1
|
Barboucha G, Rahim N, Boulebd H, Bramki A, Andolfi A, Salvatore MM, Masi M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. PLANTS (BASEL, SWITZERLAND) 2024; 13:3229. [PMID: 39599438 PMCID: PMC11598024 DOI: 10.3390/plants13223229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study investigated the phytochemical profile and evaluated the antimicrobial and insecticidal properties of Eucalyptus camaldulensis Dehn. essential oil (EC-EO) from Algeria, using in vitro and in silico approaches. The yield of EC-EO was 0.27%, with gas chromatography-mass spectrometry (GC-MS) revealing spathulenol (58.24%), cryptone (17.22%), and o-cymene (15.53%) as the major compounds. EC-EO exhibited notable antibacterial activity, particularly against Salmonella typhimurium (14 ± 1.00 mm) and Staphylococcus aureus (14.5 ± 0.50 mm). It also showed effective antifungal activity against Penicillium sp. (11.5 ± 0.49 mm), Candida albicans (11.2 ± 0.29 mm), and Aspergillus fumigatus (9.8 ± 0.27 mm). Insecticidal assays against Tribolium castaneum were conducted using contact toxicity, fumigation toxicity, and repellent activity methods. The median lethal concentration (LC50) for contact toxicity was 0.011 μL/insect after 72 h, while the fumigation test had an LC50 of 122.29 μL/L air. Repellent activity tests showed percentage repellency (PR) values exceeding 80% after 6 h. The molecular geometry and electronic properties of the main compounds were studied using density functional theory (DFT) calculations. In addition, the interaction mode and binding affinity of these molecules with three key enzymes involved in antimicrobial activity, DNA gyrase, dihydrofolate reductase (DHFR) and Tyrosyl-tRNA synthetase (TyrRS), were explored by molecular docking.
Collapse
Affiliation(s)
- Ghozlane Barboucha
- Biotechnologies Laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, Constantine 25100, Algeria; (G.B.); (N.R.)
| | - Noureddine Rahim
- Biotechnologies Laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, Constantine 25100, Algeria; (G.B.); (N.R.)
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria;
| | - Amina Bramki
- Laboratory of Bio Engineering, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, Constantine 25100, Algeria;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, Portici, 80055 Naples, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, Portici, 80055 Naples, Italy
| |
Collapse
|
2
|
Hulankova R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2784. [PMID: 39409654 PMCID: PMC11478843 DOI: 10.3390/plants13192784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
Essential oils (EOs) have been gaining popularity in the past decades among researchers due to their potential to replace conventional chemicals used in the fight against pests, pathogenic and spoilage microbes, and oxidation processes. EOs are complex mixtures with many chemical components, the content of which depends on many factors-not just the plant genus, species, or subspecies, but also chemotype, locality, climatic conditions, phase of vegetation, method of extraction, and others. Due to this fact, there is still much to study, with antimicrobial effect being one of the key properties of EOs. There are many methods that have been frequently used by researchers for in vitro evaluation; however, although the research has been going on for decades, an internationally accepted standard is still missing. Most of methods are based on time-proven standards used for the testing of antibiotics. Due to the specific properties of EOs and their components, such as volatility and hydrophobicity, many modifications of these standard procedures have been adopted. The aim of this review is to describe the most common methods and their modifications for the testing of antimicrobial properties of EOs and to point out the most controversial variables which can potentially affect results of the assays.
Collapse
Affiliation(s)
- Radka Hulankova
- Department of Hygiene and Technology of Food of Animal Origin and Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
3
|
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024; 13:3151. [PMID: 39410186 PMCID: PMC11475975 DOI: 10.3390/foods13193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
While the potential of Asteraceae plants as herbal remedies has been globally recognized, their widespread application in the food, cosmetic, and pharmaceutical industries requires a deeper understanding of how extraction methods influence bioactive compound yields and functionalities. Previous research has primarily focused on the physiological activities or chemical compositions of individual Asteraceae species, often overlooking the critical role of solvent selection in optimizing extraction. Additionally, the remarkable physiological activities observed in these plants have spurred a growing number of clinical trials, aiming to validate their efficacy and safety for potential therapeutic and commercial applications. This work aims to bridge these knowledge gaps by providing an integrated analysis of extraction techniques, the diverse range of bioactive compounds present in Asteraceae, and the influence of solvent choice on isolating these valuable substances. By elucidating the interplay between extraction methods, solvent properties, and bioactivity, we underscore the promising potential of Asteraceae plants and highlight the importance of continued research, including clinical trials, to fully unlock their potential in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Il Kim
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Jin-Woo Jeong
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Kyung-Min Choi
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Tae-Su Kim
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Chan Seo
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Iman Azimi
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Ji-Min Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Bo-Mi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Malićanin M, Karabegović I, Đorđević N, Mančić S, Stojanović SS, Brković D, Danilović B. Influence of the Extraction Method on the Biological Potential of Solidago virgaurea L. Essential Oil and Hydrolates. PLANTS (BASEL, SWITZERLAND) 2024; 13:2187. [PMID: 39204623 PMCID: PMC11359786 DOI: 10.3390/plants13162187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Solidago virgaurea L., or European goldenrod, has a long tradition in folk medicine due to the wide range of its biological activity. This paper aimed to investigate the antimicrobial and antioxidative potential of S. virgaurea essential oil and hydrolates obtained by traditional and novel extraction techniques. For that purpose, hydrodistillation, microwave-assisted hydrodistillation and solvent-free extraction were performed. Analysis of the composition of essential oils indicated the presence of 59 different compounds with cyclocolorenone, germacrene D and spathulenol being the dominant in all essential oil samples. Antimicrobial activity was detected in all the analyzed samples, with higher effect on Gram-positive microorganisms compared to Gram-negative. Regarding the type of performed extraction process, the introduction of microwaves induced higher antimicrobial and antioxidative potential in both essential oils and hydrolates. Hydrolates obtained in microwave-assisted processes had pronounced antioxidative activity, which creates a good basis for further investigation of this side product's potential use in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Marko Malićanin
- Faculty of Agriculture, University of Niš, Kosančićeva 4, 37000 Kruševac, Serbia
| | - Ivana Karabegović
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | - Natalija Đorđević
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | - Stojan Mančić
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | | | - Duško Brković
- Faculty of Agronomy in Čačak, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia
| | - Bojana Danilović
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
5
|
Ni X, Bai H, Han J, Zhou Y, Bai Z, Luo S, Xu J, Jin C, Li Z. Inhibitory activities of essential oils from Syzygium aromaticum inhibition of Echinochloa crus-galli. PLoS One 2024; 19:e0304863. [PMID: 38905259 PMCID: PMC11192376 DOI: 10.1371/journal.pone.0304863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164°C, 165°C (SAEO-165), 169°C, 170°C 175°C and 180°C. The SAEO-165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and β-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. SAEO induced excessive generation of reactive oxygen species leading to oxidative stress and ultimately tissue damage in E. crus-galli. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.
Collapse
Affiliation(s)
- Xianzhi Ni
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Zhou
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Siquan Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Jingjing Xu
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
6
|
Monteiro EDS, da Silva FS, Gomes KO, do Prado BA, dos Santos RD, Gomes da Camara CA, de Moraes MM, da Silva ICR, de Macêdo VT, Gelfuso GM, de Sá Barreto LCL, Orsi DC. Characterization and Determination of the Antibacterial Activity of Baccharis dracunculifolia Essential-Oil Nanoemulsions. Antibiotics (Basel) 2023; 12:1677. [PMID: 38136711 PMCID: PMC10740613 DOI: 10.3390/antibiotics12121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to evaluate the antibacterial activity of nanoemulsions of Baccharis dracunculifolia essential oil. The volatile compounds of the essential oil were identified using gas chromatography-mass spectrometry. The properties of the nanoemulsions (droplet size, polydispersity index, pH, and electrical conductivity) were determined. The antibacterial activities of the essential oil and its nanoemulsions were evaluated using MIC, MBC, and disk diffusion. The microorganisms used were: Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, Streptococcus mutans ATCC 25175, and Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC BAA-1706, Salmonella enterica ATCC 14028, and Escherichia coli ATCC 25922). The major volatile compounds of the B. dracunculifolia essential oil were limonene (19.36%), (E)-nerolidol (12.75%), bicyclogermacrene (10.76%), and β-pinene (9.60%). The nanoemulsions had a mean droplet size between 13.14 and 56.84 nm. The nanoemulsions presented lower and statistically significant MIC values compared to the essential oil, indicating enhancement of the bacteriostatic action. The disk diffusion method showed that both the nanoemulsions and the essential oil presented inhibition zones only for Gram-positive bacteria, while there were no results against Gram-negative bacteria, indicating that B. dracunculifolia essential oil has a better antimicrobial effect on Gram-positive microorganisms.
Collapse
Affiliation(s)
- Erika da Silva Monteiro
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Franklyn Santos da Silva
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Karolina Oliveira Gomes
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Bruno Alcântara do Prado
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Rebeca Dias dos Santos
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | | | - Marcilio Martins de Moraes
- Department of Chemistry, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (C.A.G.d.C.); (M.M.d.M.)
| | - Izabel Cristina Rodrigues da Silva
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Vinicius Teixeira de Macêdo
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs, and Cosmetics, University of Brasília, Brasília 70910-900, DF, Brazil; (G.M.G.); (L.C.L.d.S.B.)
| | | | - Daniela Castilho Orsi
- Laboratory of Quality Control, University of Brasília, Brasília 72220-900, DF, Brazil; (E.d.S.M.); (F.S.d.S.); (K.O.G.); (B.A.d.P.); (R.D.d.S.); (I.C.R.d.S.); (V.T.d.M.)
| |
Collapse
|
7
|
Zhao A, Zhang Y, Li F, Chen L, Huang X. Analysis of the Antibacterial Properties of Compound Essential Oil and the Main Antibacterial Components of Unilateral Essential Oils. Molecules 2023; 28:6304. [PMID: 37687133 PMCID: PMC10489134 DOI: 10.3390/molecules28176304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Plant essential oils are widely used in food, medicine, cosmetics, and other fields because of their bacteriostatic properties and natural sources. However, the bacteriostatic range of unilateral essential oils is limited, and compound essential oil has become an effective way to improve the antibacterial properties of unilateral essential oils. In this study, based on the analysis of the antibacterial properties of Chinese cinnamon bark oil and oregano oil, the proportion and concentration of the compound essential oil were optimized and designed, and the antibacterial activity of the compound essential oil was studied. The results showed that the antibacterial activity of Chinese cinnamon bark oil was higher than that of oregano oil. The compound essential oil prepared by a 1:1 ratio of Chinese cinnamon bark oil and oregano oil with a concentration of 156.25 ppm showed an excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. The GC-MS results showed that cinnamaldehyde was the main antibacterial component of Chinese cinnamon bark essential oil, and carvacrol and thymol in oregano oil were the main antibacterial components.
