1
|
Liu M, Feng Y, Wang M, Sun X, Qi CY, Yang X, Zhang D. Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117588. [PMID: 39721422 DOI: 10.1016/j.ecoenv.2024.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification. Moreover, researchers have focused on the practical application and optimal managements in phytoremediation. Sedum alfredii Hance is of scientific significance as a model plant elucidating hypertolerance and hyperaccumulation traits or decontaminating heavy metals. More efforts are required to deepen the knowledge of Sedum alfredii Hance and provide theoretical guidance for practical phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Miao Wang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xinglin Sun
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Chen Yinfei Qi
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
2
|
Meng W, Hou X, Cai C, Cao S, Liu L, Wang X, Guo S, Jiang X, Li Y, Yuan Y. Analysis of differentially expressed proteins and related metabolic pathways in response to lead stress in the leaves of Pogonatherum crinitum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117438. [PMID: 39615302 DOI: 10.1016/j.ecoenv.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Proteomics provides an essential means of explaining the mechanisms underlying gene expression regulation. The proteomic mechanisms by which heavy metal hyperaccumulators respond to lead (Pb) stress remain largely unclear. To this end, we examined Pogonatherum crinitum (Thunb.) Kunth and employed proteomic sequencing technology to screen for differential proteins that respond to Pb stress. The connection between Pb-tolerant proteins in metabolic pathways and their functions were analyzed. Differences in the downstream molecules of Pb-resistant proteins in P. crinitum were also assessed. Furthermore, we utilized Parallel Reaction Monitoring (PRM) technology to validate the selected Pb-tolerant differential proteins across various stress concentration gradients. A total of 5275 protein families were identified, and 118 DEPs were observed between the stressed and control groups, including 76 upregulated and 42 downregulated proteins. Functional annotation analysis using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that Pb stress led to the upregulation of 16 proteins within P. crinitum leaves. These proteins were primarily involved in the metabolic processes of energy and carbohydrate metabolism (PcCht1, PcSPS5, PcGME-1, and PcPEP4) as well as protein translation and oxidative stress (PcHSP26.7, PcHSP18, PcCAT3, and PcCAT1). Bioinformatic analysis indicated that DEPs responding to Pb stress were primarily related to the MAPK signaling pathway, amino sugar and nucleotide sugar metabolism, and starch and sucrose metabolism. Pathway analysis revealed maltose, acetylcholine, N-acetylglucosamine, and oxalic acid as the downstream products. Moreover, the levels of these indicators all increased with increasing Pb concentrations. PRM of the 16 DEPs revealed that nine proteins were upregulated under different Pb concentrations. PRM and data-independent acquisition results for the upregulation of these nine DEPs were identical, suggesting the reliability of our analytical outcomes. In conclusion, the upregulation of specific proteins in P. crinitum enables the regulation of glucose metabolism and antioxidant balance within the plant and represents a mechanism underlying its Pb stress response.
Collapse
Affiliation(s)
- Weicai Meng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolong Hou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Soil and Water Conservation of Southern Red Soil Region, State Forestry and Grassland Administration, Fuzhou 350002, China; National Positioning Observation and Research Station of Red Soil Hilly Ecosystem, Longyan, Changting 364000, China; Co-Innovation Center for Soil and Water Conservation in Red Soil Region of the Cross-Strait, Fuzhou 350002, China.
| | - Cuiting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linghua Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihong Guo
- Fujian Provincial Academy of Environmental Sciences, Fuzhou 350003, China
| | - Xinyi Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijie Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqi Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zhao G, Wei J, Cui J, Li S, Zheng G, Liu Z. Genome-Wide Identification of Freezing-Responsive Genes in a Rapeseed Line NTS57 Tolerant to Low-Temperature. Int J Mol Sci 2024; 25:12491. [PMID: 39684201 DOI: 10.3390/ijms252312491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Winter rapeseed is a high-oil crop that exhibits significant sensitivity to low temperatures, leading to a substantial reduction in production. Hence, it is of great significance to elucidate the genomic genetic mechanism of strong freezing-resistant winter rapeseed to improve their freezing-resistant traits. In this study, global transcriptome expression profiles of the freezing-resistant cultivar NTS57 (NS) under freezing stress were obtained for the years 2015, 2016, and 2017 by RNA sequencing (RNA-seq). Most differentially expressed genes (DEGs) were involved in the plant hormone signal transduction, alpha-linolenic acid metabolism, protein processing, glutathione metabolism, and plant-pathogen interaction pathways. Antioxidant enzyme activities and lipid peroxidation levels were significantly positively and negatively correlated with overwintering rate (OWR), respectively. After freezing treatment, the formation of freezing resistance of NS was attributed to the increase in antioxidant enzyme activities and content of osmotic regulation substances, as well as the decrease in lipid peroxidation level. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and phenotypic verification indicated that heat stress transcription factor A2 (HSFA2) and 17.6 kDa class II heat shock protein (HSP17.6) participated in the response to freezing stress. This study will further refine the regulatory network of plants against freezing stress and help to screen candidate genes for improving plant freezing resistance.
