1
|
McGuire ST, Shockey J, Bates PD. The first intron and promoter of Arabidopsis DIACYLGLYCEROL ACYLTRANSFERASE 1 exert synergistic effects on pollen and embryo lipid accumulation. THE NEW PHYTOLOGIST 2025; 245:263-281. [PMID: 39501618 PMCID: PMC11617664 DOI: 10.1111/nph.20244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024]
Abstract
Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. In Arabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in a dgat1-1/pdat1-2 double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue-specific expression of either gene has not yet been identified. We transformed a dgat1-1/dgat1-1//PDAT1/pdat1-2 parent with transgenic constructs containing the Arabidopsis DGAT1 promoter fused to the AtDGAT1 open reading frame either with or without the first intron. Triple homozygous plants were obtained, however, in the absence of the DGAT1 first intron anthers fail to fill with pollen, seed yield is c. 10% of wild-type, seed oil content remains reduced (similar to dgat1-1/dgat1-1), and non-Mendelian segregation of the PDAT1/pdat1-2 locus occurs. Whereas plants expressing the AtDGAT1pro:AtDGAT1 transgene containing the first intron mostly recover phenotypes to wild-type. This study establishes that a combination of the promoter and first intron of AtDGAT1 provides the proper context for temporal and tissue-specific expression of AtDGAT1 in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes in Arabidopsis.
Collapse
Affiliation(s)
- Sean T. McGuire
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Service1100 Allen Toussaint BlvdNew OrleansLA70124USA
| | - Philip D. Bates
- Institute of Biological ChemistryWashington State UniversityPullmanWA99164USA
| |
Collapse
|
2
|
Shi J, Toscani M, Dowling CA, Schilling S, Melzer R. Identification of genes associated with sex expression and sex determination in hemp (Cannabis sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:175-190. [PMID: 39468733 DOI: 10.1093/jxb/erae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024]
Abstract
Dioecy in flowering plants has evolved independently many times, and thus the genetic mechanisms underlying sex determination are diverse. In hemp (Cannabis sativa), sex is controlled by a pair of sex chromosomes (XX for females and XY for males). In an attempt to understand the molecular mechanism responsible for sex expression in hemp plants, we carried out RNA sequencing of male and female plants at different developmental stages. Using a pipeline involving differential gene expression analysis and weighted gene co-expression network analysis, we identified genes important for male and female flower development. We also demonstrate that sex-biased expression is already established at very early vegetative stages, before the onset of reproductive development, and identify several genes encoding transcription factors of the REM, bZIP, and MADS families as candidate sex-determination genes in hemp. Our findings demonstrate that the gene regulatory networks governing male and female development in hemp diverge at a very early stage, leading to profound morphological differences between male and female hemp plants.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Matteo Toscani
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Caroline A Dowling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Lv Y, Li J, Wang Z, Liu Y, Jiang Y, Li Y, Lv Z, Huang X, Peng X, Cao Y, Yang H. Polycomb proteins RING1A/B promote H2A monoubiquitination to regulate female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4822-4836. [PMID: 38717070 DOI: 10.1093/jxb/erae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), which differentiates from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as the functional megaspore (FM), then undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we report that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. Mutations of RING1A/B resulted in defects in the specification of the MMC and the FM, and in the subsequent mitosis of the FM, thereby leading to aborted ovules. Detailed analysis revealed that several genes essential for female gametophyte development were ectopically expressed in the ring1a ring1b mutant, including Argonaute (AGO) family genes and critical transcription factors. Furthermore, RING1A/B bound to some of these genes to promote H2A monoubiquitination (H2Aub). Taken together, our study shows that RING1A/B promote H2Aub modification at key genes for female gametophyte development, suppressing their expression to ensure that the development progresses correctly.