Collapse
Affiliation(s)
- Anjiu Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (A.Z.); (Y.Z.)
| | - You Zhang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (A.Z.); (Y.Z.)
| | - Feng Li
- Research Institute of Characteristic Flowers and Trees, School of Landscape Architecture, Chengdu Agricultural College, Chengdu 611130, China;
| | - Lin Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (A.Z.); (Y.Z.)
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (A.Z.); (Y.Z.)
| |
Collapse
|
8
|
Desrini S, Ducloux J, Hamion G, Bodet C, Labanowski J, Mustofa M, Nuryastuti T, Imbert C, Girardot M. Antibiofilm Activity of Invasive Plants against Candida albicans: Focus on Baccharis halimifolia Essential Oil and Its Compounds. Chem Biodivers 2023; 20:e202300130. [PMID: 37452792 DOI: 10.1002/cbdv.202300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL-1 and 15.6 μg mL-1 , respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL-1 . The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50 ) at 4 and 74 μg mL-1 against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50 =9-310 μ mol l-1 ) and preformed 24 h-biofilm (IC50 =38-630 μ mol l-1 ) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.
Collapse
Affiliation(s)
- Sufi Desrini
- Department of Pharmacology, Faculty of Medicine, Universitas Islam Indonesia, 55584, Yogyakarta, Indonesia
- Doctoral Programme of Faculty Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Ducloux
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Guillaume Hamion
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines UR 15560, Université de Poitiers, Poitiers, France
| | | | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Indonesia
- Indonesia Biofilm Research Collaboration Center UGM-BRIN, Yogyakarta, Indonesia
| | - Christine Imbert
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions -, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
9
|
Bui AV, Pham TV, Nguyen KN, Nguyen NT, Huynh KD, Dang V, Ruml T, Truong D. Chemical compositions and biological activities of Serevenia buxifolia essential oil leaves cultivated in Vietnam (Thua Thien Hue). Food Sci Nutr 2023; 11:4060-4072. [PMID: 37457193 PMCID: PMC10345695 DOI: 10.1002/fsn3.3395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/18/2023] Open
Abstract
Serevenia buxifolia is an evergreen citrus plant and has attracted considerable attention due to its bioactive components and biological activities. In the present study, the essential oil (EO) from S. buxifolia cultivated in Vietnam was demonstrated to exhibit the in vitro antioxidant, thrombolytic, anti-hemolysis, anti-inflammatory, and antidiabetic activities. Briefly, the gas chromatography coupled to mass spectrometry analysis revealed that the leaf EO of S. buxifolia was composed of 33 components, with the main constituents being β-carypphyllene (32.5%), and elixene (9.8%). The extracted oil possessed a fairly high free radical scavenging activity against 2, 2-diphenyl-1-picrylhydrazyl (DPPH), with an IC50 value of 190.7 μg/mL compared with positive control, α-tocopherol, IC50 value of 42.6 μg/mL. The EO also exhibited thrombolytic activity: the percentage of inhibition was found to be 70.75% at 100 μL, in comparison with 87.2% for the positive control, streptokinase. For hemolytic activity, the percentage of inhibition of the EO was from 27.4% to 59.6% at concentrations from 10 to 100 μg/mL, respectively. The results of in vitro anti-inflammatory activity indicated that the EO of S. buxifolia leaves effectively protects the heat-induced denaturation, with an IC50 value of 40.25 μg/mL. The EO also exhibited antidiabetic potential, with IC50 values of 87.8 and 134.9 μg/mL against α-amylase and α-glucosidase, respectively. It is noteworthy that the potent biological activities of the obtained S. buxifolia oil increased in a dose-dependent manner. The results achieved show that the EO of S. buxifolia leaves can be a potential source for oxidative stress, inflammatory, and diabetic management.
Collapse
Affiliation(s)
- Anh Vo Bui
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thanh Vy Pham
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Kim Ngan Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Nhat Tan Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Khanh Duy Huynh
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Van‐Son Dang
- Institute of Tropical BiologyVietnam Academy Science and TechnologyHo Chi Minh CityVietnam
| | - Tomas Ruml
- Faculty of Food and Biochemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Dieu‐Hien Truong
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| |
Collapse
|
10
|
Kaale LD. Comparing the effects of essential oils and methanolic extracts on the inhibition of Aspergillus flavus and Aspergillus parasiticus growth and production of aflatoxins. Mycotoxin Res 2023:10.1007/s12550-023-00490-6. [PMID: 37261704 DOI: 10.1007/s12550-023-00490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
The antifungal and antiaflatoxigenic effects of four distinct plant species against Aspergillus flavus and Aspergillus parasiticus were investigated. Essential oils and methanolic extracts were prepared from aerial parts of Lippia javanica, Ocimum gratissimum, Satureja punctata, and stem barks of Toddalia asiatica by hydro-distillation and maceration, respectively. The poisoned food method was used to confirm the antifungal activity of essential oils and methanolic extracts from four different plant species against Aspergillus flavus and Aspergillus parasiticus, and high-performance liquid chromatography was used to quantify the antiaflatoxigenic activity. The essential oils of Satureja punctata and Lippia javanica showed the highest antiaflatoxigenic activity against the fungi strains tested at concentrations of 1.25, 2.5, and 5 µL/mL, followed by Ocimum gratissimum essential oil while Toddalia asiatica essential oil exerted moderate antiaflatoxigenic activity. Meanwhile, the methanolic extracts showed a wide spectrum of low to high antifungal and antiaflatoxigenic activities at concentrations of 125, 250, and 500 µg/mL against A. flavus and A. parasiticus. This study has indicated that the essential oils of Satureja punctate, Lippia javanica, and Ocimum gratissimum had substantial antifungal and antiaflatoxigenic activities compared to their methanolic extracts, while Toddalia asiatica methanolic extract had a moderate antifungal activity compared to its essential oil.
Collapse
Affiliation(s)
- Lilian D Kaale
- Department of Food Science and Technology, University of Dar es Salaam, P. O. Box 35134, Dares Salaam, Tanzania.
| |
Collapse
|
11
|
Gou J, Lu Y, Xie M, Tang X, Chen L, Zhao J, Li G, Wang H. Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria. Heliyon 2023; 9:e14985. [PMID: 37151707 PMCID: PMC10161380 DOI: 10.1016/j.heliyon.2023.e14985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Asteraceae family are widely used as ethno medicines to treatment parasitic, malaria, hematemesis, pruritus, pyretic, anthelmintic, wound healing. The aim of this review is to provide an overview of Asteraceae plants antimicrobial activity. The most relevant results from the published studies are summarized and discussed. The species in genus of Artemisia, Echinacea, Centaurea, Baccharis, and Calendula showed antimicrobial activity. Most of these species are usually used as ethno medicines to treat infection, inflammation, and parasitics. The effective part or component for antimicrobial was essential oil and crude extract, and essential oil attracted more attention. It was also reported that nanoparticles coated with crude extract were effective against multidrug resistant bacteria. For multidrug resistant bacteria study, the species in Armtemisia were the most investigated, and Staphylococcus aureus and Escherichia coli were the most studied multidrug resistant strains. The antimicrobial activity was evaluated mainly based on the results of minimum inhibitory concentration (MIC). Few reports have been reported on minimum bactericide concentration (MBC) and its antibacterial mechanisms. According to the reported study results, some plants in Asteraceae have the potential to be developed as bacteriostatic agents and against multidrug resistant bacteria. However, most studies are still in vitro, further clinical and applied studies are needed.
Collapse
|
12
|
Shah M, Khan F, Ullah S, Mohanta TK, Khan A, Zainab R, Rafiq N, Ara H, Alam T, Rehman NU, Al-Harrasi A. GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report. Antioxidants (Basel) 2023; 12:antiox12030662. [PMID: 36978910 PMCID: PMC10045896 DOI: 10.3390/antiox12030662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The present study explored Euphorbia larica essential oil (ELEO) constituents for the first time, obtained via hydro-distillation by means of Gas Chromatography-Mass Spectrometry (GC-MS) profiling. The essential oil was screened in vitro against breast cancer cells, normal cell lines, α-glucosidase, carbonic anhydrase-II (CA-II), free radical scavenging and in vivo analgesic and anti-inflammatory capabilities. The GC-MS screening revealed that the ELEO comprises sixty compounds (95.25%) with the dominant constituents being camphene (16.41%), thunbergol (15.33%), limonene (4.29%), eremophilene (3.77%), and β-eudesmol (3.51%). A promising antidiabetic capacity was noticed with an IC50 of 9.63 ± 0.22 μg/mL by the ELEO as equated to acarbose with an IC50 = 377.71 ± 1.34 μg/mL, while a 162.82 ± 1.24 μg/mL inhibition was observed against CA-II. Regarding breast cancer, the ELEO offered considerable cytotoxic capabilities against the triple-negative breast cancer (MDA-MB-231) cell lines, having an IC50 = 183.8 ± 1.6 μg/mL. Furthermore, the ELEO was also tested with the human breast epithelial (MCF-10A) cell line, and the findings also presumed that the ELEO did not produce any damage to the tested normal cell lines. The ELEO was effective against the Gram-positive bacteria and offered a 19.8 ± 0.02 mm zone of inhibition (ZOI) against B. atrophaeus. At the same time, the maximum resistance with 18.03 ± 0.01 mm ZOI against the fungal strain Aspergillus parasiticus was observed among the tested fungal strains. An appreciable free radical significance was observed via the DPPH assay with an IC50 = 133.53 ± 0.19 µg/mL as equated to the ABTS assay having an IC50 = 154.93 ± 0.17 µg/mL. The ELEO also offered a substantial analgesic capacity and produced 58.33% inhibition in comparison with aspirin, a 68.47% decrease in writhes, and an anti-inflammatory capability of 65.54% inhibition, as equated to the standard diclofenac sodium having 73.64% inhibition. Hence, it was concluded that the ELEO might be a natural source for the treatment of diabetes mellitus, breast cancer, analgesic, inflammatory, and antimicrobial-related diseases. Moreover, additional phytochemical and pharmacological studies are needed to isolate responsible chemical ingredients to formulate new drugs for the examined activities.