Collapse
Affiliation(s)
- Guodong Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shichang Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoqiang Zheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
6
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
Li S, He Z, Qiu W, Yu M, Wu L, Han X, Zhuo R. SpCTP3 from the hyperaccumulator Sedum plumbizincicola positively regulates cadmium tolerance by interacting with SpMDH1. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134517. [PMID: 38739960 DOI: 10.1016/j.jhazmat.2024.134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China; Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| |
Collapse
|
8
|
Zhang H, Lu L. Transcription factors involved in plant responses to cadmium-induced oxidative stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1397289. [PMID: 38938636 PMCID: PMC11209895 DOI: 10.3389/fpls.2024.1397289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Cadmium (Cd) is a heavy metal highly toxic to living organisms. Cd pollution of soils has become a serious problem worldwide, posing a severe threat to crop production and human health. When plants are poisoned by Cd, their growth and development are inhibited, chloroplasts are severely damaged, and respiration and photosynthesis are negatively affected. Therefore, elucidating the molecular mechanisms that underlie Cd tolerance in plants is important. Transcription factors can bind to specific plant cis-acting genes. Transcription factors are frequently reported to be involved in various signaling pathways involved in plant growth and development. Their role in the resistance to environmental stress factors, particularly Cd, should not be underestimated. The roles of several transcription factor families in the regulation of plant resistance to Cd stress have been widely demonstrated. In this review, we summarize the mechanisms of five major transcription factor families-WRKY, ERF, MYB, bHLH, and bZIP-in plant resistance to Cd stress to provide useful information for using molecular techniques to solve Cd pollution problems in the future.
Collapse
Affiliation(s)
- Hewan Zhang
- Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
10
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
11
|
Wang N, Shu X, Zhang F, Song G, Wang Z. Characterization of the Heat Shock Transcription Factor Family in Lycoris radiata and Its Potential Roles in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:271. [PMID: 38256823 PMCID: PMC10819275 DOI: 10.3390/plants13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Heat shock transcription factors (HSFs) are an essential plant-specific transcription factor family that regulates the developmental and growth stages of plants, their signal transduction, and their response to different abiotic and biotic stresses. The HSF gene family has been characterized and systematically observed in various species; however, research on its association with Lycoris radiata is limited. This study identified 22 HSF genes (LrHSFs) in the transcriptome-sequencing data of L. radiata and categorized them into three classes including HSFA, HSFB, and HSFC, comprising 10, 8, and 4 genes, respectively. This research comprises basic bioinformatics analyses, such as protein sequence length, molecular weight, and the identification of its conserved motifs. According to the subcellular localization assessment, most LrHSFs were present in the nucleus. Furthermore, the LrHSF gene expression in various tissues, flower developmental stages, two hormones stress, and under four different abiotic stresses were characterized. The data indicated that LrHSF genes, especially LrHSF5, were essentially involved in L. radiata development and its response to different abiotic and hormone stresses. The gene-gene interaction network analysis revealed the presence of synergistic effects between various LrHSF genes' responses against abiotic stresses. In conclusion, these results provided crucial data for further functional analyses of LrHSF genes, which could help successful molecular breeding in L. radiata.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (N.W.); (X.S.); (F.Z.); (G.S.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
12
|
Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, Xi Y. Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107848. [PMID: 37392668 DOI: 10.1016/j.plaphy.2023.107848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
Switchgrass is one of the most promising bioenergy crops and is generally cultivated in arid climates and poor soils. Heat shock transcription factors (Hsfs) are key regulators of plant responses to abiotic and biotic stressors. However, their role and mechanism of action in switchgrass have not been elucidated. Hence, this study aimed to identify the Hsf family in switchgrass and understand its functional role in heat stress signal transduction and heat tolerance by using bioinformatics and RT-PCR analysis. Forty-eight PvHsfs were identified and divided into three main classes based on their gene structure and phylogenetic relationships: HsfA, HsfB, and HsfC. The results of the bioinformatics analysis showed a DNA-binding domain (DBD) at the N-terminal in PvHsfs, and they were not evenly distributed on all chromosomes except for chromosomes 8 N and 8 K. Many cis-elements related to plant development, stress