1
|
Bentz PC, Leebens‐Mack J. Developing Asparagaceae1726: An Asparagaceae-specific probe set targeting 1726 loci for Hyb-Seq and phylogenomics in the family. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11597. [PMID: 39360194 PMCID: PMC11443443 DOI: 10.1002/aps3.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 10/04/2024]
Abstract
Premise Target sequence capture (Hyb-Seq) is a cost-effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low-copy orthologs, Hyb-Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726-a Hyb-Seq probe set targeting 1726 low-copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae-which will aid the often-challenging delineation and resolution of evolutionary relationships within Asparagaceae. Methods Here we describe and validate the Asparagaceae1726 probe set (https://github.com/bentzpc/Asparagaceae1726) in six of the seven subfamilies of Asparagaceae. We perform phylogenomic analyses with these 1726 loci and evaluate how inclusion of paralogs and bycatch plastome sequences can enhance phylogenomic inference with target-enriched data sets. Results We recovered at least 82% of target orthologs from all sampled taxa, and phylogenomic analyses resulted in strong support for all subfamilial relationships. Additionally, topology and branch support were congruent between analyses with and without inclusion of target paralogs, suggesting that paralogs had limited effect on phylogenomic inference. Discussion Asparagaceae1726 is effective across the family and enables the generation of robust data sets for phylogenomics of any Asparagaceae taxon. Asparagaceae1726 establishes a standardized set of loci for phylogenomic analysis in Asparagaceae, which we hope will be widely used for extensible and reproducible investigations of diversification in the family.
Collapse
Affiliation(s)
- Philip C. Bentz
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| | - Jim Leebens‐Mack
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| |
Collapse
|
2
|
Veltman MA, Anthoons B, Schrøder-Nielsen A, Gravendeel B, de Boer HJ. Orchidinae-205: A new genome-wide custom bait set for studying the evolution, systematics, and trade of terrestrial orchids. Mol Ecol Resour 2024; 24:e13986. [PMID: 38899721 DOI: 10.1111/1755-0998.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Terrestrial orchids are a group of genetically understudied, yet culturally and economically important plants. The Orchidinae tribe contains many species that produce edible tubers that are used for the production of traditional delicacies collectively called 'salep'. Overexploitation of wild orchids in the Eastern Mediterranean and Western Asia threatens to drive many of these species to extinction, but cost-effective tools for monitoring their trade are currently lacking. Here we present a custom bait kit for target enrichment and sequencing of 205 novel genetic markers that are tailored to phylogenomic applications in Orchidinae s.l. A subset of 31 markers capture genes putatively involved in the production of glucomannan, a water-soluble polysaccharide that gives salep its distinctive properties. We tested the kit on 73 taxa native to the area, demonstrating universally high locus recovery irrespective of species identity, that exceeds the total sequence length obtained with alternative kits currently available. Phylogenetic inference with concatenation and coalescent approaches was robust and showed high levels of support for most clades, including some which were previously unresolved. Resolution for hybridizing and recently radiated lineages remains difficult, but could be further improved by analysing multiple haplotypes and the non-exonic sequences captured by our kit, with the promise to shed new light on the evolution of enigmatic taxa with a complex speciation history. Offering a step-up from traditional barcoding and universal markers, the genome-wide custom loci targeted by Orchidinae-205 are a valuable new resource to study the evolution, systematics and trade of terrestrial orchids.