Collapse
Affiliation(s)
- Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Rimsha Zainab
- Department of Botany, Women University Swabi, Swabi 23430, Pakistan
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hussan Ara
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PC 616, Birkat Al Mauz, Nizwa P.O. Box 33, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| |
Collapse
|
13
|
Bordean ME, Ungur RA, Toc DA, Borda IM, Marțiș GS, Pop CR, Filip M, Vlassa M, Nasui BA, Pop A, Cinteză D, Popa FL, Marian S, Szanto LG, Muste S. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants (Basel) 2023; 12:antiox12030596. [PMID: 36978844 PMCID: PMC10045255 DOI: 10.3390/antiox12030596] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Taking into account the increasing number of antibiotic-resistant bacteria, actual research focused on plant extracts is vital. The aim of our study was to investigate leaf and stem ethanolic extracts of Artemisia absinthium L. and Artemisia annua L. in order to explore their antioxidant and antibacterial activities. Total phenolic content (TPC) was evaluated spectrophotometrically. Antioxidant activity was evaluated by DPPH and ABTS. The antibacterial activity of wormwood extracts was assessed by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enteritidis cultures, and by zone of inhibition in Klebsiella carbapenem-resistant enterobacteriaceae (CRE) and Escherichia coli extended-spectrum β-lactamases cultures (ESBL). The Artemisia annua L. leaf extract (AnL) exhibited the highest TPC (518.09 mg/mL) and the highest expression of sinapic acid (285.69 ± 0.002 µg/mL). Nevertheless, the highest antioxidant capacity (1360.51 ± 0.04 µM Trolox/g DW by ABTS and 735.77 ± 0.02 µM Trolox/g DW by DPPH) was found in Artemisia absinthium L. leaf from the second year of vegetation (AbL2). AnL extract exhibited the lowest MIC and MBC for all tested bacteria and the maximal zone of inhibition for Klebsiella CRE and Escherichia coli ESBL. Our study revealed that AbL2 exhibited the best antioxidant potential, while AnL extract had the strongest antibacterial effect.
Collapse
Affiliation(s)
- Maria-Evelina Bordean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Georgiana Smaranda Marțiș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Carmen Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Bogdana Adriana Nasui
- Department of Community Health, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Delia Cinteză
- 9th Department-Physical Medicine and Rehabilitation, Carol Davila Univerity of Medicine and Pharmacy, 050474 București, Romania
| | - Florina Ligia Popa
- Physical Medicine and Rehabilitation Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, Victoriei Blvd., 550024 Sibiu, Romania
- Academic Emergency Hospital of Sibiu, Coposu Blvd., 550245 Sibiu, Romania
| | - Sabina Marian
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Lidia Gizella Szanto
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Sevastița Muste
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Zimmermann RC, Poitevin CG, da Luz TS, Mazarotto EJ, Furuie JL, Martins CEN, do Amaral W, Cipriano RR, da Rosa JM, Pimentel IC, Zawadneak MAC. Antifungal activity of essential oils and their combinations against storage fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48559-48570. [PMID: 36763278 DOI: 10.1007/s11356-023-25772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
We aimed to evaluate the fungicidal activity of essential oils (EOs) from Baccharis dracunculifolia (Asteraceae), Baccharis uncinella (Asteraceae), Mentha arvensis (Lamiaceae), Salvia officinalis (Lamiaceae), Melaleuca alternifolia (Myrtaceae), and Cymbopogon nardus (Poaceae) in the in vitro control of mycotoxin-producing strains of Aspergillus niger, Aspergillus nomius, Aspergillus flavus, and Fusarium graminearum. EOs' chemical composition was analyzed by gas chromatography-mass spectrometry, and a total of 19, 21, 18, 20, 17, and 15 compounds were identified in B. dracunculifolia, B. uncinella, S. officinalis, M. arvensis, M. alternifolia, and C. nardus EOs, respectively. Contact and volatilization bioassays were performed, for which M. alternifolia and C. nardus EOs had the greatest fungicidal effect (> 90%). Therefore, these EOs were evaluated for minimum inhibitory concentration, medium inhibitory concentration, and sporulation. Effects from the combined use of EOs were also evaluated. EOs interacted in combination, displaying an additive effect against F. graminearum and A. flavus and an antagonistic effect against the remaining isolates. We conclude that C. nardus EO was effective in the control of storage pathogens and that combined EOs can improve their antifungal effects.
Collapse
Affiliation(s)
- Rubens Candido Zimmermann
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil.
| | - Carolina Gracia Poitevin
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Thaisa Siqueira da Luz
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Edson José Mazarotto
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Jason Lee Furuie
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | | | - Wanderlei do Amaral
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Roger Raupp Cipriano
- Laboratory of Phytotechnology and Crop Protection, Federal University of Paraná, Curitiba, PR, Brazil
| | - Joatan Machado da Rosa
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Ida Chapaval Pimentel
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Maria A C Zawadneak
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| |
Collapse
|
15
|
Arykbayeva AB, Ustenova GO, Sharipov KO, Beissebayeva UT, Kaukhova IE, Myrzabayeva A, Gemejiyeva NG. Determination of Chemical Composition and Antimicrobial Activity of the CO 2 Extract of Eryngium planum L. Int J Biomater 2023; 2023:4702607. [PMID: 37151378 PMCID: PMC10159749 DOI: 10.1155/2023/4702607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 05/09/2023] Open
Abstract
The article presents parameters for obtaining a carbon dioxide extract from the subterranean part of Eryngium planum that contains a valuable set of organic substances and has a certain antimicrobial effect. Methods. Raw materials were collected in the Almaty region (Republic of Kazakhstan). The CO2 extract of Eryngium planum herbs was obtained under subcritical conditions. A gas chromatograph with a mass spectrometric detector was used to determine the compositional breakdown of the extract. Antimicrobial activity was determined by two methods: the micromethod of serial dilutions and the disk-diffusion method. Three microbial test strains were used: Staphylococcus aureus ATCC 6538-P, Escherichia coli ATCC 8739, and Candida albicans ATCC 10231. Results. To extract biologically active substances from the subterranean part of Eryngium planum L., we have chosen carbon dioxide extraction technology, a technology for processing carbon dioxide (CO2) raw materials, which allows us to extract various substances in high concentrations. Carbon dioxide extraction technology is an effective and environmentally safe way to isolate various biologically active substances contained in medicinal plant raw materials. In the composition of the CO2 extract of Eryngium planum L. 43 components were identified, the main of which are α-linolenic acid, 8.30%; myristic acid, 6.40%; caryophyllene, 6.92%; spatulous, 6.62%; and other main identified compounds and their percentage. Conclusions. The study showed that the CO2 extract of Eryngium planum L. contains biologically active compounds that have a pronounced antimicrobial effect against clinically significant microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans.
Collapse
Affiliation(s)
- Aliya B Arykbayeva
- Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Gulbaram O Ustenova
- Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Kamalidin O Sharipov
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Ulzhan T Beissebayeva
- Department of Dermatovenereology, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Irina E Kaukhova
- Department of Industrial Technology of Medicines, St. Petersburg State Chemical Pharmaceutical University, Saint Petersburg 197376, Russia
| | - Auyes Myrzabayeva
- Scientific Center for Anti-Infectious Drugs JSC, Almaty 050000, Kazakhstan
| | - Nadezhda G Gemejiyeva
- Laboratory of Plant Resources, Institute of Botany and Phyto-Introductions, Almaty 050040, Kazakhstan
| |
Collapse
|
16
|
Perigo CV, Haber LL, Facanali R, Vieira MAR, Torres RB, Bernacci LC, Guimarães EF, Baitello JB, Sobral MEG, Quecini V, Marques MOM. Essential Oils of Aromatic Plant Species from the Atlantic Rainforest Exhibit Extensive Chemical Diversity and Antimicrobial Activity. Antibiotics (Basel) 2022; 11:antibiotics11121844. [PMID: 36551501 PMCID: PMC9774909 DOI: 10.3390/antibiotics11121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Microbial resistance, caused by the overuse or inadequate application of antibiotics, is a worldwide crisis, increasing the risk of treatment failure and healthcare costs. Plant essential oils (EOs) consist of hydrophobic metabolites with antimicrobial activity. The antimicrobial potential of the chemical diversity of plants from the Atlantic Rainforest remains scarcely characterized. In the current work, we determined the metabolite profile of the EOs from aromatic plants from nine locations and accessed their antimicrobial and biocidal activity by agar diffusion assays, minimum inhibitory concentration, time-kill and cell-component leakage assays. The pharmacokinetic properties of the EO compounds were investigated by in silico tools. More than a hundred metabolites were identified, mainly consisting of sesqui and monoterpenes. Individual plants and botanical families exhibited extensive chemical variations in their EO composition. Probabilistic models demonstrated that qualitative and quantitative differences contribute to chemical diversity, depending on the botanical family. The EOs exhibited antimicrobial biocidal activity against pathogenic bacteria, fungi and multiple predicted pharmacological targets. Our results demonstrate the antimicrobial potential of EOs from rainforest plants, indicate novel macromolecular targets, and contribute to highlighting the chemical diversity of native species.
Collapse
Affiliation(s)
| | - Lenita L. Haber
- Vegetables Research Center, Brazilian Agricultural Research Corporation, Brasília 70351-970, Brazil
| | | | | | | | | | - Elsie F. Guimarães
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - João B. Baitello
- Instituto Florestal do Estado de São Paulo, São Paulo 02377-000, Brazil
| | - Marcos E. G. Sobral
- Natural Sciences Department, Campus Dom Bosco, Universidade Federal de São João del-Rei, São João del Reio 36301-160, Brazil
| | - Vera Quecini
- Grape and Wine Research Center, Brazilian Agricultural Research Corporation, Bento Gonçalves 95701-008, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| | - Marcia Ortiz M. Marques
- Instituto Agronômico, Campinas 13075-630, Brazil
- Correspondence: (V.Q.); (M.O.M.M.); Tel.: +55-(54)-3455-8000 (V.Q.); +55-(19)-3202-1700 (M.O.M.M.)
| |
Collapse
|
17
|
Chemical Composition and Antioxidant and Antibacterial Potencies of the Artemisia ordosica Aerial Parts Essential Oil during the Vegetative Period. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248898. [PMID: 36558030 PMCID: PMC9781940 DOI: 10.3390/molecules27248898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
As one of the vital shrubs growing in crusted areas in China, Artemisia ordosica (belonging to the Asteraceae family) is abundant in essential oil, and its aerial part's essential oil has been reported to have some biological activities during the flowering and fruit set stage, and has been used in folk medicine. However, little is known about the biological activities of its aerial part's essential oil during the vegetative period. Thus, the purpose of this work was to determine the chemical composition and evaluate the antioxidant and antibacterial potencies of the essential oil extracted from A. ordosica aerial parts during the vegetative stage. Gas chromatography coupled with mass spectrometry (GC-MS) revealed that spathulenol (9.93%) and α-curcumene (9.24%), both sesquiterpenes, were the most abundant of the 74 chemical constituents detected in the essential oil of A. ordosica. The antioxidant activity of the essential oil was found to be relatively moderate against 2,2-diphenylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radical (OH●) radicals. The essential oil exhibited strong antibacterial activity against Staphylococcus aureus, Salmonella abony and Escherichia coli, with minimum inhibitory concentrations (MICs) of 2.5, 5, and 10 μL/mL, respectively. The results indicate that the essential oil of A. ordosica possesses notable antibacterial properties as well as antioxidant capability and can thus be employed as a natural ingredient which can be used as a substitute for antibiotics in the animal feed industry. However, in vivo toxicological studies are still required to determine the safety level and beneficial outcomes of the A. ordosica essential oil for future utilization.