Collapse
Affiliation(s)
- Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yili Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaopeng Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoyi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Goeckeritz CZ, Grabb C, Grumet R, Iezzoni AF, Hollender CA. Genetic factors acting prior to dormancy in sour cherry influence bloom time the following spring. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4428-4452. [PMID: 38602443 PMCID: PMC11263489 DOI: 10.1093/jxb/erae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Understanding the process of Prunus species floral development is crucial for developing strategies to manipulate bloom time and prevent crop loss due to climate change. Here, we present a detailed examination of flower development from initiation until bloom for early- and late-blooming sour cherries (Prunus cerasus) from a population segregating for a major bloom time QTL on chromosome 4. Using a new staging system, we show floral buds from early-blooming trees were persistently more advanced than those from late-blooming siblings. A genomic DNA coverage analysis revealed the late-blooming haplotype of this QTL, k, is located on a subgenome originating from the late-blooming P. fruticosa progenitor. Transcriptome analyses identified many genes within this QTL as differentially expressed between early- and late-blooming trees during the vegetative-to-floral transition. From these, we identified candidate genes for the late bloom phenotype, including multiple transcription factors homologous to Reproductive Meristem B3 domain-containing proteins. Additionally, we determined that the basis of k in sour cherry is likely separate from candidate genes found in sweet cherry-suggesting several major regulators of bloom time are located on Prunus chromosome 4.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Chloe Grabb
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Guo C, Huang Z, Chen J, Yu G, Wang Y, Wang X. Identification of Novel Regulators of Leaf Senescence Using a Deep Learning Model. PLANTS (BASEL, SWITZERLAND) 2024; 13:1276. [PMID: 38732491 PMCID: PMC11085074 DOI: 10.3390/plants13091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Deep learning has emerged as a powerful tool for investigating intricate biological processes in plants by harnessing the potential of large-scale data. Gene regulation is a complex process that transcription factors (TFs), cooperating with their target genes, participate in through various aspects of biological processes. Despite its significance, the study of gene regulation has primarily focused on a limited number of notable instances, leaving numerous aspects and interactions yet to be explored comprehensively. Here, we developed DEGRN (Deep learning on Expression for Gene Regulatory Network), an innovative deep learning model designed to decipher gene interactions by leveraging high-dimensional expression data obtained from bulk RNA-Seq and scRNA-Seq data in the model plant Arabidopsis. DEGRN exhibited a compared level of predictive power when applied to various datasets. Through the utilization of DEGRN, we successfully identified an extensive set of 3,053,363 high-quality interactions, encompassing 1430 TFs and 13,739 non-TF genes. Notably, DEGRN's predictive capabilities allowed us to uncover novel regulators involved in a range of complex biological processes, including development, metabolism, and stress responses. Using leaf senescence as an example, we revealed a complex network underpinning this process composed of diverse TF families, including bHLH, ERF, and MYB. We also identified a novel TF, named MAF5, whose expression showed a strong linear regression relation during the progression of senescence. The mutant maf5 showed early leaf decay compared to the wild type, indicating a potential role in the regulation of leaf senescence. This hypothesis was further supported by the expression patterns observed across four stages of leaf development, as well as transcriptomics analysis. Overall, the comprehensive coverage provided by DEGRN expands our understanding of gene regulatory networks and paves the way for further investigations into their functional implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.G.); (Z.H.); (J.C.); (G.Y.); (Y.W.)