Collapse
Affiliation(s)
- Margaretha A Veltman
- Natural History Museum, Oslo, Norway
- Naturalis Biodiversity Center, Leiden, Netherlands
| | | | | | - Barbara Gravendeel
- Naturalis Biodiversity Center, Leiden, Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | | |
Collapse
|
3
|
Featherstone LA, McGaughran A. The effect of missing data on evolutionary analysis of sequence capture bycatch, with application to an agricultural pest. Mol Genet Genomics 2024; 299:11. [PMID: 38381254 PMCID: PMC10881687 DOI: 10.1007/s00438-024-02097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Sequence capture is a genomic technique that selectively enriches target sequences before high throughput next-generation sequencing, to generate specific sequences of interest. Off-target or 'bycatch' data are often discarded from capture experiments, but can be leveraged to address evolutionary questions under some circumstances. Here, we investigated the effects of missing data on a variety of evolutionary analyses using bycatch from an exon capture experiment on the global pest moth, Helicoverpa armigera. We added > 200 new samples from across Australia in the form of mitogenomes obtained as bycatch from targeted sequence capture, and combined these into an additional larger dataset to total > 1000 mitochondrial cytochrome c oxidase subunit I (COI) sequences across the species' global distribution. Using discriminant analysis of principal components and Bayesian coalescent analyses, we showed that mitogenomes assembled from bycatch with up to 75% missing data were able to return evolutionary inferences consistent with higher coverage datasets and the broader literature surrounding H. armigera. For example, low-coverage sequences broadly supported the delineation of two H. armigera subspecies and also provided new insights into the potential for geographic turnover among these subspecies. However, we also identified key effects of dataset coverage and composition on our results. Thus, low-coverage bycatch data can offer valuable information for population genetic and phylodynamic analyses, but caution is required to ensure the reduced information does not introduce confounding factors, such as sampling biases, that drive inference. We encourage more researchers to consider maximizing the potential of the targeted sequence approach by examining evolutionary questions with their off-target bycatch where possible-especially in cases where no previous mitochondrial data exists-but recommend stratifying data at different genome coverage thresholds to separate sampling effects from genuine genomic signals, and to understand their implications for evolutionary research.
Collapse
Affiliation(s)
- Leo A Featherstone
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Angela McGaughran
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia.
- Te Aka Mātuatua, School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.
| |
Collapse
|
4
|
Bentz PC, Liu Z, Yang JB, Zhang L, Burrows S, Burrows J, Kanno A, Mao Z, Leebens-Mack J. Young evolutionary origins of dioecy in the genus Asparagus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16276. [PMID: 38297448 DOI: 10.1002/ajb2.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
PREMISE Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. METHODS We use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genus Asparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. RESULTS We estimate that dioecy evolved once or twice approximately 2.78-3.78 million years ago in Asparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. CONCLUSIONS Our findings support previous work implicating a young age and the possibility of two origins of dioecy in Asparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy in Asparagus approximately 2.78-3.78 million years ago.
Collapse
Affiliation(s)
- Philip C Bentz
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | | | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| |
Collapse
|
5
|
Vera-Paz SI, Granados Mendoza C, Díaz Contreras Díaz DD, Jost M, Salazar GA, Rossado AJ, Montes-Azcué CA, Hernández-Gutiérrez R, Magallón S, Sánchez-González LA, Gouda EJ, Cabrera LI, Ramírez-Morillo IM, Flores-Cruz M, Granados-Aguilar X, Martínez-García AL, Hornung-Leoni CT, Barfuss MH, Wanke S. Plastome phylogenomics reveals an early Pliocene North- and Central America colonization by long-distance dispersal from South America of a highly diverse bromeliad lineage. FRONTIERS IN PLANT SCIENCE 2023; 14:1205511. [PMID: 37426962 PMCID: PMC10326849 DOI: 10.3389/fpls.2023.1205511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Understanding the spatial and temporal frameworks of species diversification is fundamental in evolutionary biology. Assessing the geographic origin and dispersal history of highly diverse lineages of rapid diversification can be hindered by the lack of appropriately sampled, resolved, and strongly supported phylogenetic contexts. The use of currently available cost-efficient sequencing strategies allows for the generation of a substantial amount of sequence data for dense taxonomic samplings, which together with well-curated geographic information and biogeographic models allow us to formally