1
|
Martínez-Rivas FJ, Fernie AR. Metabolomics to understand metabolic regulation underpinning fruit ripening, development, and quality. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1726-1740. [PMID: 37864494 PMCID: PMC10938048 DOI: 10.1093/jxb/erad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Yin YG, Sanuki A, Goto Y, Suzui N, Kawachi N, Matsukura C. ADP-glucose pyrophosphorylase genes are differentially regulated in sugar-dependent or -independent manners in tomato ( Solanum lycopersicum L.) fruit. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:345-351. [PMID: 38434118 PMCID: PMC10905566 DOI: 10.5511/plantbiotechnology.23.1004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 03/05/2024]
Abstract
In early developing tomato (Solanum lycopersicum L.) fruit, starch accumulates at high levels and is used by various primary metabolites in ripening fruits. ADP-glucose pyrophosphorylase is responsible for the first key step of starch biosynthesis. Although it has been reported that AgpL1 and AgpS1 isoforms are mainly expressed in early developing fruit, their regulatory mechanism has not been elucidated. The present study investigated the transcriptional response of AgpL1 and AgpS1 to various metabolizable sugars, nonmetabolizable sugar analogues, hexokinase inhibitors and proline by an experimental system using half-cut fruits. AgpL1 was upregulated in response to sucrose and constituted hexoses such glucose, whereas the AgpS1 gene almost did not exhibit a prominent sugar response. Further analyses revealed that other disaccharides such maltose and trehalose did not show a remarkable effect on both AgpL1 and AgpS1 expressions. These results indicate that there are two distinct regulatory mechanisms, namely, sugar metabolism-dependent and -independent, for the regulation of AGPase gene expression. Interestingly, the ADP treatment, a hexokinase inhibitors, cancelled the sugar response of AgpL1, indicating that hexokinase-mediated sugar signaling should be involved in the sugar response of AgpL1. These results suggest that sugar-dependent (AgpL1) and sugar-independent (AgpS1) pathways coordinatively regulate starch biosynthesis in immature tomato fruit.
Collapse
Affiliation(s)
- Yong-Gen Yin
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Atsuko Sanuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yukihisa Goto
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Nobuo Suzui
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Naoki Kawachi
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Chiaki Matsukura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
3
|
Colombié S, Prigent S, Cassan C, Hilbert-Masson G, Renaud C, Dell'Aversana E, Carillo P, Moing A, Beaumont C, Beauvoit B, McCubbin T, Nielsen LK, Gibon Y. Comparative constraint-based modelling of fruit development across species highlights nitrogen metabolism in the growth-defence trade-off. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:786-803. [PMID: 37531405 DOI: 10.1111/tpj.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Although primary metabolism is well conserved across species, it is useful to explore the specificity of its network to assess the extent to which some pathways may contribute to particular outcomes. Constraint-based metabolic modelling is an established framework for predicting metabolic fluxes and phenotypes and helps to explore how the plant metabolic network delivers specific outcomes from temporal series. After describing the main physiological traits during fruit development, we confirmed the correlations between fruit relative growth rate (RGR), protein content and time to maturity. Then a constraint-based method is applied to a panel of eight fruit species with a knowledge-based metabolic model of heterotrophic cells describing a generic metabolic network of primary metabolism. The metabolic fluxes are estimated by constraining the model using a large set of metabolites and compounds quantified throughout fruit development. Multivariate analyses showed a clear common pattern of flux distribution during fruit development with differences between fast- and slow-growing fruits. Only the latter fruits mobilise the tricarboxylic acid cycle in addition to glycolysis, leading to a higher rate of respiration. More surprisingly, to balance nitrogen, the model suggests, on the one hand, nitrogen uptake by nitrate reductase to support a high RGR at early stages of cucumber and, on the other hand, the accumulation of alkaloids during ripening of pepper and eggplant. Finally, building virtual fruits by combining 12 biomass compounds shows that the growth-defence trade-off is supported mainly by cell wall synthesis for fast-growing fruits and by total polyphenols accumulation for slow-growing fruits.