Collapse
|
18
|
Shoeib NA, Al-Madboly LA, Ragab AE. In vitro and in silico β-lactamase inhibitory properties and phytochemical profile of Ocimum basilicum cultivated in central delta of Egypt. PHARMACEUTICAL BIOLOGY 2022; 60:1969-1980. [PMID: 36226757 PMCID: PMC9578474 DOI: 10.1080/13880209.2022.2127791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/29/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Some studies reported the chemical content and antimicrobial properties of Ocimum basilicum L. (Lamiaceae), relevant to the ecological variations in some areas of Egypt and other countries, yet no research was conducted on the plant cultivated in the central delta region of Egypt. Also, no previous data reported on inhibition of β-lactamases by O. basilicum. OBJECTIVE To assess β-lactamases inhibition by O. basilicum extracts and the individual constituents. MATERIALS AND METHODS Dried aerial parts of O. basilicum were extracted by hydrodistillation for preparation of essential oil and by methanol for non-volatile constituents. Essential oil content and the methanol extract were analysed by GC-MS and UPLC-PDA-MS/MS, respectively. Methyl cinnamate was isolated and analysed by NMR. Broth microdilution method was used to investigate the antimicrobial against resistant clinical isolates of Escherichia coli identified by double disc synergy, combination disc tests and PCR. The most active oil content was further tested with a nitrocefin kit for β-lactamase inhibition and investigated by docking. RESULTS O. basilicum was found to contain methyl cinnamate as the major content of the essential oil. More interestingly, methyl cinnamate inhibited ESBL β-lactamases of the type CTX-M. The in vitro IC50 using nitrocefin kit was 11.6 µg/mL vs. 8.1 µg/mL for clavulanic acid as a standard β-lactamase inhibitor. DISCUSSION AND CONCLUSIONS This is the first study to report the inhibitory activity of O. basilicum oil and methyl cinnamate against β-lactamase-producing bacteria. The results indicate that methyl cinnamate could be a potential alternative for β-lactamase inhibition.
Collapse
Affiliation(s)
| | | | - Amany E. Ragab
- Department of Pharmacognosy, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Gazim ZC, Valle JS, Carvalho dos Santos I, Rahal IL, Silva GCC, Lopes AD, Ruiz SP, Faria MGI, Piau Junior R, Gonçalves DD. Ethnomedicinal, phytochemical and pharmacological investigations of Baccharis dracunculifolia DC. (ASTERACEAE). Front Pharmacol 2022; 13:1048688. [PMID: 36518668 PMCID: PMC9742423 DOI: 10.3389/fphar.2022.1048688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 09/29/2023] Open
Abstract
Baccharis dracunculifolia DC (Lamiaceae) (Asteraceae) is found in South America, mainly in Argentina, Brazil, Bolivia, Paraguay and Uruguay. Folk medicine is used as a sedative, hypotensive, bronchodilator, cardiovascular disorders, anti-flu, and also in skin wounds. Considered the main source of green propolis, which increases the pharmacological interest in this species. It is also known as a "benefactor" plant facilitating the development of other plant species around it, being indicated for the recovery of degraded areas. This species has been studied for decades in order to isolate and identify the active principles present in the aerial parts (leaves and flowers) and roots. The present study consists of a review of the scientific literature addressing the ethnobotanical, ethnomedicinal, phytochemical, pharmacological and potential cytotoxic effects of the B. dracunculifolia species. In this survey, we sought to investigate issues related to the botanical and geographic description of the species, the ethnobotanical uses, as well as the phytochemical studies of the essential oil, extracts and green propolis obtained from the aerial parts and roots of B. dracunculifolia. Using high precision analytical tools, numerous compounds have already been isolated and identified from leaves and flowers such as the flavonoids: naringenin, acacetin, dihydrokaempferol, isosakuranetin and kaempferide; phenolic acids: p-coumaric, dihydrocoumaric, ferulic (E)-cinnamic, hydroxycinnamic, gallic, caffeic, and several caffeoylquinic acids derivatives; phenolic acids prenylated: artepillin C, baccharin, drupanin; the glycosides dracuculifosides and the pentacyclic triterpenoids: Baccharis oxide and friedelanol. The predominant class in the essential oil of leaves and flowers are terpenoids comprising oxygenated monoterpenes and sesquiterpenes, highlighting the compounds nerolidol, spathulenol, germacrene D and bicyclogermacrene. These compounds give the species high antimicrobial, antioxidant, antitumor, analgesic, immunomodulatory and antiparasitic potential, making this species a promising herbal medicine. In vitro toxicity assays with B. dracunculifolia extract showed low or no cytotoxicity. However, in vivo analyses with high doses of the aqueous extract resulted in genotoxic effects, which leads us to conclude that the toxicity of this plant is dose-dependent.
Collapse
Affiliation(s)
- Zilda Cristiani Gazim
- Chemistry Laboratory of Natural Products, Graduate Program in Animal Science and Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
- Preventive Veterinary Medicine and Public Health Laboratory, Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Juliana Silveira Valle
- Preventive Veterinary Medicine and Public Health Laboratory, Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
- Molecular Biology Laboratory, Graduate Program in Animal Science and Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
| | - Isabela Carvalho dos Santos
- Preventive Veterinary Medicine and Public Health Laboratory, Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Isabelle Luiz Rahal
- Chemistry Laboratory of Natural Products, Graduate Program in Animal Science and Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
| | - Gabriela Catuzo Canonico Silva
- Chemistry Laboratory of Natural Products, Graduate Program in Animal Science and Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
| | - Ana Daniela Lopes
- Agricultural Microbiology and Nematology Laboratory, Graduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
| | - Suelen Pereira Ruiz
- Laboratory of Biotechnology of Plant Products and Microorganisms, Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
| | - Maria Graciela Iecher Faria
- Laboratory of Biotechnology of Plant Products and Microorganisms, Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Brazil
| | - Ranulfo Piau Junior
- Preventive Veterinary Medicine and Public Health Laboratory, Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Daniela Dib Gonçalves
- Preventive Veterinary Medicine and Public Health Laboratory, Postgraduate Program in Animal Science with an Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| |
Collapse
|
20
|
A Plant Worthy of Further Study-Volatile and Non-Volatile Compounds of Portenschlagiella ramosissima (Port.) Tutin and Its Biological Activity. Pharmaceuticals (Basel) 2022; 15:ph15121454. [PMID: 36558905 PMCID: PMC9781946 DOI: 10.3390/ph15121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
New and detailed data are presented on the phytochemical composition of the volatile and non-volatile organic compounds of the Mediterranean endemic species Portenschlagiella ramosissima (Port.) Tutin. Both the essential oil and hydrosol were obtained from the air-dried plant by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The volatile compounds from the fresh and air-dried plants and from the hydrosol were isolated for the first time by headspace solid-phase microextraction using two fibres of different polarity. The benzene derivative group was the predominant group in all samples, with myristicin being the most abundant component of all. The non-volatile compounds of the methanol extract were analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry with electrospray ionisation, and three flavonoid glycosides, one anthocyanidin glycoside, and lipid derivatives were detected. Both the chemical composition and biological activities of this plant have been described in a very limited number of publications, making it an interesting source for further study. The antiphytoviral activity of the essential oil and hydrosol showed that both extracts significantly reduced the number of lesions on the leaves of local host plants infected with tobacco mosaic virus. Moderate antiproliferative activity of the methanol extract was detected in three cancer cell lines, cervical cancer cell line, human colon cancer cell line and human osteosarcoma cell line, using the MTS-based cell proliferation assay. Based on the results, we highlight this plant as a new source of bioactive compounds and natural phytotherapeutic agent that deserves further investigation.
Collapse
|
21
|
Zhang J, Zhao Z, Liang W, Bi J, Zheng Y, Gu X, Fang H. Essential oil from Sabina chinensis leaves: A promising green control agent against Fusarium sp. FRONTIERS IN PLANT SCIENCE 2022; 13:1006303. [PMID: 36438150 PMCID: PMC9691992 DOI: 10.3389/fpls.2022.1006303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Sabina chinensis is a woody plant with important ecological functions in different regions of China, but its essential oils (EO) against plant pathogenic fungi remain largely undetermined. The purpose of our study was to assess the chemical composition and antifungal activity of S. chinensis EO based on optimization of the extraction process. In this study, an actionable and effective model with the experimental results and identified optimum conditions (crushing degree of 20 mesh, liquid-solid ratio of 10.1:1, immersion time of 9.1 h) was established successfully to achieve an extraction yield of 0.54%, which was basically consistent with the theoretical value. A total of 26 compounds were identified using headspace gas chromatography-mass spectrometry (GC-MS) and showed that the major constituent was β-phellandrene (26.64-39.26%), followed by terpinen-4-ol (6.53-11.89%), bornyl acetate (6.13-10.53%), etc. For Petri plate assays, our experiments found for the first time that S. chinensis EO revealed high and long-term antifungal activity against the tested strains, including Fusarium oxysporum and Fusarium incarnatum, at EC50 values of 1.42 and 1.15 µL/mL, which especially reached approximately 76% and 90% growth inhibition at a dose of 0.2 µL/mL, respectively. Furthermore, the antifungal activity of EO from different harvest periods showed remarkable variation. The orthogonal partial least-squares discriminant analysis (OPLS-DA) method revealed 11 metabolites with chemical marker components, and 5 of its potential antifungal activities, terpinen-4-ol, α-terpineol, α-elemol, γ-eudesmol, and bornyl acetate, were strongly correlated with the mycelial inhibition rate. In total, this study explored the antifungal activity of EO against root rot fungus as a potential fungicide and provided valuable information into developing potential products from natural agents.