test the mode and tempo of dispersal events occurring in quick succession. Here, we assess the spatial and temporal frameworks for the origin and dispersal history of the expanded clade K, a highly diverse Tillandsia subgenus Tillandsia (Bromeliaceae, Poales) lineage hypothesized to have undergone a rapid radiation across the Neotropics. We assembled full plastomes from Hyb-Seq data for a dense taxon sampling of the expanded clade K plus a careful selection of outgroup species and used them to estimate a time- calibrated phylogenetic framework. This dated phylogenetic hypothesis was then used to perform biogeographic model tests and ancestral area reconstructions based on a comprehensive compilation of geographic information. The expanded clade K colonized North and Central America, specifically the Mexican transition zone and the Mesoamerican dominion, by long-distance dispersal from South America at least 4.86 Mya, when most of the Mexican highlands were already formed. Several dispersal events occurred subsequently northward to the southern Nearctic region, eastward to the Caribbean, and southward to the Pacific dominion during the last 2.8 Mya, a period characterized by pronounced climate fluctuations, derived from glacial-interglacial climate oscillations, and substantial volcanic activity, mainly in the Trans-Mexican Volcanic Belt. Our taxon sampling design allowed us to calibrate for the first time several nodes, not only within the expanded clade K focal group but also in other Tillandsioideae lineages. We expect that this dated phylogenetic framework will facilitate future macroevolutionary studies and provide reference age estimates to perform secondary calibrations for other Tillandsioideae lineages.
Collapse
Affiliation(s)
- Sandra I. Vera-Paz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Daniel D. Díaz Contreras Díaz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés J. Rossado
- Laboratorio de Sistemática de Plantas Vasculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Claudia A. Montes-Azcué
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rebeca Hernández-Gutiérrez
- Departament of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis A. Sánchez-González
- Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric J. Gouda
- Botanical Garden, Utrecht University, Utrecht, Netherlands
| | - Lidia I. Cabrera
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Flores-Cruz
- Departamento El Hombre y su Ambiente, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico
| | - Xochitl Granados-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana L. Martínez-García
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Investigaciones Biológicas, Herbario HGOM, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Claudia T. Hornung-Leoni
- Centro de Investigaciones Biológicas, Herbario HGOM, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Michael H.J. Barfuss
- Departament of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Benítez-Villaseñor A, Granados Mendoza C, Wanke S, Peñafiel Cevallos M, Freire ME, Lemmon EM, Lemmon AR, Magallón S. The use of Anchored Hybrid Enrichment data to resolve higher-level phylogenetic relationships: A proof-of-concept applied to Asterales (Eudicotyledoneae; Angiosperms). Mol Phylogenet Evol 2023; 181:107714. [PMID: 36708940 DOI: 10.1016/j.ympev.2023.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Anchored Hybrid Enrichment (AHE) is a tool for capturing orthologous regions of the nuclear genome shared in low or single copy across lineages. Despite the increasing number of studies using this method, its usefulness to estimate relationships at deeper taxonomic levels in plants has not been fully explored. Here we present a proof of concept about the performance of nuclear loci obtained with AHE to infer phylogenetic relationships and explore the use of gene sampling schemes to estimate divergence times in Asterales. We recovered low-copy nuclear loci using the AHE method from herbarium material and silica-preserved samples. Maximum likelihood, Bayesian inference, and coalescence approaches were used to reconstruct phylogenomic relationships. Dating analyses were conducted under a multispecies coalescent approach by jointly inferring species tree and divergence times with random gene sampling schemes and multiple calibrations. We recovered 403 low-copy nuclear loci for 63 species representing nine out of eleven families of Asterales. Phylogenetic hypotheses were congruent among the applied methods and previously published results. Analyses with concatenated datasets were strongly supported, but coalescence-based analyses showed low support for the phylogenetic position of families Argophyllaceae and Alseuosmiaceae. Estimated family ages were congruent among gene sampling schemes, with the mean age for Asterales around 130 Myr. Our study documents the usefulness of AHE for resolving phylogenetic relationships at deep phylogenetic levels in Asterales. Observed phylogenetic inconsistencies were possibly due to the non-inclusion of families Phellinceae and Pentaphragmataceae. Random gene sampling schemes produced consistent age estimates with coalescence and species tree relaxed clock approaches.