responses, and plant hormones were identified in the promoter sequence of each PvHsf. Segmental duplication is the primary force underlying Hsf family expansion in switchgrass. The results of the expression pattern of PvHsfs in response to heat stress showed that PvHsf03 and PvHsf25 might play critical roles in the early and late stages of switchgrass response to heat stress, respectively, and HsfB mainly showed a negative response to heat stress. Ectopic expression of PvHsf03 in Arabidopsis significantly increased the heat resistance of seedlings. Overall, our research lays a notable foundation for studying the regulatory network in response to deleterious environments and for further excavating tolerance genes in switchgrass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| | - Jinliang Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Shaoyu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Wenjie Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Zhang Y, Mo Y, Han L, Sun Z, Xu W. Exploring Transcriptional Regulation of Hyperaccumulation in Sedum plumbizincicola through Integrated Transcriptome Analysis and CRISPR/Cas9 Technology. Int J Mol Sci 2023; 24:11845. [PMID: 37511604 PMCID: PMC10380820 DOI: 10.3390/ijms241411845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The cadmium hyperaccumulator Sedum plumbizincicola has remarkable abilities for cadmium (Cd) transport, accumulation and detoxification, but the transcriptional regulation mechanisms responsible for its Cd hyperaccumulation remain unknown. To address this knowledge gap, we conducted a comparative transcriptome study between S. plumbizincicola and the non-hyperaccumulating ecotype (NHE) of Sedum alfredii with or without Cd treatment. Our results revealed many differentially expressed genes involved in heavy metal transport and detoxification that were abundantly expressed in S. plumbizincicola. Additionally, we identified a large number of differentially expressed transcription factor genes, highlighting the complexity of transcriptional regulatory networks. We further screened four transcription factor genes that were highly expressed in the roots of S. plumbizincicola as candidate genes for creating CRISPR/Cas9 knockout mutations. Among these, the SpARR11 and SpMYB84 mutant lines exhibited decreased Cd accumulation in their aboveground parts, suggesting that these two transcription factors may play a role in the regulation of the Cd hyperaccumulation in S. plumbizincicola. Although further research will be required to determine the precise targeted genes of these transcription factors, combined transcriptome analysis and CRISPR/Cas9 technology provides unprecedented opportunities for identifying transcription factors related to Cd hyperaccumulation and contributes to the understanding of the transcriptional regulation mechanism of hyperaccumulation in S. plumbizincicola.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanlan Mo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liyuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
14
|
Xian P, Yang Y, Xiong C, Guo Z, Alam I, He Z, Zhang Y, Cai Z, Nian H. Overexpression of GmWRKY172 enhances cadmium tolerance in plants and reduces cadmium accumulation in soybean seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1133892. [PMID: 36968408 PMCID: PMC10033887 DOI: 10.3389/fpls.2023.1133892] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Cadmium (Cd) stress is a significant threat to soybean production, and enhancing Cd tolerance in soybean is the focus of this study. The WRKY transcription factor family is associated with abiotic stress response processes. In this study, we aimed to identify a Cd-responsive WRKY transcription factor GmWRKY172 from soybean and investigate its potential for enhancing Cd tolerance in soybean. METHODS The characterization of GmWRKY172 involved analyzing its expression pattern, subcellular localization, and transcriptional activity. To assess the impact of GmWRKY172, transgenic Arabidopsis and soybean plants were generated and examined for their tolerance to Cd and Cd content in shoots. Additionally, transgenic soybean plants were evaluated for Cd translocation and various physiological stress indicators. RNA sequencing was performed to identify the potential biological pathways regulated by GmWRKY172. RESULTS GmWRKY172 was significantly upregulated by Cd stress, highly expressed in leaves and flowers, and localized to the nucleus with transcriptional activity. Transgenic plants overexpressing GmWRKY172 showed enhanced Cd tolerance and reduced Cd content in shoots compared to WT. Lower Cd translocation from roots to shoots and seeds was also observed in transgenic soybean. Under Cd stress, transgenic soybean accumulated less malondialdehyde (MDA) and hydrogen peroxide (H2O2) than WT plants, with higher flavonoid and lignin contents, and peroxidase (POD) activity. RNA sequencing analysis revealed that many stress-related pathways were regulated by GmWRKY172 in transgenic soybean, including flavonoid biosynthesis, cell wall synthesis, and peroxidase activity. DISCUSSION Our findings demonstrated that GmWRKY172 enhances Cd tolerance and reduces seed Cd accumulation in soybean by regulating multiple stress-related pathways, and could be a promising candidate for breeding Cd-tolerant and low Cd soybean varieties.
