1
|
Xia A, Wu Y, Xiang J, Yin H, Ming J, Qin Z. Quantification of Glucose Metabolism and Nitrogen Utilization in Two Brassicaceae Species under Bicarbonate and Variable Ammonium Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3095. [PMID: 37687342 PMCID: PMC10489622 DOI: 10.3390/plants12173095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
In karst habitats under drought conditions, high bicarbonate (high pH), and an abundant nitrate soil environment, bicarbonate regulates the glycolysis (EMP) and pentose phosphate pathways (PPP), which distribute ATP and NADPH, affecting nitrate (NO3-) and ammonium (NH4+) utilization in plants. However, the relationship between EMP PPP and NO3-, and NH4+ utilization and their responses to bicarbonate and variable ammonium still remains elusive. In this study, we used Brassica napus (Bn, a non-karst-adaptable plant) and Orychophragmus violaceus (Ov, a karst-adaptable plant) as plant materials, employed a bidirectional nitrogen-isotope-tracing method, and performed the quantification of the contribution of EMP and PPP. We found that bicarbonate and ammonium inhibited glucose metabolism and nitrogen utilization in Bn under simulated karst habitats. On the other hand, it resulted in a shift from EMP to PPP to promote ammonium utilization in Ov under high ammonium stress in karst habitats. Compared with Bn, bicarbonate promoted glucose metabolism and nitrogen utilization in Ov at low ammonium levels, leading to an increase in photosynthesis, the PPP, carbon and nitrogen metabolizing enzyme activities, nitrate/ammonium utilization, and total inorganic nitrogen assimilation capacity. Moreover, bicarbonate significantly reduced the growth inhibition of Ov by high ammonium, resulting in an improved PPP, RCRUBP, and ammonium utilization to maintain growth. Quantifying the relationships between EMP, PPP, NO3-, and NH4+ utilization can aid the accurate analysis of carbon and nitrogen use efficiency changes in plant species. Therefore, it provides a new prospect to optimize the nitrate/ammonium utilization in plants and further reveals the differential responses of inorganic carbon and nitrogen (C-N) metabolism to bicarbonate and variable ammonium in karst habitats.
Collapse
Affiliation(s)
- Antong Xia
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; (A.X.)
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; (A.X.)
| | - Hongqing Yin
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; (A.X.)
| | - Jiajia Ming
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; (A.X.)
| | - Zhanghui Qin
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; (A.X.)
| |
Collapse
|
2
|
Moseley RC, Motta F, Tuskan GA, Haase SB, Yang X. Inference of Gene Regulatory Network Uncovers the Linkage between Circadian Clock and Crassulacean Acid Metabolism in Kalanchoë fedtschenkoi. Cells 2021; 10:2217. [PMID: 34571864 PMCID: PMC8471846 DOI: 10.3390/cells10092217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
The circadian clock drives time-specific gene expression, enabling biological processes to be temporally controlled. Plants that conduct crassulacean acid metabolism (CAM) photosynthesis represent an interesting case of circadian regulation of gene expression as stomatal movement is temporally inverted relative to stomatal movement in C3 plants. The mechanisms behind how the circadian clock enabled physiological differences at the molecular level is not well understood. Recently, the rescheduling of gene expression was reported as a mechanism to explain how CAM evolved from C3. Therefore, we investigated whether core circadian clock genes in CAM plants were re-phased during evolution, or whether networks of phase-specific genes were simply re-wired to different core clock genes. We identified candidate core clock genes based on gene expression features and then applied the Local Edge Machine (LEM) algorithm to infer regulatory relationships between this new set of core candidates and known core clock genes in Kalanchoë fedtschenkoi. We further inferred stomata-related gene targets for known and candidate core clock genes and constructed a gene regulatory network for core clock and stomata-related genes. Our results provide new insight into the mechanism of circadian control of CAM-related genes in K. fedtschenkoi, facilitating the engineering of CAM machinery into non-CAM plants for sustainable crop production in water-limited environments.
Collapse
Affiliation(s)
- Robert C. Moseley
- Department of Biology, Duke University, Durham, NC 27708, USA; (R.C.M.); (S.B.H.)
| | - Francis Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven B. Haase
- Department of Biology, Duke University, Durham, NC 27708, USA; (R.C.M.); (S.B.H.)
- Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Yuan G, Hassan MM, Liu D, Lim SD, Yim WC, Cushman JC, Markel K, Shih PM, Lu H, Weston DJ, Chen JG, Tschaplinski TJ, Tuskan GA, Yang X. Biosystems Design to Accelerate C 3-to-CAM Progression. BIODESIGN RESEARCH 2020; 2020:3686791. [PMID: 37849902 PMCID: PMC10521703 DOI: 10.34133/2020/3686791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/21/2020] [Indexed: 10/19/2023] Open
Abstract
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Boxall SF, Kadu N, Dever LV, Kneřová J, Waller JL, Gould PJD, Hartwell J. Kalanchoë PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes. THE PLANT CELL 2020; 32:1136-1160. [PMID: 32051209 PMCID: PMC7145507 DOI: 10.1105/tpc.19.00481] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/21/2023]
Abstract
Unlike C3 plants, Crassulacean acid metabolism (CAM) plants fix CO2 in the dark using phosphoenolpyruvate carboxylase (PPC; EC 4.1.1.31). PPC combines phosphoenolpyruvate with CO2 (as HCO3 -), forming oxaloacetate. The oxaloacetate is converted to malate, leading to malic acid accumulation in the vacuole, which peaks at dawn. During the light period, malate decarboxylation concentrates CO2 around Rubisco for secondary fixation. CAM mutants lacking PPC have not been described. Here, we employed RNA interference to silence the CAM isogene PPC1 in Kalanchoë laxiflora Line rPPC1-B lacked PPC1 transcripts, PPC activity, dark period CO2 fixation, and nocturnal malate accumulation. Light period stomatal closure was also perturbed, and the plants displayed reduced but detectable dark period stomatal conductance and arrhythmia of the CAM CO2 fixation circadian rhythm under constant light and temperature free-running conditions. By contrast, the rhythm of delayed fluorescence was enhanced in plants lacking PPC1 Furthermore, a subset of gene transcripts within the central circadian oscillator was upregulated and oscillated robustly in this line. The regulation of guard cell genes involved in controlling stomatal movements was also perturbed in rPPC1-B These findings provide direct evidence that the regulatory patterns of key guard cell signaling genes are linked with the characteristic inverse pattern of stomatal opening and closing during CAM.
Collapse
Affiliation(s)
- Susanna F Boxall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Nirja Kadu
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Louisa V Dever
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jana Kneřová
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jade L Waller
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter J D Gould
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
5
|
Chomthong M, Griffiths H. Model approaches to advance crassulacean acid metabolism system integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:951-963. [PMID: 31943394 DOI: 10.1111/tpj.14691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
This review summarises recent progress in understanding crassulacean acid metabolism (CAM) systems and the integration of internal and external stimuli to maximise water-use efficiency. Complex CAM traits have been reduced to their minimum and captured as computational models, which can now be refined using recently available data from transgenic manipulations and large-scale omics studies. We identify three key areas in which an appropriate choice of modelling tool could help capture relevant comparative molecular data to address the evolutionary drivers and plasticity of CAM. One focus is to identify the environmental and internal signals that drive inverse stomatal opening at night. Secondly, it is important to identify the regulatory processes required to orchestrate the diel pattern of carbon fluxes within mesophyll layers. Finally, the limitations imposed by contrasting succulent systems and associated hydraulic conductance components should be compared in the context of water-use and evolutionary strategies. While network analysis of transcriptomic data can provide insights via co-expression modules and hubs, alternative forms of computational modelling should be used iteratively to define the physiological significance of key components and informing targeted functional gene manipulation studies. We conclude that the resultant improvements of bottom-up, mechanistic modelling systems can enhance progress towards capturing the physiological controls for phylogenetically diverse CAM systems in the face of the recent surge of information in this omics era.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Downing street, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing street, Cambridge, CB2 3EA, UK
| |
Collapse
|
6
|
Yang X, Liu D, Tschaplinski TJ, Tuskan GA. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6539-6547. [PMID: 31616946 PMCID: PMC6883262 DOI: 10.1093/jxb/erz408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis is an important biological innovation enabling plant adaptation to hot and dry environments. CAM plants feature high water-use efficiency, with potential for sustainable crop production under water-limited conditions. A deep understanding of CAM-related gene function and molecular evolution of CAM plants is critical for exploiting the potential of engineering CAM into C3 crops to enhance crop production on semi-arid or marginal agricultural lands. With the newly emerging genomics resources for multiple CAM species, progress has been made in comparative genomics studies on the molecular basis and subsequently on the evolution of CAM. Here, recent advances in CAM comparative genomics research in constitutive and facultative CAM plants are reviewed, with a focus on the analyses of DNA/protein sequences and gene expression to provide new insights into the path and driving force of CAM evolution and to identify candidate genes involved in CAM-related biological processes. Potential applications of new computational and experimental technologies (e.g. CRISPR/Cas-mediated genome-editing technology) to the comparative and evolutionary genomics research on CAM plants are offered.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| |
Collapse
|