Collapse
Affiliation(s)
- Adriana Benítez-Villaseñor
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. P. 70-153, C.P.04510 Ciudad de México, Mexico.
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico; Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20, 01217 Dresden, Germany.
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico; Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20, 01217 Dresden, Germany.
| | - Marcia Peñafiel Cevallos
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito 170135, Ecuador.
| | - M Efraín Freire
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito 170135, Ecuador.
| | - Emily Moriarty Lemmon
- Department of Biology, Florida State University 319 Stadium Drive, P.O. Box 3064295, Tallahassee, FL 32306-4295, United States.
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University 400 Dirac Science Library, Tallahassee, FL 32306-4120, United States.
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.
| |
Collapse
|
7
|
Silva SR, Miranda VFO, Michael TP, Płachno BJ, Matos RG, Adamec L, Pond SLK, Lucaci AG, Pinheiro DG, Varani AM. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Mol Phylogenet Evol 2023; 181:107711. [PMID: 36693533 DOI: 10.1016/j.ympev.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.
Collapse
Affiliation(s)
- Saura R Silva
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Vitor F O Miranda
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland.
| | - Ramon G Matos
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Lubomir Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic.
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Daniel G Pinheiro
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| |
Collapse
|
8
|
Vera-Paz SI, Díaz Contreras Díaz DD, Jost M, Wanke S, Rossado AJ, Hernández-Gutiérrez R, Salazar GA, Magallón S, Gouda EJ, Ramírez-Morillo IM, Donadío S, Granados Mendoza C. New plastome structural rearrangements discovered in core Tillandsioideae (Bromeliaceae) support recently adopted taxonomy. FRONTIERS IN PLANT SCIENCE 2022; 13:924922. [PMID: 35982706 PMCID: PMC9378858 DOI: 10.3389/fpls.2022.924922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits' rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.
Collapse
Affiliation(s)
- Sandra I. Vera-Paz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel D. Díaz Contreras Díaz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Andrés J. Rossado
- Laboratorio de Sistemática de Plantas Vasculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rebeca Hernández-Gutiérrez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric J. Gouda
- Botanical Garden, Utrecht University, Utrecht, Netherlands
| | | | - Sabina Donadío
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Buenos Aires, Argentina
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Owen CL, Marshall DC, Wade EJ, Meister R, Goemans G, Kunte K, Moulds M, Hill K, Villet M, Pham TH, Kortyna M, Lemmon EM, Lemmon AR, Simon C. Detecting and removing sample contamination in phylogenomic data: an example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst Biol 2022; 71:1504-1523. [PMID: 35708660 DOI: 10.1093/sysbio/syac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Contamination of a genetic sample with DNA from one or more non-target species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and Next-Generation Sequencing (NGS) studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on detection of bimodal distributions of patristic distances across gene trees. When the contamination occurs between samples within a dataset, comparisons between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a dataset generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the AHE markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned dataset, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution.