Collapse
Affiliation(s)
- Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chuwen Xiong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhibin Guo
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zihang He
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yakun Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Hainan Yazhou Bay Seed Lab, Hainan, China
| |
Collapse
|
15
|
Transcriptional Regulatory Network of Plant Cadmium Stress Response. Int J Mol Sci 2023; 24:ijms24054378. [PMID: 36901809 PMCID: PMC10001906 DOI: 10.3390/ijms24054378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. Plants have acquired specialized mechanisms to sense, transport, and detoxify Cd. Recent studies have identified many transporters involved in Cd uptake, transport, and detoxification. However, the complex transcriptional regulatory networks involved in Cd response remain to be elucidated. Here, we provide an overview of current knowledge regarding transcriptional regulatory networks and post-translational regulation of the transcription factors involved in Cd response. An increasing number of reports indicate that epigenetic regulation and long non-coding and small RNAs are important in Cd-induced transcriptional responses. Several kinases play important roles in Cd signaling that activate transcriptional cascades. We also discuss the perspectives to reduce grain Cd content and improve crop tolerance to Cd stress, which provides a theoretical reference for food safety and the future research of plant varieties with low Cd accumulation.
Collapse
|
16
|
Bai S, Han X, Feng D. Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1139744. [PMID: 36890896 PMCID: PMC9987563 DOI: 10.3389/fpls.2023.1139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High concentrations of heavy metals in the environment will cause serious harm to ecosystems and human health. It is urgent to develop effective methods to control soil heavy metal pollution. Phytoremediation has advantages and potential for soil heavy metal pollution control. However, the current hyperaccumulators have the disadvantages of poor environmental adaptability, single enrichment species and small biomass. Based on the concept of modularity, synthetic biology makes it possible to design a wide range of organisms. In this paper, a comprehensive strategy of "microbial biosensor detection - phytoremediation - heavy metal recovery" for soil heavy metal pollution control was proposed, and the required steps were modified by using synthetic biology methods. This paper summarizes the new experimental methods that promote the discovery of synthetic biological elements and the construction of circuits, and combs the methods of producing transgenic plants to facilitate the transformation of constructed synthetic biological vectors. Finally, the problems that should be paid more attention to in the remediation of soil heavy metal pollution based on synthetic biology were discussed.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
18
|
Functional Characterization of Heat Shock Factor ( CrHsf) Families Provide Comprehensive Insight into the Adaptive Mechanisms of Canavalia rosea (Sw.) DC. to Tropical Coral Islands. Int J Mol Sci 2022; 23:ijms232012357. [PMID: 36293211 PMCID: PMC9604225 DOI: 10.3390/ijms232012357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Heat shock transcription factors (Hsfs) are key regulators in plant heat stress response, and therefore, they play vital roles in signal transduction pathways in response to environmental stresses, as well as in plant growth and development. Canavalia rosea (Sw.) DC. is an extremophile halophyte with good adaptability to high temperature and salt-drought tolerance, and it can be used as a pioneer species for ecological reconstruction on tropical coral islands. To date, very little is known regarding the functions of Hsfs in the adaptation mechanisms of plant species with specialized habitats, especially in tropical leguminous halophytes. In this study, a genome-wide analysis was performed to identify all the Hsfs in C. rosea based on whole-genome sequencing information. The chromosomal location, protein domain or motif organization, and phylogenetic relationships of 28 CrHsfs were analyzed. Promoter analyses indicated that the expression levels of different CrHsfs were precisely regulated. The expression patterns also revealed clear transcriptional changes among different C. rosea tissues, indicating that the regulation of CrHsf expression varied among organs in a developmental or tissue-specific manner. Furthermore, the expression levels of most CrHsfs in response to environmental conditions or abiotic stresses also implied a possible positive regulatory role of this gene family under abiotic stresses, and suggested roles in adaptation to specialized habitats such as tropical coral islands. In addition, some CrHsfAs were cloned and their possible roles in abiotic stress tolerance were functionally characterized using a yeast expression system. The CrHsfAs significantly enhanced yeast survival under thermal and oxidative stress challenges. Our results contribute to a better understanding of the plant Hsf gene family and provide a basis for further study of CrHsf functions in environmental thermotolerance. Our results also provide valuable information on the evolutionary relationships among CrHsf genes and the functional characteristics of the gene family. These findings are beneficial for further research on the natural ecological adaptability of C. rosea to tropical environments.
