1
|
Yin J, Li A, Wang Y, Li X, Ning W, Zhou X, Liu J, Sun Z. Melatonin improves cadmium tolerance in Salix viminalis by enhancing amino acid and saccharide metabolism, and increasing polyphenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117393. [PMID: 39581114 DOI: 10.1016/j.ecoenv.2024.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
As a short-rotation woody plant, Salix viminalis has the potential for phytoremediation of cadmium (Cd), but it has poor tolerance to high Cd concentrations. Melatonin (MEL), a candidate bio-promoter, was considered to play an active role in plant responses to Cd. However, the molecular mechanism by which MEL regulates metabolic processes in plants to defend against Cd stress remain unclear. Transcriptomics and global untargeted metabolomic sequencing were used to investigate the rapid response of S. viminalis to high Cd concentrations during initial growth stage after foliar application of MEL. Four treatments were set up in a pot experiment involving foliar application of MEL on the first day, followed by irrigation with a Cd solution the next day. Significant variations in the relevant defence genes and metabolites in leaves exposed to Cd were observed between willows treated with and without MEL. Foliar application of MEL upregulated sulphur metabolism-related genes such as methionine and S-adenosylmethionine synthases in leaves exposed to Cd; glutamine content, which is the key point of nitrogen assimilation, also increased. Additionally, glycolysis and sucrose metabolic genes, including hexokinase, sucrose synthase, invertase, and the inositol phosphate metabolic gene myo-inositol-1-phosphate synthase were also upregulated in leaves. Moreover, MEL also upregulated genes related to the synthesis of flavonoids, anthocyanins, and proanthocyanins in the leaves. These results demonstrated that MEL improved amino acid and saccharide metabolism in the leaves of S. viminalis in response to Cd. It also improved the antioxidant capacity and Cd tolerance in S. viminalis leaves by enhancing synthetic capacity of polyphenol compounds. MEL may be involved in processes of photorespiration, ethylene metabolism, GABA shunt, nitric oxide metabolism, osmotic adjustment, and the synthesis of glutathione and ascorbate in S. viminalis under Cd stress. This series of metabolic changes in S. viminalis occurred within 24 h of the foliar application of MEL, which provided a sufficient substrate for subsequent defence reactions to cope with Cd stress. Our findings will help elucidate the molecular mechanism by which MEL regulates metabolic processes in plants in response to Cd challenges and guide the application of MEL to improve Cd phytoremediation efficiency.
Collapse
Affiliation(s)
- Jiahui Yin
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Ao Li
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuancheng Wang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274000, China
| | - Wei Ning
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinglu Zhou
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
2
|
Song M, Hu N, Zhou S, Xie S, Yang J, Ma W, Teng Z, Liang W, Wang C, Bu M, Zhang S, Yang X, He D. Physiological and RNA-Seq Analyses on Exogenous Strigolactones Alleviating Drought by Improving Antioxidation and Photosynthesis in Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2023; 12:1884. [PMID: 37891963 PMCID: PMC10604895 DOI: 10.3390/antiox12101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction.
Collapse
Affiliation(s)
- Miao Song
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Songxin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Jian Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenqi Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Zhengkai Teng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Wenxian Liang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Chunyan Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Mingna Bu
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Shuo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| | - Dexian He
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (M.S.); (N.H.); (S.Z.); (S.X.); (J.Y.); (W.M.); (Z.T.); (W.L.); (C.W.); (M.B.); (S.Z.)
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, China
| |
Collapse
|
3
|
Sethi M, Saini DK, Devi V, Kaur C, Singh MP, Singh J, Pruthi G, Kaur A, Singh A, Chaudhary DP. Unravelling the genetic framework associated with grain quality and yield-related traits in maize ( Zea mays L.). Front Genet 2023; 14:1248697. [PMID: 37609038 PMCID: PMC10440565 DOI: 10.3389/fgene.2023.1248697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
Maize serves as a crucial nutrient reservoir for a significant portion of the global population. However, to effectively address the growing world population's hidden hunger, it is essential to focus on two key aspects: biofortification of maize and improving its yield potential through advanced breeding techniques. Moreover, the coordination of multiple targets within a single breeding program poses a complex challenge. This study compiled mapping studies conducted over the past decade, identifying quantitative trait loci associated with grain quality and yield related traits in maize. Meta-QTL analysis of 2,974 QTLs for 169 component traits (associated with quality and yield related traits) revealed 68 MQTLs across different genetic backgrounds and environments. Most of these MQTLs were further validated using the data from genome-wide association studies (GWAS). Further, ten MQTLs, referred to as breeding-friendly MQTLs (BF-MQTLs), with a significant phenotypic variation explained over 10% and confidence interval less than 2 Mb, were shortlisted. BF-MQTLs were further used to identify potential candidate genes, including 59 genes encoding important proteins/products involved in essential metabolic pathways. Five BF-MQTLs associated with both quality and yield traits were also recommended to be utilized in future breeding programs. Synteny analysis with wheat and rice genomes revealed conserved regions across the genomes, indicating these hotspot regions as validated targets for developing biofortified, high-yielding maize varieties in future breeding programs. After validation, the identified candidate genes can also be utilized to effectively model the plant architecture and enhance desirable quality traits through various approaches such as marker-assisted breeding, genetic engineering, and genome editing.