Collapse
Affiliation(s)
- Jianyun Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
| | - Ziyi Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenyu Liang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jingyi Bi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
| | - Huiyong Fang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
22
|
Malveira EA, Souza PFN, Neto NAS, Aguiar TKB, Rodrigues NS, Henrique CWB, Silva AFB, Lima LB, Albuquerque CC, Freitas CDT. Essential Oil from Croton blanchetianus Leaves: Anticandidal Potential and Mechanisms of Action. J Fungi (Basel) 2022; 8:1147. [PMID: 36354914 PMCID: PMC9693873 DOI: 10.3390/jof8111147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Antimicrobial drugs are becoming ineffective given the resistance acquired by microorganisms. As such, it is imperative to seek new antimicrobial molecules that could provide a basis for the development of new drugs. Therefore, this work aimed to evaluate the antimicrobial potential and the mechanisms of action of the essential oil extracted from leaves of Croton blanchetianus (named CbEO) on different fungi and bacteria of clinical importance in both planktonic and biofilm lifestyles. GC-MS/MS analysis revealed the presence of twenty-two different compounds in the CbEO, which were identified using the Kovats retention index. Among these, the most abundant were amorphene (20.03%), spathulenol (5%), bicyclogermacrene (1.49%), caryophyllene oxide (4.55%), and eucalyptol (5.62%). CbOE (50 µg mL-1) barely inhibited the growth of Bacillus subtilis (23%), Pseudomonas aeruginosa (27%), and Salmonella enterica (28%), and no inhibition was obtained against Enterobacter aerogenes and Klebsiella pneumoniae. Additionally, no activity against bacterial biofilm was detected. In contrast, CbEO was active against Candida species. C. albicans and C. parapsilosis were inhibited by 78 and 75%, respectively. The antibiofilm potential also was favorable against C. albicans and C. parapsilosis, inhibiting 44 and 74% of biofilm formation and reducing around 41 and 27% of the preformed biofilm, respectively. CbOE caused membrane damage and pore formation, overproduction of ROS, and apoptosis on C. albicans and C. parapsilosis cells, as well as not inducing hemolysis in human red cells. The results obtained in this work raise the possibility of using the essential oil of C. blanchetianus leaves as an alternative to fight infections caused by C. albicans and C. parapsilosis.
Collapse
Affiliation(s)
- Ellen A. Malveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-160, Brazil
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Natanael S. Rodrigues
- Department of Biological Sciences, Faculty of Exact and Natural Sciences, State University of Rio Grande do Norte, Mossoró 59650-000, Brazil
| | - Carlos W. B. Henrique
- Department of Biological Sciences, Faculty of Exact and Natural Sciences, State University of Rio Grande do Norte, Mossoró 59650-000, Brazil
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| | - Leandro B. Lima
- Department of Chemistry, Faculty of Exact and Natural Sciences, State University of Rio Grande do Norte, Mossoró 59650-000, Brazil
| | - Cynthia C. Albuquerque
- Department of Biological Sciences, Faculty of Exact and Natural Sciences, State University of Rio Grande do Norte, Mossoró 59650-000, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, Brazil
| |
Collapse
|
23
|
The Essential Oil of Tunisian Halophyte Lobularia maritima: A Natural Food Preservative Agent of Ground Beef Meat. Life (Basel) 2022; 12:life12101571. [PMID: 36295006 PMCID: PMC9605339 DOI: 10.3390/life12101571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study was directed towards the investigation of the chemical composition and antimicrobial properties of the essential oil of Tunisian halophyte Lobularia maritime (LmEO). The antibacterial effects against major food-borne pathogenic and food spoilage bacteria were tested using the well diffusion method, followed by the determination of the minimum inhibitory (MIC) and bactericidal (MBC) concentrations. The essential oil has shown strong antimicrobial activity against eight pathogenic strains, which was attributed mostly to predominant constituents of the essential oil: benzyl alcohol, linalool, terpien-4-ol and globulol, as well as to synergistic effects of its major and minor constituents. Considering strong antimicrobial effects of the tested essential oil, it was further tested as a natural alternative to food preservatives, using minced beef meat as a model system. Minced beef meat was spiked with 0.019, 0.038, and 0.076% of the essential oil and stored during 14 days at 4 °C, monitoring its microbiological, physicochemical, and sensory properties. Chemical analyses revealed that meat treated with 0.076% of LmEO at underwent a significant decrease (p < 0.05) in primary and secondary lipid oxidation and reduced metmyoglobin accumulation compared with control samples. Furthermore, microflora proliferation in the meat model system spiked with 0.076% of LmEO was significantly (p < 0.05) reduced in comparison to control. In addition, two multivariate exploratory techniques, namely principal component analysis (PCA) and hierarchical analysis (HCA), were applied to the obtained data sets to describe the relationship between the main characteristics of the meat samples with and without essential oil addition. The chemometric approach highlighted the relationships between meat quality parameters. Overall, results indicated that the essential oil of Lobularia maritima deserves to be considered as a natural preservative in the meat industry.
Collapse
|
24
|
Shah M, Bibi S, Kamal Z, Al-Sabahi JN, Alam T, Ullah O, Murad W, Rehman NU, Al-Harrasi A. Bridging the Chemical Profile and Biomedical Effects of Scutellaria edelbergii Essential Oils. Antioxidants (Basel) 2022; 11:antiox11091723. [PMID: 36139797 PMCID: PMC9496006 DOI: 10.3390/antiox11091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
The present study explored chemical constituents of Scutellaria edelbergii essential oils (SEEO) for the first time, extracted through hydro-distillation, and screened them against the microbes and free radicals scavenging effect, pain-relieving, and anti-inflammatory potential employing standard techniques. The SEEO ingredients were noticed via Gas Chromatography-Mass-Spectrometry (GC-MS) analysis and presented fifty-two bioactive compounds contributed (89.52%) with dominant volatile constituent; 3-oxomanoyl oxide (10.09%), 24-norursa-3,12-diene (8.05%), and methyl 7-abieten-18-oate (7.02%). The MTT assay via 96 well-plate and agar-well diffusion techniques against various microbes was determined for minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), IC50, and zone of inhibitions (ZOIs). The SEEO indicated considerable antimicrobial significance against tested bacterial strains viz. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecalis and the fungal strains Fusarium oxysporum and Candida albicans. The free radicals scavenging potential was noticed to be significant in 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) as compared to 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS) assays with IC50 = 125.0 ± 0.19 µg/mL and IC50 = 153.0 ± 0.31 µg/mL correspondingly; similarly, the antioxidant standard in the DPPH assay was found efficient as compared to ABTS assay. The SEEO also offered an appreciable analgesic significance and presented 54.71% in comparison with standard aspirin, 64.49% reduction in writhes, and an anti-inflammatory potential of 64.13%, as compared to the standard diclofenac sodium inhibition of 71.72%. The SEEO contain bioactive volatile ingredients with antimicrobial, free radical scavenging, pain, and inflammation relieving potentials. Computational analysis validated the anti-inflammatory potential of selected hit “methyl 7-abieten-18-oate” as a COX-2 enzyme inhibitor. Docking results were very good in terms of docked score (−7.8704 kcal/mol) and binding interactions with the functional residues; furthermore, MD simulation for 100 ns has presented a correlation with docking results with minor fluctuations. In silico, ADMET characteristics supported that methyl 7-abieten-18-oate could be recommended for further investigations in clinical tests and could prove its medicinal status as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Upper Dir 18000, Pakistan
| | - Jamal Nasser Al-Sabahi
- Central Instrument Laboratory, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Chakdara, Chakdara 18800, Pakistan
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (W.M.); (N.U.R.); (A.A.-H.)
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (W.M.); (N.U.R.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (W.M.); (N.U.R.); (A.A.-H.)
| |
Collapse
|
25
|
da Silva Monteiro E, de Sousa Monteiro K, da Silva Montes P, Camara CAGD, Moraes MM, Fagg CW, Oliveira Freire D, Fortes Gris E, Rodrigues da Silva IC, Sá-Barreto LC, Castilho Orsi D. Chemical and antibacterial properties of Baccharis dracunculifolia DC essential oils from different regions of Brazil. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Erika da Silva Monteiro
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | | | | | | | - Christopher William Fagg
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Eliana Fortes Gris
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | - Izabel Cristina Rodrigues da Silva
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| | | | - Daniela Castilho Orsi
- Laboratory of Quality Control and Post-Graduate Program in Health Sciences and Technologies, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
26
|
Ullah O, Shah M, Rehman NU, Ullah S, Al-Sabahi JN, Alam T, Khan A, Khan NA, Rafiq N, Bilal S, Al-Harrasi A. Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules 2022; 27:molecules27165197. [PMID: 36014440 PMCID: PMC9414473 DOI: 10.3390/molecules27165197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022] Open
Abstract
The present analysis explores the chemical constituents and determines the in vitro antimicrobial, antidiabetic, and antioxidant significance of the essential oils (EOs) of the stem, leaves, and flowers of Ochradenus arabicus for the first time. The EOs of the flowers presented seventy-four constituents contributing to 81.46% of the total EOs, with the major compounds being 24-norursa-3,12-diene (13.06%), 24-norursa-3,12-dien-11-one (6.61%), and 24-noroleana-3,12-diene (6.25%). The stem EOs with sixty-one compounds contributed 95.95% of the total oil, whose main bioactive compounds were (+)-camphene (21.50%), eremophilene (5.87%), and δ-selinene (5.03%), while a minimum of fifty-one compounds in the leaves’ EOs (98.75%) were found, with the main constituents being n-hexadecanoic acid (12.32%), octacosane (8.62%), tetradecanoic acid (8.54%), and prehydro fersenyl acetone (7.27%). The antimicrobial activity of the EOs of O. arabicus stem, leaves, and flowers was assessed against two bacterial strains (Escherichia coli and Streptococcus aureus) and two fungal strains (Penicillium simplicissimum and Rhizoctonia solani) via the disc diffusion assay. However, the EOs extracted from the stem were found effective against one bacterial strain, E. coli, and one fungal strain, R. Solani, among the examined microbes in comparison to the standard and negative control. The tested EOs samples of the O. arabicus stem displayed a maximum potential to cure diabetes with an IC50 = 0.40 ± 0.10 µg/mL, followed by leaves and flowers with an IC50 = 0.71 ± 0.11 µg/mL and IC50 = 10.57 ± 0.18 µg/mL, respectively, as compared to the standard acarbose (IC50 = 377.26 ± 1.20 µg/mL). In addition, the EOs of O. arabicus flowers had the highest antioxidant activity (IC50 = 106.40 ± 0.19 µg/mL) as compared to the standard ascorbic acid (IC50 = 73.20 ± 0.17 µg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In the ABTS assay, the EOs of the same sample (flower) depicted the utmost potential to scavenge the free radicals with an IC50 = 178.0 ± 0.14 µg/mL as compared with the ascorbic acid, having an IC50 of 87.34 ± 0.10 µg/mL the using 2,2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic acid (ABTS) assay. The EOs of all parts of O. arabicus have useful bioactive components due to which they present antidiabetic and antioxidant significance. Furthermore, additional investigations are considered necessary to expose the responsible components of the examined biological capabilities, which would be effective in the production of innovative drugs.