Collapse
Affiliation(s)
- Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - David C Marshall
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth J Wade
- Dept. of Natural Science and Mathematics, Curry College, Milton, MA 02186, USA
| | - Russ Meister
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Geert Goemans
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Max Moulds
- Australian Museum Research Institute, 1 William Street, Sydney N.S.W, Australia. 2010
| | - Kathy Hill
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - M Villet
- Dept. of Biology, Rhodes University, Grahamstown 6140, South Africa
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hue, Vietnam.,Vietnam National Museum of Nature and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Michelle Kortyna
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Chris Simon
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|
11
|
Cai L, Zhang H, Davis CC. PhyloHerb: A high-throughput phylogenomic pipeline for processing genome skimming data. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11475. [PMID: 35774988 PMCID: PMC9215275 DOI: 10.1002/aps3.11475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Premise The application of high-throughput sequencing, especially to herbarium specimens, is rapidly accelerating biodiversity research. Low-coverage sequencing of total genomic DNA (genome skimming) is particularly promising and can simultaneously recover the plastid, mitochondrial, and nuclear ribosomal regions across hundreds of species. Here, we introduce PhyloHerb, a bioinformatic pipeline to efficiently assemble phylogenomic data sets derived from genome skimming. Methods and Results PhyloHerb uses either a built-in database or user-specified references to extract orthologous sequences from all three genomes using a BLAST search. It outputs FASTA files and offers a suite of utility functions to assist with alignment, partitioning, concatenation, and phylogeny inference. The program is freely available at https://github.com/lmcai/PhyloHerb/. Conclusions We demonstrate that PhyloHerb can accurately identify genes using a published data set from Clusiaceae. We also show via simulations that our approach is effective for highly fragmented assemblies from herbarium specimens and is scalable to thousands of species.
Collapse
Affiliation(s)
- Liming Cai
- Harvard University Herbaria22 Divinity Avenue, CambridgeMassachusetts02138USA
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexas78712USA
- Department of Botany and Plant SciencesUniversity of CaliforniaRiversideCalifornia92507USA
| | - Hongrui Zhang
- Harvard University Herbaria22 Divinity Avenue, CambridgeMassachusetts02138USA
| | - Charles C. Davis
- Harvard University Herbaria22 Divinity Avenue, CambridgeMassachusetts02138USA
| |
Collapse
|
12
|
Hernández-Gutiérrez R, van den Berg C, Granados Mendoza C, Peñafiel Cevallos M, Freire M. E, Lemmon EM, Lemmon AR, Magallón S. Localized Phylogenetic Discordance Among Nuclear Loci Due to Incomplete Lineage Sorting and Introgression in the Family of Cotton and Cacao (Malvaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:850521. [PMID: 35498660 PMCID: PMC9043901 DOI: 10.3389/fpls.2022.850521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The economically important cotton and cacao family (Malvaceae sensu lato) have long been recognized as a monophyletic group. However, the relationships among some subfamilies are still unclear as discordant phylogenetic hypotheses keep arising when different sources of molecular data are analyzed. Phylogenetic discordance has previously been hypothesized to be the result of both introgression and incomplete lineage sorting (ILS), but the extent and source of discordance have not yet been evaluated in the context of loci derived from massive sequencing strategies and for a wide representation of the family. Furthermore, no formal methods have been applied to evaluate if the detected phylogenetic discordance among phylogenomic datasets influences phylogenetic dating estimates of the concordant relationships. The objective of this research was to generate a phylogenetic hypothesis of Malvaceae from nuclear genes, specifically we aimed to (1) investigate the presence of major discordance among hundreds of nuclear gene histories of Malvaceae; (2) evaluate the potential source of discordance; and (3) examine whether discordance and loci heterogeneity influence on time estimates of the origin and diversification of subfamilies. Our study is based on a comprehensive dataset representing 96 genera of the nine subfamilies and 268 nuclear loci. Both concatenated and coalescence-based approaches were followed for phylogenetic inference. Using branch lengths and topology, we located the placement of introgression events to directly evaluate whether discordance is due to introgression rather than ILS. To estimate divergence times, concordance and molecular rate were considered. We filtered loci based on congruence with the species tree and then obtained the molecular rate of each locus to distribute them into three different sets corresponding to shared molecular rate ranges. Bayesian dating was performed for each of the different sets of loci with the same parameters and calibrations. Phylogenomic discordance was detected between methods, as well as gene histories. At deep coalescent times, we found discordance in the position of five subclades probably due to ILS and a relatively small proportion of introgression. Divergence time estimation with each set of loci generated overlapping clade ages, indicating that, even with different molecular rate and gene histories, calibrations generally provide a strong prior.