Collapse
|
19
|
Wei J, Shen Y, Dong X, Zhu Y, Cui J, Li H, Zheng G, Tian H, Wang Y, Liu Z. DNA methylation affects freezing tolerance in winter rapeseed by mediating the expression of genes related to JA and CK pathways. Front Genet 2022; 13:968494. [PMID: 36061187 PMCID: PMC9432081 DOI: 10.3389/fgene.2022.968494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Winter rapeseed is the largest source of edible oil in China and is especially sensitive to low temperature, which causes tremendous agricultural yield reduction and economic losses. It is still unclear how DNA methylation regulates the formation of freezing tolerance in winter rapeseed under freezing stress. Therefore, in this study, the whole-genome DNA methylation map and transcriptome expression profiles of freezing-resistant cultivar NTS57 (NS) under freezing stress were obtained. The genome-wide methylation assay exhibited lower levels of methylation in gene-rich regions. DNA methylation was identified in three genomic sequence contexts including CG, CHG and CHH, of which CG contexts exhibited the highest methylation levels (66.8%), followed by CHG (28.6%) and CHH (9.5%). Higher levels of the methylation were found in upstream 2 k and downstream 2 k of gene regions, whereas lowest levels were in the gene body regions. In addition, 331, 437, and 1720 unique differentially methylated genes (DMGs) were identified in three genomic sequence contexts in 17NS under freezing stress compared to the control. Function enrichment analysis suggested that most of enriched DMGs were involved in plant hormones signal transduction, phenylpropanoid biosynthesis and protein processing pathways. Changes of genes expression in signal transduction pathways for cytokinin (CK) and jasmonic acid (JA) implied their involvement in freezing stress responses. Collectively, these results suggested a critical role of DNA methylation in their transcriptional regulation in winter rapeseed under freezing stress.
Collapse
Affiliation(s)
- Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Yingzi Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Dong
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yajing Zhu
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Hui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Guoqiang Zheng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Haiyan Tian
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Zigang Liu,
| |
Collapse
|
20
|
Ge J, Tao J, Zhao J, Wu Z, Zhang H, Gao Y, Tian S, Xie R, Xu S, Lu L. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113795. [PMID: 35753274 DOI: 10.1016/j.ecoenv.2022.113795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/04/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Sedum alfredii Hance is a perennial herb native to China that can particularly be found in regions with abandoned Pb/Zn mines. It is a Cd/Zn hyperaccumulator that is highly tolerant to Pb, Cu, Ni, and Mn, showing potential for phytoremediation of soils contaminated with multiple heavy metals. A better understanding of how this species responds to different heavy metals would advance the phytoremediation efficiency. In this study, transcriptomic regulation of S. alfredii roots after Cd, Zn, Pb, and Cu exposure was analyzed to explore the candidate genes involved in multi-heavy metal tolerance. Although Zn and Cd, Pb and Cu had similar distribution patterns in S. alfredii, distinct expression patterns were exhibited among these four metal treatments, especially about half of the differentially expressed genes were upregulated under Cu treatment, suggesting that it utilizes distinctive and flexible strategies to cope with specific metal stress. Most unigenes regulated by Cu were enriched in catalytic activity, whereas the majority of unigenes regulated by Pb had unknown functions, implying that S. alfredii may have a unique strategy coping with Pb stress different from previous cognition. The unigenes that were co-regulated by multiple heavy metals exhibited functions of antioxidant substances, antioxidant enzymes, transporters, transcription factors, and cell wall components. These metal-induced responses at the transcriptional level in S. alfredii were highly consistent with those at the physiological level. Some of these genes have been confirmed to be related to heavy metal absorption and detoxification, and some were found to be related to heavy metal tolerance for the first time in this study, like Metacaspase-1 and EDR6. These results provide a theoretical basis for the use of genetic engineering technology to modify plants by enhancing multi-metal tolerance to promote phytoremediation efficiency.