Collapse
Affiliation(s)
- Obaid Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Chemistry, University of Malakand, Chakdara Dir Lower 18800, Pakistan
| | - Muddaser Shah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrumentation Laboratory, Medical Research Center, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Tanveer Alam
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (N.U.R.); (A.A.-H.)
| |
Collapse
|
27
|
Salama SA, AL-Faifi ZE, El-Amier YA. Chemical Composition of Reichardia tingitana Methanolic Extract and Its Potential Antioxidant, Antimicrobial, Cytotoxic and Larvicidal Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11152028. [PMID: 35956506 PMCID: PMC9370821 DOI: 10.3390/plants11152028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 06/07/2023]
Abstract
The biggest challenges are locating effective, reasonably priced, and eco-friendly compounds to treat diseases caused by insects and microbes. The aim of this study was to employ GC-MS to assess the biological potency and chemical composition of the aerial parts of Reichardia tingitana (L.) Roth. Using this technique, 17 components were interpreted from the extracted plant, accounting for around 100% of total volatile compounds. Commonly, 6,10,14-trimethylpentadecan-2-one (21.98%) and methyl oleate (27.26%) were positioned as the major components, which were ascertained after 19.25, and 23.34 min, respectively. The major components were classified as hydrocarbons (23.82%), fatty acids, esters of fatty acids (57.46%), steroids (17.26%), and terpenes (1.48%). The DPPH antioxidant activity of the R. tingitana extracted components revealed that the shoot extract is the most powerful, with an IC50 value of 30.77 mg L−1 and a radical scavenging activity percentage of 71.91%. According to the current result, methanolic extract of R. tingitana had the maximum zone of inhibition against Salmonella typhimurium and Bacillus cereus (25.71 ± 1.63 and 24.42 ± 0.81 mm, respectively), while Clostridium tetani and Staphylococcus xylosus were the main resistant species. In addition, the 50% methanol crude shoot extract of R. tingitana showed greater potential anticancer activity with high cytotoxicity for two tumor cells HepG-2 and PC3 cells (IC50 = 29.977 and 40.479 µg mL−1, respectively) and noncytotoxic activity for WI-38 normal cells (IC50 = >100 µg mL−1). The MeOH extract of plant sample was more effective against Aedes aegypti larvae with LC50 of extract being 46.85, 35.75, and 29.38 mg L−1, whereas the LC90 is 82.66, 63.82, and 53.30 mg L−1 for the various time periods of 24, 48, and 72 h, respectively. R. tingitana is a possible biologically active plant. Future study will include pure chemical isolation and individual component bioactivity evaluation.
Collapse
Affiliation(s)
- Salama A. Salama
- Biology Department, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Zoology Department, Faculty of Science, Damanhur University, Damanhour 22511, Egypt
| | - Zarraq E. AL-Faifi
- Center for Environmental Research and Studies, Jazan University, P.O. Box 2097, Jazan 42145, Saudi Arabia
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
28
|
Essential Oil of Ipomoea carnea: Chemical Profile, Chemometric Analysis, Free Radical Scavenging, and Antibacterial Activities. SUSTAINABILITY 2022. [DOI: 10.3390/su14159504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Essential oils (EOs) have been reported as a promising group of naturally extracted compounds due to their various reported biological activities. Ipomoea carnea is a widely distributed plant with many traditional uses worldwide. However, although the EOs of various Ipomea species have been reported, I. carnea remains poorly studied. Therefore, the present investigation aimed to characterize the chemical profile of the EO of I. carnea growing in Egypt via gas chromatography/mass spectroscopy (GC-MS) and correlate its profile with other reported species via chemometric analysis using agglomerative hierarchical clustering (AHC) and principal component analysis (PCA). In addition, the aim was to determine the antioxidant and antibacterial activities of the extracted EO. Depending on the GC-MS analysis, 31 compounds were identified, mainly terpenes (94.82), with traces of carotenoid and apocarotenoid-derived compounds. The major compounds were tau-cadinol (35.68%), α-cadinol (26.76%), spathulenol (8.11%), and caryophyllene oxide (6.56%), which were assigned as major compounds. The chemometric studies showed that the Egyptian ecospecies of I. carnea differs in chemical profile from those growing in Brazil, as well as those reported for other Ipomea species. The EO showed significant DPPH and ABTS radical scavenging abilities, with IC50 values of 33.69 and 40.86 mg L−1, respectively. Additionally, the I. carnea EO displayed significant inhibition against the growth of all tested bacterial strains, where it showed an MIC range of 82–1442 mg mL−1. Based on the current results, the I. carnea EO, particularly the major identified compounds, could be used as a potential eco-friendly green resource for antioxidant and antimicrobial activities. Therefore, further study is recommended to evaluate the biological significance of the main compounds, either individually or in combination, as well as assess their modes of action and safety.
Collapse
|
29
|
Dos Santos FF, Morais-Urano RP, Cunha WR, de Almeida SG, Cavallari PSDSR, Manuquian HA, Pereira HDA, Furtado R, Santos MFC, Amdrade E Silva ML. A review on the anti-inflammatory activities of Brazilian green, brown and red propolis. J Food Biochem 2022; 46:e14350. [PMID: 35880944 DOI: 10.1111/jfbc.14350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Humanity has used propolis since ancient times, and its use as a food supplement has significantly increased. Several reports on propolis´ biological activity and toxicity have highlighted its anti-inflammatory properties, unlike many natural food supplements. This review addresses the anti-inflammatory roles of Brazilian green, brown, and red propolis produced by Apis mellifera, their extracts, isolated compounds, and their mode of action. Despite advances in anti-inflammatory therapies, the development of inflammatory processes in several diseases has been a concern for centuries. Demands for new anti-inflammatory drugs have led to studies on propolis products as diet components to treat and prevent inflammatory disorders. Brazilian green, brown, and red propolis are alternatives for obtaining extracts and compounds of valuable anti-inflammatory properties. PRACTICAL APPLICATIONS: Currently, propolis is a food supplement, and to the best of our knowledge, several studies have shown that despite advances in anti-inflammatory therapies, the inflammatory process continues to be a significant concern. However, due to the demand for new anti-inflammatory drugs, propolis products as dietary components can be used to treat and prevent inflammatory disorders.
Collapse
Affiliation(s)
- Fransergio F Dos Santos
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Raquel P Morais-Urano
- Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Wilson R Cunha
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Samarah G de Almeida
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | | | - Hallana A Manuquian
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Henrique de A Pereira
- Department of Physics and Chemistry, Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Ricardo Furtado
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| | - Mario F C Santos
- Department of Physics and Chemistry, Center of Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alto Universitário, Alegre, Espírito Santo, Brazil
| | - Márcio L Amdrade E Silva
- Research Center in Exact and Technological Sciences, University of Franca, Franca, São Paulo, Brazil
| |
Collapse
|
30
|
Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae).: A New Insight in Biomedical Therapies. Antioxidants (Basel) 2022; 11:antiox11081446. [PMID: 35892648 PMCID: PMC9331036 DOI: 10.3390/antiox11081446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The recent investigation was designed to explore Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae) whole plant in various extracts (methanol (SPM), dichloromethane (SPDCM), n-Hexane (SPNH), and aqueous (SPAQ) for a phytochemicals assessment, ESI-LC-MS chemical analysis, in vitro antimicrobials, and antioxidants and in vivo anti-inflammatory and analgesic potential. The qualitative detection shows that all the representative groups were present in the analyzed samples. The examined samples display the greatest amount of total flavonoid content (TFC, 78.2 ± 0.22 mg QE/mg) and total phenolic contents (TPC, 66.2 ± 0.33 mg GAE/g) in the SPM extract. The SPM extract proceeded to the ESI-LC-MS to identify the chemical constituents that presented nineteen bioactive ingredients, depicted for the first time from S. petiolata mainly contributed by flavonoids. The analyzed samples produced considerable capability to defy the microbes. The SPM extract was observed effective and offered an appreciable zone of inhibition (ZOI), 17.8 ± 0.04 mm against the bacterial strain Salmonellatyphi and 18.8 ± 0.04 mm against Klebsiella pneumonia. Moreover, the SPM extract also exhibited 19.4 ± 0.01 mm against the bacterial strains Bacillus atrophaeus and 18.8 ± 0.04 mm against Bacillus subtilis in comparison to the standard levofloxacin (Gram-negative) and erythromycin (Gram-positive) bacterial strains that displayed 23.6 ± 0.02 mm and 23.2 ± 0.05 mm ZOI, correspondingly. In addition to that, the SPD fraction was noticed efficiently against the fungal strains used with ZOI 19.07 ± 0.02 mm against Aspergillus parasiticus and 18.87 ± 0.04 mm against the Aspergillus niger as equated to the standard with 21.5 ± 0.02 mm ZOI. In the DPPH (2,2-diphenyl-1-picrylhydrazyl) analysis, the SPM extract had the maximum scavenging capacity with IC50 of 78.75 ± 0.19 µg/mL succeeded by the SPDCM fraction with an IC50 of 140.50 ± 0.20 µg/mL free radicals scavenging potential. Through the ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay, the similar extract (SPM) presented an IC50 = 85.91 ± 0.24 µg/mL followed by the SPDCM fractions with IC50 = 182.50 ± 0.35 µg/mL, and n-Hexane fractions were reported to be the least active between the tested samples in comparison to ascorbic acid of IC50 = 67.14 ± 0.25 µg/mL for DPPH and IC50 of 69.96 ± 0.18 µg/mL for ABTS assay. In the in vivo activities, the SPM extract was the most effective with 55.14% inhibition as compared to diclofenac sodium with 70.58% inhibition against animals. The same SPM crude extract with 50.88% inhibition had the most analgesic efficacy as compared to aspirin having 62.19% inhibition. Hence, it was assumed from our results that all the tested samples, especially the SPM and SPDCM extracts, have significant capabilities for the investigated activities that could be due to the presence of the bioactive compounds. Further research is needed to isolate the responsible chemical constituents to produce innovative medications.
Collapse
|
31
|
Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022; 11:antiox11071330. [PMID: 35883820 PMCID: PMC9311800 DOI: 10.3390/antiox11071330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Thyme (Thymus vulgaris L.) essential oil (TEO) is widely used as an alternative therapy especially for infections of the upper respiratory tract. TEO possesses antiviral, antibacterial, and antifungal properties. The emerging antibiotic resistance of bacterial strains, including Pseudomonas aeruginosa, has prompted the urge to find alternative treatments. In the present study, we examined the anti-inflammatory and antioxidant effects of thymol, the main compound of TEO, and two TEOs prepared at the beginning and at the end of the flowering period that may make these oils promising candidates as complementary or alternative therapies against P. aeruginosa infections. The activity measurements of the antioxidant enzymes peroxidase (PX), catalase (CAT), and superoxide dismutase (SOD) as well as the determination of total antioxidant capacity of P. aeruginosa-activated THP-1 cells revealed that thymol and both TEOs increased CAT and SOD activity as well as the antioxidant capacity of the THP-1 cells. The measurements of the proinflammatory cytokine mRNA expression and secreted protein level of LPS-activated THP-1 cells showed that from the two TEOs, only TEO prepared at the beginning of the flowering period acted as a potent inhibitor of the synthesis of IL-6, IL-8, IL-β, and TNF-α. Our results suggest that not only thymol, but also the synergism or the antagonistic effects of the additional compounds of the essential oils are responsible for the anti-inflammatory activity of TEOs.