Collapse
Affiliation(s)
- Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohini Prabha Singh
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jasneet Singh
- Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Gomsie Pruthi
- Department of Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amanpreet Kaur
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam Paul Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
5
|
Cheng X, Liu X, He J, Tang M, Li H, Li M. The genome wide analysis of Tryptophan Aminotransferase Related gene family, and their relationship with related agronomic traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1098820. [PMID: 36618649 PMCID: PMC9811149 DOI: 10.3389/fpls.2022.1098820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) proteins are the enzymes that involved in auxin biosynthesis pathway. The TAA1/TAR gene family has been systematically characterized in several plants but has not been well reported in Brassica napus. In the present study, a total of 102 BnTAR genes with different number of introns were identified. It was revealed that these genes are distributed unevenly and occurred as clusters on different chromosomes except for A4, A5, A10 and C4 in B. napus. Most of the these BnTAR genes are conserved despite of existing of gene loss and gene gain. In addition, the segmental replication and whole-genome replication events were both play an important role in the BnTAR gene family formation. Expression profiles analysis indicated that the expression of BnTAR gene showed two patterns, part of them were mainly expressed in roots, stems and leaves of vegetative organs, and the others were mainly expressed in flowers and seeds of reproductive organs. Further analysis showed that many of BnTAR genes were located in QTL intervals of oil content or seed weight, for example BnAMI10 was located in cqOC-C5-4 and cqSW-A2-2, it indicated that some of the BnTAR genes might have relationship with these two characteristics. This study provides a multidimensional analysis of the TAA1/TAR gene family and a new insight into its biological function in B. napus.
Collapse
Affiliation(s)
- Xin Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinmin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, the Ministry of Education of China, Wuhan, China
| |
Collapse
|
6
|
Bergman ME, Evans SE, Davis B, Hamid R, Bajwa I, Jayathilake A, Chahal AK, Phillips MA. An Arabidopsis GCMS chemical ionization technique to quantify adaptive responses in central metabolism. PLANT PHYSIOLOGY 2022; 189:2072-2090. [PMID: 35512197 PMCID: PMC9342981 DOI: 10.1093/plphys/kiac207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
We present a methodology to survey central metabolism in 13CO2-labeled Arabidopsis (Arabidopsis thaliana) rosettes by ammonia positive chemical ionization-gas chromatography-mass spectrometry. This technique preserves the molecular ion cluster of methyloxime/trimethylsilyl-derivatized analytes up to 1 kDa, providing unambiguous nominal mass assignment of >200 central metabolites and 13C incorporation rates into a subset of 111 from the tricarboxylic acid (TCA) cycle, photorespiratory pathway, amino acid metabolism, shikimate pathway, and lipid and sugar metabolism. In short-term labeling assays, we observed plateau labeling of ∼35% for intermediates of the photorespiratory cycle except for glyoxylate, which reached only ∼4% labeling and was also present at molar concentrations several fold lower than other photorespiratory intermediates. This suggests photorespiratory flux may involve alternate intermediate pools besides the generally accepted route through glyoxylate. Untargeted scans showed that in illuminated leaves, noncyclic TCA cycle flux and citrate export to the cytosol revert to a cyclic flux mode following methyl jasmonate (MJ) treatment. MJ also caused a block in the photorespiratory transamination of glyoxylate to glycine. Salicylic acid treatment induced the opposite effects in both cases, indicating the antagonistic relationship of these defense signaling hormones is preserved at the metabolome level. We provide complete chemical ionization spectra for 203 Arabidopsis metabolites from central metabolism, which uniformly feature the unfragmented pseudomolecular ion as the base peak. This unbiased, soft ionization technique is a powerful screening tool to identify adaptive metabolic trends in photosynthetic tissue and represents an important advance in methodology to measure plant metabolic flux.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Benjamin Davis
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Rehma Hamid
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Ibadat Bajwa
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Amreetha Jayathilake
