/2023]
Abstract
European beech (Fagus sylvatica) was among the most affected tree species during the severe 2018 European drought. It not only suffered from instant physiological stress but also showed severe symptoms of defoliation and canopy decline in the following year. To explore the underlying mechanisms, we used the Swiss-Canopy-Crane II site and studied in branches of healthy and symptomatic trees the repair of hydraulic function and concentration of carbohydrates during the 2018 drought and in 2019. We found loss of hydraulic conductance in 2018, which did not recover in 2019 in trees that developed defoliation symptoms in the year after drought. Reduced branch foliation in symptomatic trees was associated with a gradual decline in wood starch concentration throughout summer 2019. Visualization of water transport in healthy and symptomatic branches in the year after the drought confirmed the close relationship between xylem functionality and supported branch leaf area. Our findings showed that embolized xylem does not regain function in the season following a drought and that sustained branch hydraulic dysfunction is counterbalanced by the reduction in supported leaf area. It suggests acclimation of leaf development after drought to mitigate disturbances in canopy hydraulic function.
Collapse
Affiliation(s)
- Matthias Arend
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Roman Mathias Link
- Ecophysiology and Vegetation EcologyUniversität Würzburg97082WürzburgGermany
| | - Cedric Zahnd
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Günter Hoch
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Bernhard Schuldt
- Ecophysiology and Vegetation EcologyUniversität Würzburg97082WürzburgGermany
| | - Ansgar Kahmen
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| |
Collapse
|
7
|
Rahman M, Islam M, Masood M, Gebrekirstos A, Bräuning A. Flood signals in tree-ring δ 18O and wood anatomical parameters of Lagerstroemia speciosa: Implications for developing flood management strategies in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151125. [PMID: 34688736 DOI: 10.1016/j.scitotenv.2021.151125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Bangladesh consists of 80% of the flood plain of the Ganges-Brahmaputra-Meghna river system (GBM), making the country one of the highest flood prone countries of the world. Due to the high rate of discharge of the GBM caused by the summer monsoon and the snowmelt of the Eastern Himalaya and Southern Tibetan Plateau due to climate change, Bangladesh witnessed 16 flood events over 1954-2017. We performed a multiproxy tree-ring analysis to investigate the impact of extreme flood events on tree growth, xylem anatomical parameters and oxygen isotope composition of tree-ring cellulose (δ18Otr) in a Bangladeshi moist tropical forest and to establish relationships between water level of the regional rivers and tree-ring parameters. By using pointer year analysis and comparing the pointer years with historical flood records (a cut-off threshold of the country's flooded land area of 33.3%), we identified the three extreme flood events (hereafter called flood years) 1974, 1988, and 1998 in Bangladesh. Superposed epoch analysis revealed significant changes in Tree-ring width (TRW), total vessel area (TVA), vessel density (VD), and δ18Otr during flood years. Flood associated hypoxic soil conditions reduced TRW up to 53% and TVA up to 28%, varying with flood events. In contrast, VD increased by 23% as a safety mechanism against flood induced hydraulic failure. Tree-ring δ18O significantly decreased during the flood years due to the amount effect in regional precipitation. Bootstrapped Pearson correlation analysis showed that wood anatomical variables encoded stronger river level signals than TRW and δ18Otr. Among the wood anatomical parameters, VD showed a strong relationship (r = -0.58, p < 0.01) with the water level of the Manu River, a regional river of the north-eastern part of Bangladesh, indicating that VD can be used as a reliable proxy for river level reconstruction. Our analyses suggest that multiproxy tree-ring analysis is a potential tool to study tropical moist forest responses to extreme flood events and to identify suitable proxies for reconstructing hydrological characteristics of South Asian rivers.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany.