Collapse
|
32
|
Elshafie SS, Elshafie HS, El Bayomi RM, Camele I, Morshdy AEMA. Evaluation of the Antimicrobial Activity of Four Plant Essential Oils against Some Food and Phytopathogens Isolated from Processed Meat Products in Egypt. Foods 2022; 11:foods11081159. [PMID: 35454746 PMCID: PMC9032107 DOI: 10.3390/foods11081159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Synthetic preservatives are widely utilized by the food industry to inhibit the microbial contamination and increase food safety and shelf life. The excessive utilization of synthetic preservatives can have a negative impact on human health and the environment. There is a great interest to find out natural substances as possible food-preservatives. The consumers’ preference for food products with natural ingredients prompted food manufacturers to utilize natural-based preservatives in their production. It is worth noting that plant essential oils (EOs) among the natural-based substances have been efficiently used as antimicrobial agents against phyto- and food pathogens. The current study was conducted to evaluate the microbial contamination of three industrial meat products from five governorates in Egypt, identify the predominant bacterial and fungal isolates and determine the antimicrobial efficacy of some EOs (thyme, fennel, anise and marjoram) against the most predominant microbial isolates. A sensory test was also performed to estimate the customer preferences for specific organoleptic aspects of meat products after EOs treatment. Results showed that there is a promising antimicrobial activity of all studied EOs against some microbial isolates in a dose-dependent manner. In particular, thyme EO showed the highest significant antibacterial activity against P. fluorescence and E. coli. Whereas the marjoram EO showed the highest activity against P. aeruginosa. In addition, the sensory test revealed that the treatment with anise and marjoram EOs showed the highest acceptability by the testers and did not show significant differences on the organoleptic properties with respect to control. As overall, the obtained results of the current research are promising and proved feasibility of employing plant EOs as possible preservatives for processed meat products.
Collapse
Affiliation(s)
- Shahenda S. Elshafie
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (S.S.E.); (R.M.E.B.); (A.E.M.A.M.)
| | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
- Correspondence: ; Tel.: +39-0971-205522; Fax: +39-0971-205503
| | - Rasha M. El Bayomi
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (S.S.E.); (R.M.E.B.); (A.E.M.A.M.)
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Alaa Eldin M. A. Morshdy
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (S.S.E.); (R.M.E.B.); (A.E.M.A.M.)
| |
Collapse
|
33
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
34
|
GC-MS Analysis and Biomedical Therapy of Oil from n-Hexane Fraction of Scutellaria edelbergii Rech. f.: In Vitro, In Vivo, and In Silico Approach. Molecules 2021; 26:molecules26247676. [PMID: 34946757 PMCID: PMC8706644 DOI: 10.3390/molecules26247676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy's. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.
Collapse
|
35
|
Timbe PPR, de Souza da Motta A, Stincone P, Pinilla CMB, Brandelli A. Antimicrobial activity of Baccharis dracunculifolia DC and its synergistic interaction with nisin against food-related bacteria. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3010-3018. [PMID: 34294963 DOI: 10.1007/s13197-020-04804-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
The antimicrobial activities of Baccharis dracunculifolia DC essential oil (EO) and hydroalcoholic extract (HE) were evaluated. The EO showed broad antimicrobial activity and its synergistic combination with nisin was tested. Major components of EO were nerolidol, beta-pinene and D-limonene, while artepillin C, rutin and cafeic acid were major phenolics of HE. EO and HE were tested by agar diffusion assay against several strains of bacteria and yeasts, and mixed cultures of bacterial strains. The EO presented the largest spectrum of antimicrobial activity inhibiting all Gram-positive bacteria tested. Yeasts were not inhibited. The effect of EO against mixtures of sensitive and non-sensitive bacteria was tested on milk agar, being the inhibitory effect only observed on mixtures containing susceptible strains. The combination of EO and nisin at ½ MIC was evaluated on the growth curve of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella Enteritidis during 24 h at 37 °C. The combination EO-nisin was effective and no viable counts of B. cereus, L. monocytogenes and S. Enteritidis was observed, while the individual antimicrobials caused no inhibition. The counts of S. aureus were about 4 log CFU/mL lower in comparison with EO or nisin alone. B. dracunculifolia DC may be a potential source of natural antimicrobials, and its synergistic effect with nisin would reduce the working concentration, minimizing the organoleptic effects associated with this plant antimicrobial.
Collapse
Affiliation(s)
- Palmira Penina Raúl Timbe
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970 Brazil
| | - Amanda de Souza da Motta
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-190 Brazil
| | - Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970 Brazil
| | - Cristian Mauricio Barreto Pinilla
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970 Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970 Brazil
| |
Collapse
|
36
|
Biomedical Applications of Scutellaria edelbergii Rech. f.: In Vitro and In Vivo Approach. Molecules 2021; 26:molecules26123740. [PMID: 34205312 PMCID: PMC8234977 DOI: 10.3390/molecules26123740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3',4'-trihydroxy-7-methoxy flavone (FL-1), 5,7,4'-trihydroxy-6,3'-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.
Collapse
|
37
|
Horváth G, Horváth A, Reichert G, Böszörményi A, Sipos K, Pandur E. Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways. BMC Complement Med Ther 2021; 21:148. [PMID: 34022882 PMCID: PMC8140451 DOI: 10.1186/s12906-021-03319-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The essential oils possess both antimicrobial and anti-inflammatory effects, therefore they can provide an effective treatment against infections. Essential oils are widely used as supportive ingredients in many diseases, especially in the acute and chronic diseases of the respiratory tract. Neuroinflammation is responsible for several diseases of the central nervous system. Some plant-derived bioactive molecules have been shown to have role in attenuating neuroinflammation by regulating microglia, the immune cells of the CNS. METHODS In this study, the anti-inflammatory effect of three chemotypes of thyme essential oil and their main compounds (geraniol, thujanol and linalool) were examined on lipopolysaccharide-induced BV-2 microglia. Three different experimental setups were used, LPS pretreatment, essential oil pretreatment and co-treatments of LPS and essential oils in order to determine whether essential oils are able to prevent inflammation and can decrease it. The concentrations of the secreted tumour necrosis factor α (TNFα) and interleukin-6 (IL-6) proinflammatory cytokines were measured and we analysed by Western blot the activity of the cell signalling pathways, NF-κB and CCAAT-enhancer binding protein β (C/EBPβ) regulating TNFα and IL-6 proinflammatory cytokine expressions in BV-2 cells. RESULTS Our results showed definite alterations in the effects of essential oil chemotypes and their main compounds at the different experimental setups. Considering the changes of IL-6 and TNFα secretions the best reduction of inflammatory cytokines could be reached by the pretreatment with the essential oils. In addition, the main compounds exerted better effects than essential oil chemotypes in case of LPS pretreatment. At the essential oil pretreatment experiment, the effect of linalool and geraniol was outstanding but there was no major difference between the actions of chemotypes and standards. Main compounds could be seen to have large inhibitory effects on certain cell signalling components related to the activation of the expression of proinflammatory cytokines. CONCLUSION Thyme essential oils are good candidates to use in prevention of neuroinflammation and related neurodegeneration, but the exact ratio of the components has to be selected carefully.
Collapse
Affiliation(s)
- Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Gréta Reichert
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Üllői út 26, Budapest, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| |
Collapse
|
38
|
Minteguiaga M, González A, Catalán CAN, Dellacassa E. Relationship between Baccharis dracunculifolia DC. and B. microdonta DC. (Asteraceae) by Their Different Seasonal Volatile Expression. Chem Biodivers 2021; 18:e2100064. [PMID: 33950577 DOI: 10.1002/cbdv.202100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022]
Abstract
Baccharis dracunculifolia DC. and Baccharis microdonta DC. (Asteraceae) are woody species morphologically similar growing in Uruguay, where not taxonomists people often confuse them in field conditions. As the essential oil of B. dracunculifolia ('vassoura' oil) is highly prized by the flavor and fragrance industry, the correct differentiation of the two species is a key factor in exploiting them profitably and reasonably. To differentiate both Baccharis species, in this work their volatile expression profiles were studied as an alternative tool to determine authenticity and quality. Volatile organic compounds (VOCs) were monthly extracted during an entire year from aerial parts of wild populations by simultaneous distillation extraction (SDE), and studied by gas chromatography/mass spectrometry (GC/MS; identification) and conventional gas chromatography (GC-FID; component abundances determination). Enantioselective gas chromatography/mass spectrometry (Es-GC/MS) was applied in the search of parameters able to ensure genuineness of each species extract. Qualitative VOCs profiles were found to be similar for both species, being β-pinene, limonene, spathulenol, caryophyllene oxide, and viridiflorol the main components. However, the abundance of those VOCs were two to ten times higher in B. dracunculifolia than in B. microdonta during the year of study. These Baccharis spp. showed species-specific patterns of VOCs expression according to the seasonality, and interestingly, oxygenated compounds (trans-pinocarveol and myrtenal) increased their abundances at full-flowering stages. The enantiomeric distribution of selected monoterpenes (α- and β-pinenes, limonene, linalool, terpinen-4-ol, and α-terpineol) presented differential values for both Baccharis spp., meaning that Es-GC might be a useful tool for differentiating chemically both species in Uruguay for genuineness determination purposes.
Collapse
Affiliation(s)
- Manuel Minteguiaga
- Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (DQO-FQ-UdelaR)., Av. General Flores 2124, CP 11800, Montevideo, Uruguay.,Espacio de Ciencia y Tecnología Química, Centro Universitario Regional Noreste, Sede Tacuarembó, Universidad de la República (CUT-UdelaR)., Ruta No. 5 Km. 386, CP: 45000, Tacuarembó, Uruguay
| | - Andrés González
- Departamento de Botánica, Museo Nacional de Historia Natural (MNHN), Ministerio de Educación y Cultura. 25 de mayo 582, CP: 11000, Montevideo, Uruguay
| | - César A N Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (FQBF-UNT). Ayacucho 471, CP: T4000INI, San Miguel de Tucumán, Argentina
| | - Eduardo Dellacassa
- Laboratorio de Biotecnología de Aromas, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (DQO-FQ-UdelaR)., Av. General Flores 2124, CP 11800, Montevideo, Uruguay
| |
Collapse
|
39
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|
40
|
da Silva TG, da Silva JCP, Carneiro JNP, do Amaral W, Deschamps C, de Araújo JP, da Costa JGM, de Oliveira Almeida W, da Silva LE, Coutinho HDM, Filho JR, Morais-Braga MFB. Phytochemical characterization and inhibition of Candida sp. by the essential oil of Baccharis trimera (Less.) DC. Arch Microbiol 2021; 203:3077-3087. [PMID: 33787988 DOI: 10.1007/s00203-021-02304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the chemical composition and antifungal potential of the essential oil of Baccharis trimera (Less.) DC. against Candida strains. The half maximal inhibitory concentration (IC50) was assessed by the microdilution method using the essential oil at a concentration range of 8192 to 8 μg/mL. The minimum fungicide concentration (MFC) was determined by subculture in solid medium. The ability of the essential oil to modulate the activity of antifungals was determined in wells treated simultaneously with the oil at a subinhibitory concentration (MFC/16) and fluconazole (FCZ). The fungal morphology was analyzed by microscopy. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the chemical composition. The essential oil presented an CI50 of 11.24 and 1.45 μg/mL, which was found to potentiate the effect of FCZ against Candida albicans. On the other hand, this combined treatment resulted in antagonism against Candida tropicalis and no evident modulation against Candida krusei was observed. The essential oil significantly inhibited hyphae growth. However, with a MFC ≥ 16,384 μg/mL, it is assumed that it has a fungistatic action. The antifungal properties demonstrated in this study might be related to the presence of sesquiterpenes and monoterpenes, and the interaction between them. In conclusion, Baccharis trimera showed promising anti-Candida effects, in addition to potentiating the activity of FCZ against Candida albicans, affecting its morphological transition. Therefore, this species constitutes a source of chemical compounds with the potential to be used in the combat of fungal infections.