| |
Collapse
|
6
|
Park YS, Cho HJ, Kim S. Identification and expression analyses of B3 genes reveal lineage-specific evolution and potential roles of REM genes in pepper. BMC PLANT BIOLOGY 2024; 24:201. [PMID: 38500065 PMCID: PMC10949715 DOI: 10.1186/s12870-024-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied. RESULTS In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum). CONCLUSIONS Our study provides evolutionary and functional insights into the REM gene family in pepper.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Rieu P, Beretta VM, Caselli F, Thévénon E, Lucas J, Rizk M, Franchini E, Caporali E, Paleni C, Nanao MH, Kater MM, Dumas R, Zubieta C, Parcy F, Gregis V. The ALOG domain defines a family of plant-specific transcription factors acting during Arabidopsis flower development. Proc Natl Acad Sci U S A 2024; 121:e2310464121. [PMID: 38412122 PMCID: PMC10927535 DOI: 10.1073/pnas.2310464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024] Open
Abstract
The ALOG (Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 (LSH1) and Oryza G1) proteins are conserved plant-specific Transcription Factors (TFs). They play critical roles in the development of various plant organs (meristems, inflorescences, floral organs, and nodules) from bryophytes to higher flowering plants. Despite the fact that the first members of this family were originally discovered in Arabidopsis, their role in this model plant has remained poorly characterized. Moreover, how these transcriptional regulators work at the molecular level is unknown. Here, we study the redundant function of the ALOG proteins LSH1,3,4 from Arabidopsis. We uncover their role in the repression of bract development and position them within a gene regulatory network controlling this process and involving the floral regulators LEAFY, BLADE-ON-PETIOLE, and PUCHI. Next, using in vitro genome-wide studies, we identified the conserved DNA motif bound by ALOG proteins from evolutionarily distant species (the liverwort Marchantia polymorpha and the flowering plants Arabidopsis, tomato, and rice). Resolution of the crystallographic structure of the ALOG DNA-binding domain in complex with DNA revealed the domain is a four-helix bundle with a disordered NLS and a zinc ribbon insertion between helices 2 and 3. The majority of DNA interactions are mediated by specific contacts made by the third alpha helix and the NLS. Taken together, this work provides the biochemical and structural basis for DNA-binding specificity of an evolutionarily conserved TF family and reveals its role as a key player in Arabidopsis flower development.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | | | - Francesca Caselli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Emmanuel Thévénon
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Mahmoud Rizk
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble38000, France
| | - Emanuela Franchini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Chiara Paleni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Max H. Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble38000, France
| | - Martin M. Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| | - Renaud Dumas
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Chloe Zubieta
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l’énergie atomique et aux énergies alternatives, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Département de Biologie Structurale et Cellulaire intégrée, GrenobleF-38054, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano20133, Italy
| |
Collapse
|
8
|
Wang T, Long C, Chang M, Wu Y, Su S, Wei J, Jiang S, Wang X, He J, Xing D, He Y, Ran Y, Li W. Genome-wide identification of the B3 transcription factor family in pepper (Capsicum annuum) and expression patterns during fruit ripening. Sci Rep 2024; 14:2226. [PMID: 38278802 PMCID: PMC10817905 DOI: 10.1038/s41598-023-51080-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
In plants, B3 transcription factors play important roles in a variety of aspects of their growth and development. While the B3 transcription factor has been extensively identified and studied in numerous species, there is limited knowledge regarding its B3 superfamily in pepper. Through the utilization of genome-wide sequence analysis, we identified a total of 106 B3 genes from pepper (Capsicum annuum), they are categorized into four subfamilies: RAV, ARF, LAV, and REM. Chromosome distribution, genetic structure, motif, and cis-acting element of the pepper B3 protein were analyzed. Conserved gene structure and motifs outside the B3 domain provided strong evidence for phylogenetic relationships, allowing potential functions to be deduced by comparison with homologous genes from Arabidopsis. According to the high-throughput transcriptome sequencing analysis, expression patterns differ during different phases of fruit development in the majority of the 106 B3 pepper genes. By using qRT-PCR analysis, similar expression patterns in fruits from various time periods were discovered. In addition, further analysis of the CaRAV4 gene showed that its expression level decreased with fruit ripening and located in the nucleus. B3 transcription factors have been genome-wide characterized in a variety of crops, but the present study is the first genome-wide analysis of the B3 superfamily in pepper. More importantly, although B3 transcription factors play key regulatory roles in fruit development, it is uncertain whether B3 transcription factors are involved in the regulation of the fruit development and ripening process in pepper and their specific regulatory mechanisms because the molecular mechanisms of the process have not been fully explained. The results of the study provide a foundation and new insights into the potential regulatory functions and molecular mechanisms of B3 genes in the development and ripening process of pepper fruits, and provide a solid theoretical foundation for the enhancement of the quality of peppers and their selection and breeding of high-yield varieties.
Collapse
Affiliation(s)
- Tao Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Cha Long
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Meixia Chang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuan Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Shixian Su
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jingjiang Wei
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
| | - Suyan Jiang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiujun Wang
- College of Brewing and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianwen He
- Pepper Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Dan Xing
- Pepper Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Yangbo He
- Agriculture Development and Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Yaoqi Ran
- Agriculture Development and Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China.