| | - Mahmuda Islam
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
| | - Muhammad Masood
- Design Circle-9, Bangladesh Water Development Board (BWDB), Pani Bhaban, 72, Green Road, Dhaka 1215, Bangladesh
| | - Aster Gebrekirstos
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany; World Agroforestry Centre (ICRAF), United Nations Avenue, P.O. Box 30677-00100, Nairobi, Kenya
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Rahman AANS, Rahman M, Shimanto MH, Kibria MG, Islam M. Stomatal size and density trade-off varies with leaf phenology and species shade tolerance in a South Asian moist tropical forest. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:307-318. [PMID: 35130475 DOI: 10.1071/fp21159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The density and guard cell length of stomata regulate the physiological processes in plants. Yet, the variation of stomatal characteristics among different functional groups of trees is not been well understood. Particularly, a comprehensive understanding of stomatal behaviour in Bangladeshi moist forest trees is lacking. The study investigated how abaxial stomatal density (SD) and guard cell length (GCL) vary among tree functional types and leaf phenological groups in a moist tropical forest of Bangladesh. Cluster dendrogram revealed three groups of species based on SD and GCL. The independent sample t -test showed that there was a significant difference in SD between evergreen and deciduous tree species (t =4.18, P <0.001) but no significant difference in GCL between the two phenological groups. ANOVA revealed no significant difference in SD among the light demanding, intermediate shade tolerant and shade tolerant species (F =0.76, P =0.47). However, GCL significantly differed among the three functional groups (F =3.3, P <0.05). Maximum theoretical stomatal conductance (g max ) varied between evergreen and deciduous species but did not vary with species shade tolerance. In general, there was a significant trade-off between SD and GCL. However, the inverse relationship was stronger in deciduous and shade tolerant species than in evergreen and shade intolerant species. Leaf dry matter content was positively related with SD and negatively related with GCL. Specific leaf area and leaf thickness were not related to the stomatal traits. Our analyses suggest that leaf phenology and species shade tolerance need to be considered while estimating gas exchange through the stomata in tropical moist forests.
Collapse
Affiliation(s)
- Abdullah Al-Nur Shanto Rahman
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mizanur Rahman
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mehedi Hasan Shimanto
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Golam Kibria
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahmuda Islam
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
9
|
Islam M, Rahman M, Gebrekirstos A, Bräuning A. Tree-ring δ 18O climate signals vary among tree functional types in South Asian tropical moist forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143939. [PMID: 33310218 DOI: 10.1016/j.scitotenv.2020.143939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
We present the first annually resolved and statistically reliable tree-ring δ18O (δ18OT) chronologies for the three South Asian tropical moist forest tree species (Chukrasia tabularis A. Juss., Toona ciliata M. Roem., and Lagerstroemia speciosa Roxb.) which differ in their shade tolerance and resistance to water stress. We found significantly higher mean δ18OT values in light-demanding T. ciliata than in intermediate shade tolerant C. tabularis and shade tolerant L. speciosa (p < 0.001). δ18OT in C. tabularis was mainly influenced by pre-monsoon vapor pressure deficit (VPD; r = -0.54, p < 0.01) and post monsoon maximum temperature (Tmax) (r = 0.52, p < 0.01). δ18OT in T. ciliata was strongly negatively correlated with a dry season drought index PDSI (r = -0.65, p < 0.001) and VPD (r = -0.58, p < 0.001). Pre-monsoon Tmax was strongly positively linked with δ18OT in L. speciosa (r = 0.65, p < 0.001), indicating that climatic influences on δ18OT are species-specific and vary among tree functional types. Although there was a week correlation between local precipitation and δ18OT in our studied species, we found a strong correlation between δ18OT and precipitation at a larger spatial scale. Linear mixed effect models revealed that multiple factors improved model performance only in C. tabularis, yielding the best model, which combined VPD and Tmax. The top models in T. ciliata and L. speciosa included only the single factors PDSI and Tmax, highlighting that the way C. tabularis interacts with climate is more complex when compared with other two species. Our analyses suggest that stable oxygen isotope composition in tree rings of South Asian tropical moist forest trees are a suitable proxy of local and regional climate variability and are an important tool for understanding the physiological mechanisms associated with the global hydrological cycle.
Collapse
Affiliation(s)
- Mahmuda Islam
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany; Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Mizanur Rahman
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany; Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Aster Gebrekirstos
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany; World Agroforestry Centre (ICRAF), United Nations Avenue, P.O. Box 30677-00100, Nairobi, Kenya
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Zuidema PA, Heinrich I, Rahman M, Vlam M, Zwartsenberg SA, van der Sleen P. Recent CO 2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. GLOBAL CHANGE BIOLOGY 2020; 26:4028-4041. [PMID: 32441438 PMCID: PMC7317543 DOI: 10.1111/gcb.15092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 05/28/2023]
Abstract
Atmospheric CO2 (ca ) rise changes the physiology and possibly growth of tropical trees, but these effects are likely modified by climate. Such ca × climate interactions importantly drive CO2 fertilization effects of tropical forests predicted by global vegetation models, but have not been tested empirically. Here we use tree-ring analyses to quantify how ca rise has shifted the sensitivity of tree stem growth to annual fluctuations in rainfall and temperature. We hypothesized that ca rise reduces drought sensitivity and increases temperature sensitivity of growth, by reducing transpiration and increasing leaf temperature. These responses were expected for cooler sites. At warmer sites, ca rise may cause leaf temperatures to frequently exceed the optimum for photosynthesis, and thus induce increased drought sensitivity and stronger negative effects of temperature. We tested these hypotheses using measurements of 5,318 annual rings from 129 trees of the widely distributed (sub-)tropical tree species, Toona ciliata. We studied growth responses during 1950-2014, a period during which ca rose by 28%. Tree-ring data were obtained from two cooler (mean annual temperature: 20.5-20.7°C) and two warmer (23.5-24.8°C) sites. We tested ca × climate interactions, using mixed-effect models of ring-width measurements. Our statistical models revealed several significant and robust ca × climate interactions. At cooler sites (and seasons), ca × climate interactions showed good agreement with hypothesized growth responses of reduced drought sensitivity and increased temperature sensitivity. At warmer sites, drought sensitivity increased with increasing ca , as predicted, and hot years caused stronger growth reduction at high ca . Overall, ca rise has significantly modified sensitivity of Toona stem growth to climatic variation, but these changes depended on mean climate. Our study suggests that effects of ca rise on tropical tree growth may be more complex and less stimulatory than commonly assumed and require a better representation in global vegetation models.