Collapse
Affiliation(s)
- Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Ghislaine Hilbert-Masson
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882, Villenave d'Ornon, France
| | - Christel Renaud
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882, Villenave d'Ornon, France
| | - Emilia Dell'Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Annick Moing
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Chloé Beaumont
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Bertrand Beauvoit
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD, 4072, Australia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD, 4072, Australia
| | - Yves Gibon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| |
Collapse
|
4
|
Nicolas P, Pattison RJ, Zheng Y, Lapidot-Cohen T, Brotman Y, Osorio S, Fernie AR, Fei Z, Catalá C. Starch deficiency in tomato causes transcriptional reprogramming that modulates fruit development, metabolism, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6331-6348. [PMID: 37279327 DOI: 10.1093/jxb/erad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Tomato (Solanum lycopersicum) fruit store carbon as starch during early development and mobilize it at the onset of ripening. Starch accumulation has been suggested to buffer fluctuations in carbon supply to the fruit under abiotic stress, and contribute to sugar levels in ripe fruit. However, the role of starch accumulation and metabolism during fruit development is still unclear. Here we show that the tomato mutant adpressa (adp) harbors a mutation in a gene encoding the small subunit of ADP-glucose pyrophosphorylase that abolishes starch synthesis. The disruption of starch biosynthesis causes major transcriptional and metabolic remodeling in adp fruit but only minor effects on fruit size and ripening. Changes in gene expression and metabolite profiles indicate that the lack of carbon flow into starch increases levels of soluble sugars during fruit growth, triggers a readjustment of central carbohydrate and lipid metabolism, and activates growth and stress protection pathways. Accordingly, adp fruits are remarkably resistant to blossom-end rot, a common physiological disorder induced by environmental stress. Our results provide insights into the effects of perturbations of carbohydrate metabolism on tomato fruit development, with potential implications for the enhancement of protective mechanisms against abiotic stress in fleshy fruit.
Collapse
Affiliation(s)
| | | | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Carmen Catalá
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Nixon LJ, Jones SK, Tang L, Urban J, Felton K, Leskey TC. Survivorship and Development of the Invasive Lycorma delicatula (Hemiptera: Fulgoridae) on Wild and Cultivated Temperate Host Plants. ENVIRONMENTAL ENTOMOLOGY 2022; 51:222-228. [PMID: 34864970 DOI: 10.1093/ee/nvab137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The invasive spotted lanternfly, Lycorma delicatula, (White Hemiptera: Fulgoridae) continues to spread throughout the Eastern United States. This species exhibits a broad host range, with tree of heaven, Ailanthus altissima (Mill.) Swingle, commonly referred to as the preferred host. Here, we evaluated 2-wk survivorship of early nymphal instars, late nymphal instars, and adult L. delicatula on single diets of ten wild and cultivated hosts: tree of heaven; apple, Malus domestica; peach, Prunus persica; black cherry, P. serotina Ehrh; black locust, Robinia pseudoacacia L.; black walnut, Juglans nigra L.; common hackberry Celtis occidentalis L.; mulberry Morus alba L.; sugar maple Acer saccharum Marshall; white oak, Quercus alba L.. Among them, early and late instars had significantly greater survivorship on tree of heaven and black walnut and adults had greatest survivorship on tree of heaven. Additionally, we evaluated development and survivorship of L. delicatula from newly hatched nymphs to adulthood on single diets of tree of heaven, black walnut, grapevine, apple, and peach, and mixed diets of tree of heaven plus one other host. Single host diets that supported L. delicatula development to adulthood were tree of heaven and black walnut. Interestingly, mixed diets also supported development, and reduced development time to adults by up to 12% compared with the single tree of heaven diet. Our results suggest that within agroecosystems and across landscapes, L. delicatula can develop on single hosts such as tree of heaven, but also on multiple host plants, yielding adults earlier in the growing season.