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
9
|
Uba CU, Oselebe HO, Tesfaye AA, Abtew WG. Association mapping in bambara groundnut [Vigna subterranea (L.) Verdc.] reveals loci associated with agro-morphological traits. BMC Genomics 2023; 24:593. [PMID: 37803263 PMCID: PMC10557193 DOI: 10.1186/s12864-023-09684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are important for the acceleration of crop improvement through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara groundnut) assisted in the identification of candidate genes. RESULTS The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flowering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to maturity (1). CONCLUSION These results revealed the prospect of GWAS in identification of SNP variations associated with agronomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies in breeding of bambara groundnut for acceleration of the crop improvement.
Collapse
Affiliation(s)
- Charles U Uba
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia.
| | | | - Abush A Tesfaye
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Wosene G Abtew
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia
| |
Collapse
|
10
|
Manrique S, Caselli F, Matías-Hernández L, Franks RG, Colombo L, Gregis V. Assessing the role of REM13, REM34 and REM46 during the transition to the reproductive phase in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01357-1. [PMID: 37171544 DOI: 10.1007/s11103-023-01357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
REM (reproductive meristem) transcription factors have been proposed as regulators of plant reproductive development mainly based on their specific expression patterns in reproductive structures, but their roles are still largely unknown probably because of their redundancy. We selected three REM genes (REM13, REM34 and REM46) for functional analysis, based on their genome position and/or co-expression data.Our results suggest that these genes have a role in flowering time regulation and may modulate cell cycle progression. In addition, protein interaction experiments revealed that REM34 and REM46 interact with each other, suggesting that they might work cooperatively to regulate cell division during inflorescence meristem commitment.Previous attempts of using co-expression data as a guide for functional analysis of REMs were limited by the transcriptomic data available at the time. Our results uncover previously unknown functions of three members of the REM family of Arabidopsis thaliana and open the door to more comprehensive studies of the REM family, where the combination of co-expression analysis followed by functional studies might contribute to uncovering the biological roles of these proteins and the relationship among them.
Collapse
Affiliation(s)
- Silvia Manrique
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Francesca Caselli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Luis Matías-Hernández
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy
- Tricopharming, C/Pallars 99, 08018, Barcelona, Spain
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, 27606, Raleigh, NC, USA
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
11
|
Daradur J, Kesserwan M, Freese NH, Loraine AE, Riggs CD. Genomic targets of HOP2 are enriched for features found at recombination hotspots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525520. [PMID: 36747711 PMCID: PMC9900786 DOI: 10.1101/2023.01.25.525520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HOP2 is a conserved protein that plays a positive role in homologous chromosome pairing and a separable role in preventing illegitimate connections between nonhomologous chromosome regions during meiosis. We employed ChIP-seq to discover that Arabidopsis HOP2 binds along the length of all chromosomes, except for centromeric and nucleolar organizer regions, and no binding sites were detected in the organelle genomes. A large number of reads were assigned to the HOP2 locus itself, yet TAIL-PCR and SNP analysis of the aligned sequences indicate that many of these reads originate from the transforming T-DNA, supporting the role of HOP2 in preventing nonhomologous exchanges. The 292 ChIP-seq peaks are largely found in promoter regions and downstream from genes, paralleling the distribution of recombination hotspots, and motif analysis revealed that there are several conserved sequences that are also enriched at crossover sites. We conducted coimmunoprecipitation of HOP2 followed by LC-MS/MS and found enrichment for several proteins, including some histone variants and modifications that are also known to be associated with recombination hotspots. We propose that HOP2 may be directed to chromatin motifs near double strand breaks, where homology checks are proposed to occur.