Collapse
Affiliation(s)
- Jun Ge
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyu Tao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqi Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiying Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hewan Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiao Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Ruohan Xie
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Shengyang Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Lu Z, Qiu W, Jin K, Yu M, Han X, He X, Wu L, Wu C, Zhuo R. Identification and Analysis of bZIP Family Genes in Sedum plumbizincicola and Their Potential Roles in Response to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:859386. [PMID: 35574076 PMCID: PMC9094143 DOI: 10.3389/fpls.2022.859386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 05/23/2023]
Abstract
Sedum plumbizincicola (Crassulaceae), a cadmium (Cd)/zinc (Zn)/lead (Pb) hyperaccumulator native to Southeast China, is potentially useful for the phytoremediation of heavy metal-contaminated soil. Basic leucine zipper (bZIP) transcription factors play vital roles in plant growth, development, and abiotic stress responses. However, there has been minimal research on the effects of Cd stress on the bZIP gene family in S. plumbizincicola. In this study, 92 SpbZIP genes were identified in the S. plumbizincicola genome and then classified into 12 subgroups according to their similarity to bZIP genes in Arabidopsis. Gene structure and conserved motif analyses showed that SpbZIP genes within the same subgroup shared similar intron-exon structures and motif compositions. In total, eight pairs of segmentally duplicated SpbZIP genes were identified, but there were no tandemly duplicated SpbZIP genes. Additionally, the duplicated SpbZIP genes were mainly under purifying selection pressure. Hormone-responsive, abiotic and biotic stress-responsive, and plant development-related cis-acting elements were detected in the SpbZIP promoter sequences. Expression profiles derived from RNA-seq and quantitative real-time PCR analyses indicated that the expression levels of most SpbZIP genes were upregulated under Cd stress conditions. Furthermore, a gene co-expression network analysis revealed that most edge genes regulated by hub genes were related to metal transport, responses to stimuli, and transcriptional regulation. Because its expression was significantly upregulated by Cd stress, the hub gene SpbZIP60 was selected for a functional characterization to elucidate its role in the root response to Cd stress. In a transient gene expression analysis involving Nicotiana benthamiana leaves, SpbZIP60 was localized in the nucleus. The overexpression of SpbZIP60 enhanced the Cd tolerance of transgenic Arabidopsis plants by inhibiting ROS accumulation, protecting the photosynthetic apparatus, and decreasing the Cd content. These findings may provide insights into the potential roles of the bZIP family genes during the S. plumbizincicola response to Cd stress.
Collapse
Affiliation(s)
- Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Faculty of Forestry, Nanjing Forestry University, Nanjing, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Kangming Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoyang He
- Agricultural Technology Extension Centre of Dongtai, Yancheng, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Chao Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Renyin Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
22
|
Li S, Han X, Lu Z, Qiu W, Yu M, Li H, He Z, Zhuo R. MAPK Cascades and Transcriptional Factors: Regulation of Heavy Metal Tolerance in Plants. Int J Mol Sci 2022; 23:4463. [PMID: 35457281 PMCID: PMC9032930 DOI: 10.3390/ijms23084463] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/20/2022] Open
Abstract
In nature, heavy metal (HM) stress is one of the most destructive abiotic stresses for plants. Heavy metals produce toxicity by targeting key molecules and important processes in plant cells. The mitogen-activated protein kinase (MAPK) cascade transfers the signals perceived by cell membrane surface receptors to cells through phosphorylation and dephosphorylation and targets various effector proteins or transcriptional factors so as to result in the stress response. Signal molecules such as plant hormones, reactive oxygen species (ROS), and nitric oxide (NO) can activate the MAPK cascade through differentially expressed genes, the activation of the antioxidant system and synergistic crosstalk between different signal molecules in order to regulate plant responses to HMs. Transcriptional factors, located downstream of MAPK, are key factors in regulating plant responses to heavy metals and improving plant heavy metal tolerance and accumulation. Thus, understanding how HMs activate the expression of the genes related to the MAPK cascade pathway and then phosphorylate those transcriptional factors may allow us to develop a regulation network to increase our knowledge of HMs tolerance and accumulation. This review highlighted MAPK pathway activation and responses under HMs and mainly focused on the specificity of MAPK activation mediated by ROS, NO and plant hormones. Here, we also described the signaling pathways and their interactions under heavy metal stresses. Moreover, the process of MAPK phosphorylation and the response of downstream transcriptional factors exhibited the importance of regulating targets. It was conducive to analyzing the molecular mechanisms underlying heavy metal accumulation and tolerance.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haiying Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (X.H.); (Z.L.); (W.Q.); (M.Y.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
23
|
The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies ( Lilium Longiflorum). Int J Mol Sci 2022; 23:ijms23010572. [PMID: 35009000 PMCID: PMC8745440 DOI: 10.3390/ijms23010572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies.