Collapse
Affiliation(s)
- Laura J Nixon
- USDA - ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Sharon K Jones
- USDA - ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Lisa Tang
- USDA - ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - Julie Urban
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Karen Felton
- US Forest Service, Northeast Area, Morgantown, WV, USA
| | - Tracy C Leskey
- USDA - ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| |
Collapse
|
6
|
Vosnjak M, Mrzlic D, Usenik V. Summer pruning of sweet cherry: a way to control sugar content in different organs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1216-1224. [PMID: 34347886 DOI: 10.1002/jsfa.11459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sweet cherry trees (Prunus avium L.) of the cultivar Grace Star were pruned either in dormancy or in summer. The response was studied by analyzing the sugar content in different organs (flower bud, leaf, and fruit) at three sections of the canopy (inner, outer, and upper) using high-performance liquid chromatography. The effect of summer pruning was evaluated by measuring photosynthetic photon flux density (PPFD) and leaf chlorophyll content (SPAD). RESULTS In this study, the timing of pruning had a significant effect on sugar content in flower buds, leaves, and fruit. Trees pruned in summer had higher glucose, fructose, sorbitol, and sucrose content in flower buds, higher glucose and fructose contents in leaves, and lower fructose, sorbitol, and total sugar content in fruit than in trees pruned at dormancy. Higher average PPFD and lower SPAD values were measured in the inner canopy of trees pruned in summer. All measured parameters were influenced by position in the canopy. The lowest fructose and sorbitol contents in the flower bud, the lowest content of glucose, fructose, sorbitol, total sugars and the highest SPAD values in the leaf, while less dark and lighter fruit were measured in the inner part of the canopy. CONCLUSION Summer pruning affects sugar distribution in the tree by altering irradiation conditions within the canopy. Our results suggest that summer pruning is an effective technological measure to improve sugar content in the buds. A strong, well nourished flower bud is a good indication of high fruit production next season. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Matej Vosnjak
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Jamnikarjeva, Slovenia
| | - Davor Mrzlic
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Jamnikarjeva, Slovenia
- Agricultural and Forestry Chamber of Slovenia, Institute of Agriculture and Forestry Nova Gorica, Bilje, Slovenia
| | - Valentina Usenik
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Jamnikarjeva, Slovenia
| |
Collapse
|
7
|
Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:446-458. [PMID: 33274492 DOI: 10.1111/tpj.15112] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Phytohormones are integral to the regulation of fruit development and maturation. This review expands upon current understanding of the relationship between hormone signaling and fruit development, emphasizing fleshy fruit and highlighting recent work in the model crop tomato (Solanum lycopersicum) and additional species. Fruit development comprises fruit set initiation, growth, and maturation and ripening. Fruit set transpires after fertilization and is associated with auxin and gibberellic acid (GA) signaling. Interaction between auxin and GAs, as well as other phytohormones, is mediated by auxin-responsive Aux/IAA and ARF proteins. Fruit growth consists of cell division and expansion, the former shown to be influenced by auxin signaling. While regulation of cell expansion is less thoroughly understood, evidence indicates synergistic regulation via both auxin and GAs, with input from additional hormones. Fruit maturation, a transitional phase that precipitates ripening, occurs when auxin and GA levels subside with a concurrent rise in abscisic acid (ABA) and ethylene. During fruit ripening, ethylene plays a clear role in climacteric fruits, whereas non-climacteric ripening is generally associated with ABA. Recent evidence indicates varying requirements for both hormones within both ripening physiologies, suggesting rebalancing and specification of roles for common regulators rather than reliance upon one. Numerous recent discoveries pertaining to the molecular basis of hormonal activity and crosstalk are discussed, while we also note that many questions remain such as the molecular basis of additional hormonal activities, the role of epigenome changes, and how prior discoveries translate to the plethora of angiosperm species.
Collapse
Affiliation(s)
- Matthew A Fenn
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - James J Giovannoni
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University campus, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Falchi R, Bonghi C, Drincovich MF, Famiani F, Lara MV, Walker RP, Vizzotto G. Sugar Metabolism in Stone Fruit: Source-Sink Relationships and Environmental and Agronomical Effects. FRONTIERS IN PLANT SCIENCE 2020; 11:573982. [PMID: 33281843 PMCID: PMC7691294 DOI: 10.3389/fpls.2020.573982] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/28/2020] [Indexed: 05/24/2023]
Abstract
The partitioning of assimilates in fruits, which are economically important sink organs, is ruled by different physiological processes and affected by both environmental and agronomical factors. The bulk of the water and solutes, required for growth, is imported into fruits and seeds through xylem and phloem. In the stone fruits, five vascular bundles enter the base of the fruit, then dividing to supply either the flesh or the seed. The main sugars accumulated in stone fruits include fructose, glucose, and sucrose, along with other minor saccharides. The mechanisms of phloem loading in these fruit species have not been fully elucidated yet, but the available data hint either an apoplastic or a symplastic type or possibly a combination of both, depending on the species and the sugar considered. Similarly, phloem unloading mechanisms, elucidated for a small number of species, depend on genotype and developmental stage. Remarkably, key enzymes and transporters involved in the main sugars-conversion and transport pathways have received considerable attention. In stone fruit trees, the presence of an elevated number of fruits alters the source-sink balance, with a consequent intensification of competition among them and between vegetative and reproductive growth. The main environmental factors affecting this balance and the agronomical/artificial manipulations of source-sink relationships to achieve adequate fruit production and quality are reviewed.