Collapse
Affiliation(s)
- Taís Gusmão da Silva
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | - Josefa Carolaine Pereira da Silva
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | - Joara Nályda Pereira Carneiro
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | | | | | | | - José Galberto Martins da Costa
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | - Waltécio de Oliveira Almeida
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil
| | | | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Universidade Regional do Cariri, URCA, Av. Cel. Antonio Luiz, 1161, 63105-000, Crato, CE, Brasil.
| | | | | |
Collapse
|
41
|
Liu J, Hua J, Qu B, Guo X, Wang Y, Shao M, Luo S. Insecticidal Terpenes From the Essential Oils of Artemisia nakaii and Their Inhibitory Effects on Acetylcholinesterase. FRONTIERS IN PLANT SCIENCE 2021; 12:720816. [PMID: 34456959 PMCID: PMC8397410 DOI: 10.3389/fpls.2021.720816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Essential oils (EOs) are often the source of insecticidal substances of high efficiency and low toxicity. From gas chromatograph-mass spectrometer, column chromatography, and nuclear magnetic resonance spectra analyses, twenty terpenes were identified from the EOs of Artemisia nakaii. These comprised mostly monoterpenes (49.01%) and sesquiterpenes (50.76%). The terpenes at the highest concentrations in the EOs of A. nakaii were feropodin (200.46 ± 1.42 μg/ml), (+)-camphor (154.93 ± 9.72 μg/ml), β-selinene (57.73 ± 2.48 μg/ml), and 1,8-cineole (17.99 ± 1.06 μg/ml), calculated using area normalization and external standards. The EOs were tested for biological activity and showed strong fumigant toxicity and significant antifeedant activity against the larvae of Spodoptera litura. Furthermore, the monoterpenes 1,8-cineole and (+)-camphor displayed significant fumigant activity against S. litura, with LC50 values of 7.00 ± 0.85 and 18.16 ± 2.31 μl/L, respectively. Antifeedant activity of the sesquiterpenes feropodin and β-selinene was obvious, with EC50 values of 12.23 ± 2.60 and 10.46 ± 0.27 μg/cm2, respectively. The EOs and β-selinene were also found to inhibit acetylcholinesterase, with IC50 values of 37.75 ± 3.59 and 6.88 ± 0.48 μg/ml, respectively. These results suggest that monoterpenes and sesquiterpenes from the EOs of A. nakaii could potentially be applied as a botanical pesticides in the control of S. litura.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Meini Shao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Meini Shao,
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
- Shihong Luo, , orcid.org/0000-0003-3500-3466
| |
Collapse
|
42
|
Antifungal Properties of Nerolidol-Containing Liposomes in Association with Fluconazole. MEMBRANES 2020; 10:membranes10090194. [PMID: 32825411 PMCID: PMC7558210 DOI: 10.3390/membranes10090194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
(1) Background: Infections by Candida species represent a serious threat to the health of immunocompromised individuals. Evidence has indicated that nerolidol has significant antifungal properties. Nonetheless, its use is restricted due to a low water solubility and high photosensitivity. The incorporation into liposomes may represent an efficient alternative to improve the physicochemical and biopharmaceutical properties of this compound. The present study aimed to characterize the antifungal properties of liposomal nerolidol, alone or in combination with fluconazole. Of note, this is the first study reporting the antifungal activity of liposomal nerolidol and its potentiating effect in association with fluconazole. (2) Methods: The Inhibitory Concentration 50%-IC50 and minimum fungicide concentrations (MFC) of the substances against Candida albicans (CA), Candida tropicalis (CT), and Candida krusei (CK) were established by subculture in a solid medium. To evaluate the antifungal-enhancing effect, the MFC of fluconazole was determined in the presence or absence of subinhibitory concentrations of nerolidol (free or liposomal). The analysis of fungal dimorphism was performed through optical microscopy and the characterization of liposomes was carried out considering the vesicular size, polydispersion index, and zeta medium potential, in addition to a scanning electron microscopy analysis. (3) Results: The physicochemical characterization revealed that liposomes were obtained as homogenous populations of spherical vesicles. The data obtained in the present study indicate that nerolidol acts as an antifungal agent against Candida albicans and Candida tropicalis, in addition to potentiating (only in the liposomal form) the effect of fluconazole. However, the compound had little inhibitory effect on fungal dimorphism. (4) Conclusions: The incorporation of nerolidol into liposomes improved its antifungal-modulating properties.
Collapse
|
43
|
Essential Oil Content of Baccharis crispa Spreng. Regulated by Water Stress and Seasonal Variation. AGRIENGINEERING 2020. [DOI: 10.3390/agriengineering2030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carqueja (Baccharis crispa Spreng.) has been primarily used as a medicinal plant around the world. Commercially, the essential oil content of carqueja leaves is the most valuable crop productivity variable. We evaluated the effect of irrigation management in different growing seasons on the essential oil content of carqueja leaves using gas chromatography coupled with mass spectrometry. The experiment was conducted in a greenhouse located in Southern Brazil, where the crop was cultivated for two years in different growing seasons under six irrigation regimes: 25%, 50%, 75%, 100%, 125%, and 150% of the reference crop evapotranspiration (T25, T50, T75, T100, T125, and T150, respectively). A seasonal pattern was observed in the number of metabolites of sesquiterpenes and phenolics in the essential oil extracted from the biomass; this outcome was correlated with irrigation regimes and air temperature. Principal component and hierarchical cluster analyses were used to discriminate the influence of abiotic conditions on secondary metabolite profiles. Spathulenol was the most abundant compound in the essential oils (95.43%) collected during the summer (December–March) season during the third harvest (H3) at T150. The essential oil content was 8.84% ± 0.05% and 10.52% ± 0.10% in summer and winter (June–September), respectively, with T100 at 45 and 46 days after planting.
Collapse
|
44
|
Timbe PPR, Motta ADS, Isaía HA, Brandelli A. Polymeric nanoparticles loaded with
Baccharis dracunculifolia
DC essential oil: Preparation, characterization, and antibacterial activity in milk. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Palmira Penina Raúl Timbe
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Amanda de Souza Motta
- Departamento de Microbiologia, Imunologia e Parasitologia Instituto de Ciências Básicas da Saúde Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Henrique Ataíde Isaía
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada Departamento de Ciência de Alimentos Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
45
|
Basavegowda N, Patra JK, Baek KH. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020; 25:E1058. [PMID: 32120930 PMCID: PMC7179174 DOI: 10.3390/molecules25051058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, many pathogenic bacteria have become resistant to existing antibiotics, which has become a threat to infectious disease control worldwide. Hence, there has been an extensive search for new, efficient, and alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms. Numerous studies have reported the potential of both essential oils and metal/metal oxide nanocomposites with broad spectra of bioactivities including antioxidant, anticancer, and antimicrobial attributes. However, only monometallic nanoparticles combined with essential oils have been reported on so far with limited data. Bi- and tri-metallic nanoparticles have attracted immense attention because of their diverse sizes, shapes, high surface-to-volume ratios, activities, physical and chemical stability, and greater degree of selectivity. Combination therapy is currently blooming and represents a potential area that requires greater attention and is worthy of future investigations. This review summarizes the synergistic effects of essential oils with other antimicrobial combinations such as mono-, bi-, and tri-metallic nanocomposites. Thus, the various aspects of this comprehensive review may prove useful in the development of new and alternative therapeutics against antibiotic resistant pathogens in the future.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
46
|
Abd-ElGawad AM, El-Amier YA, Assaeed AM, Al-Rowaily SL. Interspecific variations in the habitats of Reichardia tingitana (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J Biol Sci 2019; 27:489-499. [PMID: 31889875 PMCID: PMC6933205 DOI: 10.1016/j.sjbs.2019.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/16/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022] Open
Abstract
Reichardia tingitana is an annual plant growing in different habitats of the Egyptian deserts. Little is known about variation among the habitats occupied by this species, its distribution, chemical composition, and allelopathic activity. The present study aimed to (a) assess the vegetation composition of three different habitats (Western Coast, Delta Coast, and Wadi Hagoul) of R. tingitana in Egypt, (b) determine their correlation to soil factors, (c) identify the changes in the bioactive constituents of R. tingitana in the three regions, and (d) evaluate the allelopathic activity regarding the variation in the habitat. Density and cover of all plant species associated with R. tingitana were estimated within 52 plots, representing three regions. Physical and chemical parameters of soil were analyzed in each plot. R. tingitana aboveground biomass was collected from each habitat, and the bioactive composition was analyzed using HPLC. The allelopathic effect against two weeds (Amaranthus lividius and Chenopodium murale) was assessed. The floristic composition showed the presence of 133 species belonging to 27 families. In the Delta Coast habitat of R. tingitana, Zygophyllum aegyptium and Calligonum polygonoides co-dominate, while Lycium shawii dominate the Western Coast habitat and finally the habitat of Wadi Hagoul was dominated by Haloxylon salicornicum. Soil analysis revealed little variations among habitats, especially salinity and organic matter. Fifteen compounds, mainly phenolics (60% of the total identified compounds) were identified from all R. tingitana samples. The major compounds were quercetin, naringenin, ellagic, gallic, chlorogenic, and caffeic acids. These compounds varied in diversity or quantity among different habitats. The Western Coast sample was the richest in species, followed by Delta Coast sample. Our study showed that salinity is the crucial factor that induces the production of bioactive constituents in R. tingitana, especially phenolics and flavonoids. The R. tingitana extracts significantly reduced the germination and growth of Chenopodium and Amaranthus. However, the Western Coast sample showed potent allelopathic activity, where the germination was wholly inhibited at 75 mg L-1 and 50 mg L-1, respectively. Thereby, this extract could be used as eco-friendly bioherbicide and may be integrated into weed control strategies.
Collapse
Affiliation(s)
- Ahmed M Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.,Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Yasser A El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdulaziz M Assaeed
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud L Al-Rowaily
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|