Collapse
|
24
|
Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. BIOLOGY 2021; 10:biology10060544. [PMID: 34204395 PMCID: PMC8234526 DOI: 10.3390/biology10060544] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The heavy metal cadmium (Cd), as one of the major environmentally toxic pollutants, has serious impacts on the growth, development, and physiological functions of plants and animals, leading to deterioration of environmental quality and threats to human health. Research on how plants absorb and transport Cd, as well as its enrichment and detoxification mechanisms, is of great significance to the development of phytoremediation technologies for ecological and environmental management. This article summarises the research progress on the enrichment of heavy metal cadmium in plants in recent years, including the uptake, transport, and accumulation of Cd in plants. The role of plant roots, compartmentalisation, chelation, antioxidation, stress, and osmotic adjustment in the process of plant Cd enrichment are discussed. Finally, problems are proposed to provide a more comprehensive theoretical basis for the further application of phytoremediation technology in the field of heavy metal pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
25
|
Alternative Splicing of Heat Shock Transcription Factor 2 Regulates the Expression of Laccase Gene Family in Response to Copper in Trametes trogii. Appl Environ Microbiol 2021; 87:AEM.00055-21. [PMID: 33579682 PMCID: PMC8091107 DOI: 10.1128/aem.00055-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
White-rot fungi, especially Trametes strains, are the primary source of industrial laccases in bioenergy and bioremediation. Trametes strains express members of the laccase gene family with different physicochemical properties and expression patterns. However, the literature on the expression pattern of the laccase gene family in T. trogii S0301 and the response mechanism to Cu2+, a key laccase inducer, in white-rot fungal strains is scarce. In the present study, we found that Cu2+ could induce the mRNAs and proteins of the two alternative splicing variants of heat shock transcription factor 2 (TtHSF2). Furthermore, the overexpression of alternative splicing variants TtHSF2α and TtHSF2β-I in the homokaryotic T. trogii S0301 strain showed opposite effects on the extracellular total laccase activity, with the maximum laccase activity of approximately 0.6 U mL-1 and 3.0 U mL-1, respectively, on the eighth day, which is 0.4 and 2.3 times that of the wild type strain. Similarly, TtHSF2α and TtHSF2β-I play opposite roles in the oxidation tolerance to H2O2 In addition, the direct binding of TtHSF2α to the promoter regions of the representative laccase isoenzymes (TtLac1 and TtLac13) and protein-protein interactions between TtHSF2α and TtHSF2β-I were detected. Our results demonstrate the crucial roles of TtHSF2 and its alternative splicing variants in response to Cu2+ We believe that these findings will deepen our understanding of alternative splicing of HSFs and their regulatory mechanism of the laccase gene family in white-rot fungi.Importance The members of laccase gene family in Trametes strains are the primary source of industrial laccase and have gained widespread attention. Increasing the yield and enzymatic properties of laccase through various methods has always been a topic worthy of attention, and there is no report on the regulation of laccase expression through HSF transcription factor engineering. Here, we found that two alternative splicing variants of TtHSF2 functioned oppositely in regulating the expression of laccase genes, and copper can induce the expression of almost all members of the laccase gene family. Most importantly, our study suggested that TtHSF2 and its alternative splicing variants are vital for copper-induced production of laccases in T. trogii S0301.
Collapse
|
26
|
Andrási N, Pettkó-Szandtner A, Szabados L. Diversity of plant heat shock factors: regulation, interactions, and functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1558-1575. [PMID: 33277993 DOI: 10.1093/jxb/eraa576] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
Plants heat shock factors (HSFs) are encoded by large gene families with variable structure, expression, and function. HSFs are components of complex signaling systems that control responses not only to high temperatures but also to a number of abiotic stresses such as cold, drought, hypoxic conditions, soil salinity, toxic minerals, strong irradiation, and to pathogen threats. Here we provide an overview of the diverse world of plant HSFs through compilation and analysis of their functional versatility, diverse regulation, and interactions. Bioinformatic data on gene expression profiles of Arabidopsis HSF genes were re-analyzed to reveal their characteristic transcript patterns. While HSFs are regulated primarily at the transcript level, alternative splicing and post-translational modifications such as phosphorylation and sumoylation provides further variability. Plant HSFs are involved in an intricate web of protein-protein interactions which adds considerable complexity to their biological function. A list of such interactions was compiled from public databases and published data, and discussed to pinpoint their relevance in transcription control. Although most fundamental studies of plant HSFs have been conducted in the model plant, Arabidopsis, information on HSFs is accumulating in other plants such as tomato, rice, wheat, and sunflower. Understanding the function, interactions, and regulation of HSFs will facilitate the design of novel strategies to use engineered proteins to improve tolerance and adaptation of crops to adverse environmental conditions.
