1
|
Dong Q, Zhang Y, Zhong S, Zhang Q, Yang H, Yang H, Yi X, Tan F, Chen C, Luo P. Conserved DNA sequence analysis reveals the phylogeography and evolutionary events of Akebia trifoliata in the region across the eastern edge of the Tibetan Plateau and subtropical China. BMC Ecol Evol 2024; 24:52. [PMID: 38654171 DOI: 10.1186/s12862-024-02243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The eastern edge of the Qinghai‒Tibet Plateau (QTP) and subtropical China have various regions where plant species originate and thrive, but these regions have been the focus of very few integrative studies. Here, we elucidated the phylogeographic structure of a continuous and widespread Akebia trifoliata population across these two regions. RESULTS Sixty-one populations consisting of 391 genotypes were examined to assess population diversity and structure via network distribution analysis, maximum likelihood phylogenetic tree reconstruction, divergence time estimation, demographic history inference, and ancestral area reconstruction of both conserved internal transcribed spacer (ITS) and chloroplast (rps16) DNA sequences. The results showed that the ITS region was more variable than the rps16 region and could be suitable for studying intraspecific phylogeography. The A. trifoliata population displayed high genetic diversity, genetic differentiation and obvious phylogeographical structure, possibly originating on the eastern QTP, expanding during the last glacial-interglacial cycle, diverging in the early Pleistocene and middle Pleistocene, and extensively migrating thereafter. The migration route from west to east along rivers could be largely responsible for the long-distance dispersal of this species, while three main refuges (Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) with multiple ice shelters facilitated its wide distribution. CONCLUSIONS Our results suggested that the from west to east long migration accompanying with the minor short reciprocal migration in the south-north direction, and the three main refuges (the Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) contributed to the extant geographical distribution of A. trifoliata. In addition, this finding also strongly reduced the discrepancy between glacial contraction and postglacial expansion and the in situ survival hypothesis by simultaneously considering the existence of many similar climate-related ecological niches and migration influences.
Collapse
Affiliation(s)
- Qing Dong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongle Zhang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiuyi Zhang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxiao Yi
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Wang J, Liu QT, Shen DY, Bai JP, Hu Y, Huang Q, Yu HJ, He NN, Qin XY, Lan R. Network pharmacology analysis of the active ingredients of Corydalis hendersonii Hemsl. and their effects on eliminating neuroinflammation and improving motor functions in MPTP-intoxicated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117009. [PMID: 37557936 DOI: 10.1016/j.jep.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis hendersonii Hemsl. (CH), is a traditional Tibetan medicine used in highland areas for the treatment of alpine polycythemia, ulcers and various inflammatory diseases. Its antioxidant and anti-inflammatory effects have been demonstrated in experimental mice. Loss of dopaminergic neurons due to oxidative damage is thought to be an important factor in the development of PD, the potential antioxidant, anti-inflammatory effects of CH could potentially be used for PD treatment. AIM OF THE STUDY To identify potential targets of CH using network pharmacology and to investigate the neuroprotective effects in cultured cell models and in MPTP-intoxicated mice. MATERIALS AND METHODS The main chemical components of CH were analyzed by UPLC-MS/MS and their potential targets of action or signaling pathways were analyzed using network pharmacology. MPP + or LPS was added to SH-SY5Y or BV2 cells, respectively, to establish cellular models. MPTP was administered to C57BL/6J mice to induce inflammation and dopaminergic neuron loss as well as dyskinesia, followed by behavioral analysis to determine the role of CH in eliminating inflammation, avoiding neuron loss, and improving dyskinesia. RESULTS CH contains 241 alkaloids, 213 flavonoids, 177 terpenoids and 114 phenolic compounds. The targets crossover between CH and PD yielded 210 potential therapeutic targets, especially growth factors and inflammatory pathway-related genes, such as BDNF, NF-κB, as potential key targets. In cultured cells, CHE eliminated MPP + -induced impairment of cell viability as well as LPS-induced inflammation, respectively. In mice, CHE ameliorated MPTP-induced dyskinesia and rescued the loss of dopaminergic neurons in the substantia nigra and striatum. Mechanistically, CHE effectively maintained the activity of the BDNF-TrkB/Akt signaling pathway, accordingly, inhibited inflammatory signaling pathways such as HIF-1α/PKM2 and Notch/NF-kB. CONCLUSIONS CH performed well in eliminating inflammation and improving locomotor deficits in mice, and its potent active ingredients are worthy of subsequent research and development.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qiu-Tong Liu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Dan-Yang Shen