Collapse
Affiliation(s)
- Rachele Falchi
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - María F. Drincovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María V. Lara
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
9
|
Cakpo CB, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P, Memah MM, Colombié S, Moing A, Gibon Y, Génard M. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. ANNALS OF BOTANY 2020; 126:455-470. [PMID: 32333754 PMCID: PMC7424760 DOI: 10.1093/aob/mcaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Sugar concentration is a key determinant of fruit quality. Soluble sugars and starch concentrations in fruits vary greatly from one species to another. The aim of this study was to investigate similarities and differences in sugar accumulation strategies across ten contrasting fruit species using a modelling approach. METHODS We developed a coarse-grained model of primary metabolism based on the description of the main metabolic and hydraulic processes (synthesis of compounds other than sugar and starch, synthesis and hydrolysis of starch, and water dilution) involved in the accumulation of soluble sugars during fruit development. KEY RESULTS Statistical analyses based on metabolic rates separated the species into six groups according to the rate of synthesis of compounds other than sugar and starch. Herbaceous species (cucumber, tomato, eggplant, pepper and strawberry) were characterized by a higher synthesis rate than woody species (apple, nectarine, clementine, grape and kiwifruit). Inspection of the dynamics of the processes involved in sugar accumulation revealed that net sugar importation, metabolism and dilution processes were remarkably synchronous in most herbaceous plants, whereas in kiwifruit, apple and nectarine, processes related to starch metabolism were temporally separated from other processes. Strawberry, clementine and grape showed a distinct dynamic compared with all other species. CONCLUSIONS Overall, these results provide fresh insights into species-specific regulatory strategies and into the role of starch metabolism in the accumulation of soluble sugars in fleshy fruits. In particular, inter-specific differences in development period shape the co-ordination of metabolic processes and affect priorities for carbon allocation across species. The six metabolic groups identified by our analysis do not show a clear separation into climacteric and non-climacteric species, possibly suggesting that the metabolic processes related to sugar concentration are not greatly affected by ethylene-associated events.
Collapse
Affiliation(s)
- Coffi Belmys Cakpo
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Gilles Vercambre
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Valentina Baldazzi
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d’Azur, Inria, INRAE, Sorbonne Université, BIOCORE, Sophia-Antipolis, France
| | - Léa Roch
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, Villenave d’Ornon, France
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pierre Valsesia
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | | | - Sophie Colombié
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- Bordeaux Metabolome Facility– MetaboHUB, Villenave d’Ornon, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Michel Génard
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| |
Collapse
|
10
|
Luna E, Flandin A, Cassan C, Prigent S, Chevanne C, Kadiri CF, Gibon Y, Pétriacq P. Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites 2020; 10:metabo10030096. [PMID: 32155921 PMCID: PMC7143431 DOI: 10.3390/metabo10030096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a postharvest level can claim up to 50% of the total production worldwide. Due to the environmental risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms. Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different methods of application result in durable protection. Here, we demonstrate that the treatment of tomato plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea, Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic microbes that present different infection strategies. Metabolomic analyses revealed major changes after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore, top-down modelling from the detected metabolic markers allowed for the accurate prediction of the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is particularly insightful for a better understanding of defence priming in fruit. Further experiments are underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming in tomato fruit.
Collapse
Affiliation(s)
- Estrella Luna
- School of Biosciences, Uni. Birmingham, Birmingham B15 2TT, UK
| | - Amélie Flandin
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Cédric Cassan
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Chloé Chevanne
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
- Correspondence:
| |
Collapse
|
11
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|