Collapse
Affiliation(s)
- Jenya Daradur
- Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| | - Mohamad Kesserwan
- Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| | - Nowlan H. Freese
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, Charlotte, N.C. USA
| | - Ann E. Loraine
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, Charlotte, N.C. USA
| | - C. Daniel Riggs
- Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
12
|
Guo J, Liu H, Dai K, Yuan X, Guo P, Shi W, Zhou M. Identification of Brachypodium distachyon B3 genes reveals that BdB3-54 regulates primary root growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1050171. [PMID: 36438129 PMCID: PMC9686306 DOI: 10.3389/fpls.2022.1050171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
B3 is a class of plant-specific transcription factors with important roles in plant development and growth. Here, we identified 69 B3 transcription factors in Brachypodium distachyon that were unevenly distributed across all five chromosomes. The ARF, REM, LAV, and RAV subfamilies were grouped based on sequence characteristics and phylogenetic relationships. The phylogenetically related members in the B3 family shared conserved domains and gene structures. Expression profiles showed that B3 genes were widely expressed in different tissues and varied in response to different abiotic stresses. BdB3-54 protein from the REM subfamily was located in the nucleus by subcellular localization and processed transcriptional activation activity. Overexpression of BdB3-54 in Arabidopsis increased primary root length. Our study provides a basis for further research on the functions of BdB3 genes.
Collapse
Affiliation(s)
- Jie Guo
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Hanxiao Liu
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Keli Dai
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Meixue Zhou
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, Australia
| |
Collapse
|
13
|
Liu J, Wu S, Sun J, Sun J, Wang H, Cao X, Lu J, Jalal A, Wang C. Genome-wide analysis reveals widespread roles for RcREM genes in floral organ development in Rosa chinensis. Genomics 2021; 113:3881-3894. [PMID: 34571174 DOI: 10.1016/j.ygeno.2021.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Members of the REM (Reproductive Meristem) gene family are expressed primarily in reproductive meristems and floral organs. However, their evolution and their functional profiles in flower development remain poorly understood. Here, we performed genome-wide identification and evolutionary analysis of the REM gene family in Rosaceae. This family has been greatly expanded in rose (Rosa chinensis) compared to other species, primarily through tandem duplication. Expression analysis revealed that most RcREM genes are specifically expressed in reproductive organs and that their specific expression patterns are dramatically altered in rose plants with mutations affecting floral organs. Protein-protein interaction analysis indicated that RcREM14 interact with RcAP1 (one of the homology of A class genes in ABCDE model), highlighting the roles of RcREM genes in floral organ identity. Finally, co-expression network analysis indicated that RcREM genes are co-expressed with a high proportion of key genes that regulate flowering time, floral organ development, and cell proliferation and expansion in R. chinensis.
Collapse
Affiliation(s)
- Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Silin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jingrui Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hailan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xu Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Abdul Jalal
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
14
|
Ruan CC, Chen Z, Hu FC, Fan W, Wang XH, Guo LJ, Fan HY, Luo ZW, Zhang ZL. Genome-wide characterization and expression profiling of B3 superfamily during ethylene-induced flowering in pineapple (Ananas comosus L.). BMC Genomics 2021; 22:561. [PMID: 34289810 PMCID: PMC8296579 DOI: 10.1186/s12864-021-07854-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The B3 superfamily (B3s) represents a class of large plant-specific transcription factors, which play diverse roles in plant growth and development process including flowering induction. However, identification and functional surveys of B3 superfamily have not been reported in ethylene-induced pineapple flowering (Ananas comosus). RESULTS 57 B3 genes containing B3 domain were identified and phylogenetically classified into five subfamilies. Chromosomal localization analysis revealed that 54 of 57 AcB3s were located on 21 Linkage Groups (LG). Collinearity analysis demonstrated that the segmental duplication was the main event in the evolution of B3 gene superfamily, and most of them were under purifying selection. The analysis of cis-element composition suggested that most of these genes may have function in response to abscisic acid, ethylene, MeJA, light, and abiotic stress. qRT-PCR analysis of 40 AcB3s containing ethylene responsive elements exhibited that the expression levels of 35 genes were up-regulated within 1 d after ethephon treatment and some were highly expressed in flower bud differentiation period in stem apex, such as Aco012003, Aco019552 and Aco014401. CONCLUSION This study provides a basic information of AcB3s and clues for involvement of some AcB3s in ethylene-induced flowering in pineapple.