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jin-Peng Bai
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yang Hu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qin Huang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hui-Jing Yu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Ning-Ning He
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Rongfeng Lan
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Chen J, Zhang H, Yang M, Wang R, Zhang H, Ren Z, Wang Q, Liu Y, Chen J, Ji J, Zhao J, He G, Guo J, Zhu K, Yang X, Ma H, Wang CC, Huang J. Genomic formation of Tibeto-Burman speaking populations in Guizhou, Southwest China. BMC Genomics 2023; 24:672. [PMID: 37936086 PMCID: PMC10630991 DOI: 10.1186/s12864-023-09767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Sino-Tibetan is the most prominent language family in East Asia. Previous genetic studies mainly focused on the Tibetan and Han Chinese populations. However, due to the sparse sampling, the genetic structure and admixture history of Tibeto-Burman-speaking populations in the low-altitude region of Southwest China still need to be clarified. We collected DNA from 157 individuals from four Tibeto-Burman-speaking groups from the Guizhou province in Southwest China. We genotyped the samples at about 700,000 genome-wide single nucleotide polymorphisms. Our results indicate that the genetic variation of the four Tibeto-Burman-speaking groups in Guizhou is at the intermediate position in the modern Tibetan-Tai-Kadai/Austronesian genetic cline. This suggests that the formation of Tibetan-Burman groups involved a large-scale gene flow from lowland southern Chinese. The southern ancestry could be further modelled as deriving from Vietnam's Late Neolithic-related inland Southeast Asia agricultural populations and Taiwan's Iron Age-related coastal rice-farming populations. Compared to the Tibeto-Burman speakers in the Tibetan-Yi Corridor reported previously, the Tibeto-Burman groups in the Guizhou region received additional gene flow from the southeast coastal area of China. We show a difference between the genetic profiles of the Tibeto-Burman speakers of the Tibetan-Yi Corridor and the Guizhou province. Vast mountain ranges and rivers in Southwest China may have decelerated the westward expansion of the southeast coastal East Asians. Our results demonstrate the complex genetic profile in the Guizhou region in Southwest China and support the multiple waves of human migration in the southern area of East Asia.
Collapse
Affiliation(s)
- Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Han Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Guanglin He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Jianxin Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Xiaomin Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China.
- Department of Anthropology and Human Genetics, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
4
|
Sandoval-Padilla I, Zamora-Tavares MDP, Ruiz-Sánchez E, Pérez-Alquicira J, Vargas-Ponce O. Characterization of the plastome of Physaliscordata and comparative analysis of eight species of Physalis sensu stricto. PHYTOKEYS 2022; 210:109-134. [PMID: 36760406 PMCID: PMC9836641 DOI: 10.3897/phytokeys.210.85668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/07/2022] [Indexed: 06/18/2023]
Abstract
In this study, we sequenced, assembled, and annotated the plastome of Physaliscordata Mill. and compared it with seven species of the genus Physalis sensu stricto. Sequencing, annotating, and comparing plastomes allow us to understand the evolutionary mechanisms associated with physiological functions, select possible molecular markers, and identify the types of selection that have acted in different regions of the genome. The plastome of P.cordata is 157,000 bp long and presents the typical quadripartite structure with a large single-copy (LSC) region of 87,267 bp and a small single-copy (SSC) region of 18,501 bp, which are separated by two inverted repeat (IRs) regions of 25,616 bp each. These values are similar to those found in the other species, except for P.angulata L. and P.pruinosa L., which presented an expansion of the LSC region and a contraction of the IR regions. The plastome in all Physalis species studied shows variation in the boundary of the regions with three distinct types, the percentage of the sequence identity between coding and non-coding regions, and the number of repetitive regions and microsatellites. Four genes and 10 intergenic regions show promise as molecular markers and eight genes were under positive selection. The maximum likelihood analysis showed that the plastome is a good source of information for phylogenetic inference in the genus, given the high support values and absence of polytomies. In the Physalis plastomes analyzed here, the differences found, the positive selection of genes, and the phylogenetic relationships do not show trends that correspond to the biological or ecological characteristics of the species studied.