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Anmol Kaur Chahal
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
7
|
Genome-Wide Analysis of the Peptidase M24 Superfamily in Triticum aestivum Demonstrates That TaM24-9 Is Involved in Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23136904. [PMID: 35805912 PMCID: PMC9266489 DOI: 10.3390/ijms23136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
The peptidase M24 (Metallopeptidase 24, M24) superfamily is essential for plant growth, stress response, and pathogen defense. At present, there are few systematic reports on the identification and classification of members of the peptidase M24 proteins superfamily in wheat. In this work, we identified 53 putative candidate TaM24 genes. According to the protein sequences characteristics, these members can be roughly divided into three subfamilies: I, II, III. Most TaM24 genes are complex with multiple exons, and the motifs are relatively conserved in each sub-group. Through chromosome mapping analysis, we found that the 53 genes were unevenly distributed on 19 wheat chromosomes (except 3A and 3D), of which 68% were in triads. Analysis of gene duplication events showed that 62% of TaM24 genes in wheat came from fragment duplication events, and there were no tandem duplication events to amplify genes. Analysis of the promoter sequences of TaM24 genes revealed that cis-acting elements were rich in response elements to drought, osmotic stress, ABA, and MeJA. We also studied the expression of TaM24 in wheat tissues at developmental stages and abiotic stress. Then we selected TaM24-9 as the target for further analysis. The results showed that TaM24-9 genes strengthened the drought and salt tolerance of plants. Overall, our analysis showed that members of the peptidase M24 genes may participate in the abiotic stress response and provided potential gene resources for improving wheat resistance.
Collapse
|
8
|
Abbasi AZ, Bilal M, Khurshid G, Yiotis C, Zeb I, Hussain J, Baig A, Shah MM, Chaudhary SU, Osborne B, Ahmad R. Expression of cyanobacterial genes enhanced CO 2 assimilation and biomass production in transgenic Arabidopsis thaliana. PeerJ 2021; 9:e11860. [PMID: 34434649 PMCID: PMC8359801 DOI: 10.7717/peerj.11860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. Methods Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. Results The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. Conclusion This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.
Collapse
Affiliation(s)
- Anum Zeb Abbasi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Misbah Bilal
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Ghazal Khurshid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Charilaos Yiotis
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Ireland.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Mohammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| | - Safee Ullah Chaudhary
- Department of Biology, School of Science and Engineering, Lahore University of Management Sciences, Lahore, Punjab, Pakistan
| | - Bruce Osborne
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan
| |
Collapse
|
9
|
The metabolic importance of the overlooked asparaginase II pathway. Anal Biochem 2020; 644:114084. [PMID: 33347861 DOI: 10.1016/j.ab.2020.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022]
Abstract
The asparaginase II pathway consists of an asparagine transaminase [l-asparagine + α-keto acid ⇆ α-ketosuccinamate + l-amino acid] coupled to ω-amidase [α-ketosuccinamate + H2O → oxaloacetate + NH4+]. The net reaction is: l-asparagine + α-keto acid + H2O → oxaloacetate + l-amino acid + NH4+. Thus, in the presence of a suitable α-keto acid substrate, the asparaginase II pathway generates anaplerotic oxaloacetate at the expense of readily dispensable asparagine. Several studies have shown that the asparaginase II pathway is important in photorespiration in plants. However, since its discovery in rat tissues in the 1950s, this pathway has been almost completely ignored as a conduit for asparagine metabolism in mammals. Several mammalian transaminases can catalyze transamination of asparagine, one of which - alanine-glyoxylate aminotransferase type 1 (AGT1) - is important in glyoxylate metabolism. Glyoxylate is a precursor of oxalate which, in the form of its calcium salt, is a major contributor to the formation of kidney stones. Thus, transamination of glyoxylate with asparagine may be physiologically important for the removal of potentially toxic glyoxylate. Asparaginase has been the mainstay treatment for certain childhood leukemias. We suggest that an inhibitor of ω-amidase may potentiate the therapeutic benefits of asparaginase treatment.
Collapse
|