Collapse
Affiliation(s)
- Rebeca Hernández-Gutiérrez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cássio van den Berg
- Departamento de Ciencias Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Efraín Freire M.
- Herbario Nacional del Ecuador (QCNE), Instituto Nacional de Biodiversidad, Quito, Ecuador
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Horna LO, Hágsater E, Jiménez MM. A new species of Epidendrum L. (Orchidaceae) of pendulous habit from Peru. PHYTOKEYS 2021; 184:55-66. [PMID: 34776732 PMCID: PMC8580958 DOI: 10.3897/phytokeys.184.70844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
A new species of Epidendrum L. from northern Peru is described, illustrated, and compared with related species. This new species belongs to the Laxicaule Group and shares morphological characteristics with Epidendrumlaxicaule D.E. Benn & Christenson but differs in the shape and length of the dorsal sepal; the shape of the petals and the lip, ribs position of the lip, shape of the vesicle formed between the ovary and the column as well as the section of the stem.
Collapse
Affiliation(s)
- Luis Ocupa Horna
- Departamento de Orquideología, Centro de Investigación en Biología Tropical y Conservación-CINBIOTYC, Piura, PerúCentro de Investigación en Biología Tropical y ConservaciónPiuraPeru
- Departamento de Orquideología, Instituto de Ciencias Antonio Brack, Lima, PerúGrupo Científico Calaway Dodson: Investigación y Conservación de Orquídeas del EcuadorQuitoEcuador
- Grupo Científico Calaway Dodson: Investigación y Conservación de Orquídeas del Ecuador, Quito, 170510, Pichincha, EcuadorInstituto de Ciencias Antonio BrackLimaPeru
| | - Eric Hágsater
- Herbario AMO, Montañas Calizas 490, México, CDMX 11000, MéxicoHerbario AMOMexico CityMexico
| | - Marco M. Jiménez
- Grupo Científico Calaway Dodson: Investigación y Conservación de Orquídeas del Ecuador, Quito, 170510, Pichincha, EcuadorInstituto de Ciencias Antonio BrackLimaPeru
- Vivero de Conservación La Paphinia, Avenida del Ejército y Juan Izquierdo, Zamora, Zamora Chinchipe, 190102, EcuadorVivero de Conservación La PaphiniaZamora ChinchipeEcuador
| |
Collapse
|
14
|
Eserman LA, Thomas SK, Coffey EED, Leebens‐Mack JH. Target sequence capture in orchids: Developing a kit to sequence hundreds of single-copy loci. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11416. [PMID: 34336404 PMCID: PMC8312744 DOI: 10.1002/aps3.11416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 05/21/2023]
Abstract
PREMISE Understanding relationships among orchid species and populations is of critical importance for orchid conservation. Target sequence capture has become a standard method for extracting hundreds of orthologous loci for phylogenomics. Up-front cost and time associated with design of bait sets makes this method prohibitively expensive for many researchers. Therefore, we designed a target capture kit to reliably sequence hundreds of orthologous loci across orchid lineages. METHODS We designed an Orchidaceae target capture bait set for 963 single-copy genes identified in published orchid genome sequences. The bait set was tested on 28 orchid species, with representatives of the subfamilies Cypripedioideae, Orchidoideae, and Epidendroideae. RESULTS Between 1,518,041 and 87,946,590 paired-end 150-base reads were generated for target-enriched genomic libraries. We assembled an average of 812 genes per library for Epidendroideae species and a mean of 501 genes for species in the subfamilies Orchidoideae and Cypripedioideae. Furthermore, libraries had on average 107 of the 254 genes that are included in the Angiosperms353 bait set, allowing for direct comparison of studies using either bait set. DISCUSSION The Orchidaceae963 kit will enable greater accessibility and utility of next-generation sequencing for orchid systematics, population genetics, and identification in the illegal orchid trade.