Collapse
Affiliation(s)
- Pieter A. Zuidema
- Forest Ecology & Forest Management GroupWageningen UniversityWageningenThe Netherlands
| | - Ingo Heinrich
- Section Climate Dynamics and Landscape EvolutionGFZ German Research Centre for GeosciencesTelegrafenbergGermany
- Geography DepartmentHumboldt UniversityBerlinGermany
| | - Mizanur Rahman
- Institute of GeographyFriedrich‐Alexander University Erlangen‐NurembergErlangenGermany
- Department of Forestry and Environmental ScienceShahjalal University of Science and TechnologySylhetBangladesh
| | - Mart Vlam
- Forest Ecology & Forest Management GroupWageningen UniversityWageningenThe Netherlands
- Delta Areas and ResourcesVan Hall Larenstein University of Applied SciencesLeeuwardenThe Netherlands
| | | | - Peter van der Sleen
- Forest Ecology & Forest Management GroupWageningen UniversityWageningenThe Netherlands
- Wildlife Ecology and Conservation GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
11
|
Rahman M, Islam M, Gebrekirstos A, Bräuning A. Disentangling the effects of atmospheric CO2 and climate on intrinsic water-use efficiency in South Asian tropical moist forest trees. TREE PHYSIOLOGY 2020; 40:904-916. [PMID: 32268375 DOI: 10.1093/treephys/tpaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 02/13/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Due to the increase in atmospheric CO2 concentrations, the ratio of carbon fixed by assimilation to water lost by transpiration through stomatal conductance (intrinsic water-use efficiency, iWUE) shows a long-term increasing trend globally. However, the drivers of short-term (inter-annual) variability in iWUE of tropical trees are poorly understood. We studied the inter-annual variability in iWUE of three South Asian tropical moist forest tree species (Chukrasia tabularis A.Juss., Toona ciliata M. Roem. and Lagerstroemia speciosa L.) derived from tree-ring stable carbon isotope ratio (δ13C) in response to variations of environmental conditions. We found a significantly decreasing trend in carbon discrimination (Δ13C) and an increasing trend in iWUE in all the three species, with a species-specific long-term trend in intercellular CO2 concentration (Ci). Growing season temperatures were the main driver of inter-annual variability of iWUE in C. tabularis and L. speciosa, whereas previous year temperatures determined the iWUE variability in T. ciliata. Vapor pressure deficit was linked with iWUE only in C. tabularis. Differences in shade tolerance, tree stature and canopy position might have caused this species-specific variation in iWUE response to climate. Linear mixed effect modeling successfully simulated iWUE variability, explaining 41-51% of the total variance varying with species. Commonality analysis revealed that temperatures had a dominant influence on the inter-annual iWUE variability (64-77%) over precipitation (7-22%) and atmospheric CO2 concentration (3-6%). However, the long-term variations in iWUE were explicitly determined by the atmospheric CO2 increase (83-94%). Our results suggest that the elevated CO2 and concomitant global warming might have detrimental effects on gas exchange and other physiological processes in South Asian tropical moist forest trees.
Collapse
Affiliation(s)
- Mizanur Rahman
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, Erlangen 91058, Germany
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahmuda Islam
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, Erlangen 91058, Germany
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Aster Gebrekirstos
- World Agroforestry Centre (ICRAF), United Nations Avenue, PO Box 30677-00100, Nairobi, Kenya
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, Erlangen 91058, Germany
| |
Collapse
|