Collapse
Affiliation(s)
- Cheng Cheng Ruan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhe Chen
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Fu Chu Hu
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiang He Wang
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Li Jun Guo
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Hong Yan Fan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhi Wen Luo
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhi Li Zhang
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
| |
Collapse
|
15
|
Amkul K, Somta P, Laosatit K, Wang L. Identification of QTLs for Domestication-Related Traits in Zombi Pea [ Vigna vexillata (L.) A. Rich], a Lost Crop of Africa. Front Genet 2020; 11:803. [PMID: 33193562 PMCID: PMC7530282 DOI: 10.3389/fgene.2020.00803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Zombi pea [Vigna vexillata (L.) A. Rich] is a legume crop found in Africa. Wild zombi pea is widely distributed throughout the tropical and subtropical regions, whereas domesticated zombi pea is rarely cultivated. Plant domestication is an evolutionary process in which the phenotypes of wild species, including seed dormancy, pod shattering, organ size, and architectural and phenological characteristics, undergo changes. The molecular mechanism underlying the domestication of zombi pea is relatively unknown. In this study, the genetic basis of the following 13 domestication-related traits was investigated in an F2 population comprising 198 individuals derived from a cross between cultivated (var. macrosperma) and wild (var. vexillata) zombi pea accessions: seed dormancy, pod shattering, days-to-flowering, days-to-maturity, stem thickness, stem length, number of branches, leaf area, pod length, 100-seed weight, seed width, seed length, and seeds per pod. A genetic map containing 6,529 single nucleotide polymorphisms constructed for the F2 population was used to identify quantitative trait loci (QTLs) for these traits. A total of 62 QTLs were identified for the 13 traits, with 1-11 QTLs per trait. The major QTLs for days-to-flowering, stem length, number of branches, pod length, 100-seed weight, seed length, and seeds per pod were clustered in linkage group 5. In contrast, the major QTLs for seed dormancy and pod shattering belonged to linkage groups 3 and 11, respectively. A comparative genomic analysis with the cowpea [Vigna unguiculata (L.) Walp.] genome used as the reference sequence (i.e., the genome of the legume species most closely related to zombi pea) enabled the identification of candidate genes for the major QTLs. Thus, we revealed the genomic regions associated with domestication-related traits and the candidate genes controlling these traits in zombi pea. The data presented herein may be useful for breeding new varieties of zombi pea and other Vigna species.
Collapse
Affiliation(s)
- Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Yu Y, Qiao L, Chen J, Rong Y, Zhao Y, Cui X, Xu J, Hou X, Dong CH. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1386-1398. [PMID: 32391591 DOI: 10.1111/tpj.14807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 05/25/2023]
Abstract
Actin depolymerizing factor (ADF) is a key modulator for dynamic organization of actin cytoskeleton. Interestingly, it was found that the ADF1 gene silencing delays flowering, but its mechanism remains unclear. In this study, ADF1 was used as a bait to screen its interacting proteins by the yeast two-hybrid (Y2H) system. One of them, the REM16 transcription factor was identified. As one of the AP2/B3-like transcriptional factor family members, the REM16 contains two B3 domains and its transcript levels kept increasing during the floral transition stage. Overexpression of REM16 accelerates flowering while silencing of REM16 delays flowering. Gene expression analysis indicated that the key flowering activation genes such as CONSTANS (CO), FLOWERING LOCUS T (FT), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) were upregulated in the REM16 overexpression lines, while the transcription of the flowering suppression gene FLOWERING LOCUS C (FLC) was decreased. In contrast, the REM16 gene silencing lines contained lower transcript levels of the CO, FT, LFY and SOC1 but higher transcript levels of the FLC compared with the wild-type plants. It was proved that REM16 could directly bind to the promoter regions of SOC1 and FT by in vitro and in vivo assays. Genetic analysis supported that REM16 acts upstream of SOC1 and FT in flowering pathways. All these studies provided strong evidence demonstrating that REM16 promotes flowering by directly activating SOC1 and FT.
Collapse
Affiliation(s)
- Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yongheng Rong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuhang Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiankui Cui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jinpeng Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|