Collapse
Affiliation(s)
- Lauren A. Eserman
- Department of Conservation and ResearchAtlanta Botanical GardenAtlantaGeorgia30309USA
| | - Shawn K. Thomas
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| | - Emily E. D. Coffey
- Department of Conservation and ResearchAtlanta Botanical GardenAtlantaGeorgia30309USA
| | | |
Collapse
|
15
|
Simmonds SE, Smith JF, Davidson C, Buerki S. Phylogenetics and comparative plastome genomics of two of the largest genera of angiosperms, Piper and Peperomia (Piperaceae). Mol Phylogenet Evol 2021; 163:107229. [PMID: 34129936 DOI: 10.1016/j.ympev.2021.107229] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Biological radiations provide unique opportunities to understand the evolution of biodiversity. One such radiation is the pepper plant family Piperaceae, an early-diverging and mega-diverse lineage that could serve as a model to study the diversification of angiosperms. However, traditional genetic markers lack sufficient variation for such studies, and testing hypotheses on poorly resolved phylogenetic frameworks becomes challenging. Limited genomic data is available for Piperaceae, which contains two of the largest genera of angiosperms, Piper (>2100 species) and Peperomia (>1300 species). To address this gap, we used genome skimming to assemble and annotate whole plastomes (152-161kbp) and >5kbp nuclear ribosomal DNA region from representatives of Piper and Peperomia. We conducted phylogenetic and comparative genomic analyses to study plastome evolution and investigate the role of hybridization in this group. Plastome phylogenetic trees were well resolved and highly supported, with a hard incongruence observed between plastome and nuclear phylogenetic trees suggesting hybridization in Piper. While all plastomes of Piper and Peperomia had the same gene content and order, there were informative structural differences between them. First, ycf1 was more variable and longer in Piper than Peperomia, extending well into the small single copy region by thousands of base pairs. We also discovered previously unknown structural variation in 14 out of 25 Piper taxa, tandem duplication of the trnH-GUG gene resulting in an expanded large single copy region. Other early-diverging angiosperms have a duplicated trnH-GUG, but the specific rearrangement we found is unique to Piper and serves to refine knowledge of relationships among early-diverging angiosperms. Our study demonstrates that genome skimming is an efficient approach to produce plastome assemblies for comparative genomics and robust phylogenies of species-rich plant genera.
Collapse
Affiliation(s)
- Sara E Simmonds
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | - James F Smith
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA
| | | | - Sven Buerki
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515, USA.
| |
Collapse
|
16
|
Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol Ecol Resour 2021; 21:1118-1140. [PMID: 33453072 DOI: 10.1111/1755-0998.13327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.
Collapse
Affiliation(s)
- Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia
| | - Monica Ruibal
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Schneider JV, Paule J, Jungcurt T, Cardoso D, Amorim AM, Berberich T, Zizka G. Resolving Recalcitrant Clades in the Pantropical Ochnaceae: Insights From Comparative Phylogenomics of Plastome and Nuclear Genomic Data Derived From Targeted Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:638650. [PMID: 33613613 PMCID: PMC7890083 DOI: 10.3389/fpls.2021.638650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 05/13/2023]
Abstract
Plastid DNA sequence data have been traditionally widely used in plant phylogenetics because of the high copy number of plastids, their uniparental inheritance, and the blend of coding and non-coding regions with divergent substitution rates that allow the reconstruction of phylogenetic relationships at different taxonomic ranks. In the present study, we evaluate the utility of the plastome for the reconstruction of phylogenetic relationships in the pantropical plant family Ochnaceae (Malpighiales). We used the off-target sequence read fraction of a targeted sequencing study (targeting nuclear loci only) to recover more than 100 kb of the plastid genome from the majority of the more than 200 species of Ochnaceae and all but two genera using de novo and reference-based assembly strategies. Most of the recalcitrant nodes in the family's backbone were resolved by our plastome-based phylogenetic inference, corroborating the most recent classification system of Ochnaceae and findings from a phylogenomic study based on nuclear loci. Nonetheless, the phylogenetic relationships within the major clades of tribe Ochnineae, which comprise about two thirds of the family's species diversity, received mostly low support. Generally, the phylogenetic resolution was lowest at the infrageneric level. Overall there was little phylogenetic conflict compared to a recent analysis of nuclear loci. Effects of taxon sampling were invoked as the most likely reason for some of the few well-supported discords. Our study demonstrates the utility of the off-target fraction of a target enrichment study for assembling near-complete plastid genomes for a large proportion of samples.