Collapse
Affiliation(s)
- Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| |
Collapse
|
27
|
Yu Q, Zhang ZC, Wang MY, Scavo A, Schroeder JI, Qiu BS. Identification and characterization of SaeIF1 from the eukaryotic translation factor SUI1 family in cadmium hyperaccumulator Sedum alfredii. PLANTA 2021; 253:12. [PMID: 33389204 PMCID: PMC7847809 DOI: 10.1007/s00425-020-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION Cadmium-sensitive yeast screening resulted in the isolation of protein translation factor SaeIF1 from the hyperaccumulator Sedum alfredii which has both general and special regulatory roles in controlling cadmium accumulation. The hyperaccumulator of Sedum alfredii has the extraordinary ability to hyperaccumulate cadmium (Cd) in shoots. To investigate its underlying molecular mechanisms of Cd hyperaccumulation, a cDNA library was generated from leaf tissues of S. alfredii. SaeIF1, belonging to the eukaryotic protein translation factor SUI1 family, was identified by screening Cd-sensitive yeast transformants with this library. The full-length cDNA of SaeIF1 has 582 bp and encodes a predicted protein with 120 amino acids. Transient expression assays showed subcellular localization of SaeIF1 in the cytoplasm. SaeIF1 was constitutively and highly expressed in roots and shoots of the hyperaccumulator of S. alfredii, while its transcript levels showed over 100-fold higher expression in the hyperaccumulator of S. alfredii relative to the tissues of a nonhyperaccumulating ecotype of S. alfredii. However, the overexpression of SaeIF1 in yeast cells increased Cd accumulation, but conferred more Cd sensitivity. Transgenic Arabidopsis thaliana expressing SaeIF1 accumulated more Cd in roots and shoots without changes in the ratio of Cd content in shoots and roots, but were more sensitive to Cd stress than wild type. Both special and general roles of SaeIF1 in Cd uptake, transportation, and detoxification are discussed, and might be responsible for the hyperaccumulation characteristics of S. alfredii.
Collapse
Affiliation(s)
- Qi Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA, 92093-0116, USA
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Miao-Yu Wang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China
| | - Alexander Scavo
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA, 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, CA, 92093-0116, USA
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, Hubei, People's Republic of China.
| |
Collapse
|
28
|
Gai WX, Ma X, Li Y, Xiao JJ, Khan A, Li QH, Gong ZH. CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes. Int J Mol Sci 2020; 21:E8374. [PMID: 33171626 PMCID: PMC7672572 DOI: 10.3390/ijms21218374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of CaHsfA1d in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that CaHsfA1d is a class A Hsf. CaHsfA1d harbored transcriptional function and predicted the aromatic, hydrophobic, and acidic (AHA) motif mediated function of CaHsfA1d as a transcription activator. Subcellular localization assay showed that CaHsfA1d protein is localized in the nucleus. The CaHsfA1d was transcriptionally up-regulated at high temperatures and its expression in the thermotolerant pepper line R9 was more sensitive than that in thermosensitive pepper line B6. The function of CaHsfA1d under heat stress was characterized in CaHsfA1d-silenced pepper plants and CaHsfA1d-overexpression Arabidopsis plants. Silencing of the CaHsfA1d reduced the thermotolerance of the pepper, while CaHsfA1d-overexpression Arabidopsis plants exhibited an increased insensitivity to high temperatures. Moreover, the CaHsfA1d maintained the H2O2 dynamic balance under heat stress and increased the expression of Hsfs, Hsps (heat shock protein), and antioxidant gene AtGSTU5 (glutathione S-transferase class tau 5) in transgenic lines. Our findings clearly indicate that CaHsfA1d improved the plant thermotolerance via regulating the expression of stress- and antioxidant-related genes.
Collapse
Affiliation(s)
- Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Jing-Jing Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| |
Collapse
|