Collapse
Affiliation(s)
- Julio V. Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Entomology III, Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Tanja Jungcurt
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - André Márcio Amorim
- Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
- Herbário André Maurício Vieira de Carvalho, CEPEC, CEPLAC, Itabuna, Brazil
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Lab-Center, Frankfurt am Main, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- *Correspondence: Georg Zizka, ;
| |
Collapse
|
18
|
Meerow AW, Gardner EM, Nakamura K. Phylogenomics of the Andean Tetraploid Clade of the American Amaryllidaceae (Subfamily Amaryllidoideae): Unlocking a Polyploid Generic Radiation Abetted by Continental Geodynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:582422. [PMID: 33250911 PMCID: PMC7674842 DOI: 10.3389/fpls.2020.582422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
One of the two major clades of the endemic American Amaryllidaceae subfam. Amaryllidoideae constitutes the tetraploid-derived (n = 23) Andean-centered tribes, most of which have 46 chromosomes. Despite progress in resolving phylogenetic relationships of the group with plastid and nrDNA, certain subclades were poorly resolved or weakly supported in those previous studies. Sequence capture using anchored hybrid enrichment was employed across 95 species of the clade along with five outgroups and generated sequences of 524 nuclear genes and a partial plastome. Maximum likelihood phylogenetic analyses were conducted on concatenated supermatrices, and coalescent-based species tree analyses were run on the gene trees, followed by hybridization network, age diversification and biogeographic analyses. The four tribes Clinantheae, Eucharideae, Eustephieae, and Hymenocallideae (sister to Clinantheae) are resolved in all analyses with > 90 and mostly 100% support, as are almost all genera within them. Nuclear gene supermatrix and species tree results were largely in concordance; however, some instances of cytonuclear discordance were evident. Hybridization network analysis identified significant reticulation in Clinanthus, Hymenocallis, Stenomesson and the subclade of Eucharideae comprising Eucharis, Caliphruria, and Urceolina. Our data support a previous treatment of the latter as a single genus, Urceolina, with the addition of Eucrosia dodsonii. Biogeographic analysis and penalized likelihood age estimation suggests an origin in the Cauca, Desert and Puna Neotropical bioprovinces for the complex in the mid-Oligocene, with more dispersals than vicariances in its history, but no extinctions. Hymenocallis represents the only instance of long-distance vicariance from the tropical Andean origin of its tribe Hymenocallideae. The absence of extinctions correlates with the lack of diversification rate shifts within the clade. The Eucharideae experienced a sudden lineage radiation ca. 10 Mya. We tie much of the divergences in the Andean-centered lineages to the rise of the Andes, and suggest that the Amotape-Huancabamba Zone functioned as both a corridor (dispersal) and a barrier to migration (vicariance). Several taxonomic changes are made. This is the largest DNA sequence data set to be applied within Amaryllidaceae to date.
Collapse
Affiliation(s)
- Alan W. Meerow
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| | - Elliot M. Gardner
- Singapore Botanic Gardens, National Parks Board, Singapore, Singapore
- Institute of Environment, Florida International University, Miami, FL, United States
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Clonal Germplasm Repository, Miami, FL, United States
| |
Collapse
|