Collapse
Affiliation(s)
- Isaac Sandoval-Padilla
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - María del Pilar Zamora-Tavares
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Eduardo Ruiz-Sánchez
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| | - Jessica Pérez-Alquicira
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
- Laboratorio Nacional de Identificación y Caracterización Vegetal A(LaniVeg), Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoCONACYTMexico CityMexico
| | - Ofelia Vargas-Ponce
- Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, 45200 Las Agujas, Zapopan, Jalisco, MexicoUniversidad de GuadalajaraZapopanMexico
| |
Collapse
|
5
|
Wang K, Zhou XH, Liu D, Li Y, Yao Z, He WM, Liu Y. The uplift of the Hengduan Mountains contributed to the speciation of three Rhododendron species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Liu HR, Khan G, Gao Q, Zhang F, Liu W, Wang Y, Fang J, Chen S, Afridi SG. Dispersal into the Qinghai-Tibet plateau: evidence from the genetic structure and demography of the alpine plant Triosteum pinnatifidum. PeerJ 2022; 10:e12754. [PMID: 35178292 PMCID: PMC8815373 DOI: 10.7717/peerj.12754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Triosteum pinnatifidum Maxim., an alpine plant, is traditionally used for several medicinal purposes. Here, both chloroplast DNA sequences and nuclear low copy sequence markers were used to investigate the genetic diversity and population structure of T. pinnatifidum. Materials were collected from thirteen localities in the northeast Qinghai-Tibet Plateau (QTP) and adjacent highlands and advanced analytical toolkits were used to access their origin and range shifts. The results revealed a higher level of population differentiation based on chloroplast DNA (cpDNA) concatenated sequences compared with the nuclear DNA sequences (F ST = 0.654 for cpDNA, F ST = 0.398 for AT103), indicating that pollen flow was still extensive in T. pinnatifidum. A decline in haplotype variation was observed from the plateau edge and adjoining highlands toward the platform of the QTP. The hypothesis "dispersal into the QTP," proposing that T. pinnatifidum experienced migration from the plateau edge and adjacent highlands to the platform, was supported. These results were in line with the hypothesis that multiple refugia exist on the plateau edge and adjacent highlands rather than on the plateau platform. Our unimodal mismatch distribution, star-like network supported a recent expansion in T. pinnatifidum.
Collapse
Affiliation(s)
- Hai Rui Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China,College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai Province, China,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Qingbo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Wenhui Liu
- Department of Geological Engineering, Qinghai University, Xining, Qinghai Province, China
| | - Yingfang Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China
| | - Jie Fang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai Province, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Marden, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Gong L, Zhang D, Ding X, Huang J, Guan W, Qiu X, Huang Z. DNA barcode reference library construction and genetic diversity and structure analysis of Amomum villosum Lour. (Zingiberaceae) populations in Guangdong Province. PeerJ 2021; 9:e12325. [PMID: 34721994 PMCID: PMC8541303 DOI: 10.7717/peerj.12325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Amomum villosum Lour. is the plant that produces the famous traditional Chinese medicine Amomi Fructus. Frequent habitat destruction seriously threatens A. villosum germplasm resources. Genetic diversity is very important to the optimization of germplasm resources and population protection, but the range of inherited traits within A. villosum is unclear. In this study, we analyzed the genetic diversity and genetic structures of A. villosum populations in Guangdong and constructed a local reference DNA barcode library as a resource for conservation efforts. Methods DNA barcoding and Inter-Simple Sequence Repeat (ISSR) markers were used to investigate the population genetics of A. villosum. Five universal DNA barcodes were amplified and used in the construction of a DNA barcode reference library. Parameters including percentage of polymorphic sites (PPB), number of alleles (Na), effective number of alleles (Ne), Nei’s gene diversity index (H), and Shannon’s polymorphism information index (I) were calculated for the assessment of genetic diversity. Genetic structure was revealed by measuring Nei’s gene differentiation coefficient (Gst), total population genetic diversity (Ht), intra-group genetic diversity (Hs), and gene flow (Nm). Analysis of molecular variance (AMOVA), Mantel tests, unweighted pair-group method with arithmetic mean (UPGMA) dendrogram, and principal co-ordinates (PCoA) analysis were used to elucidate the genetic differentiation and relationship among populations. Results A total of 531 sequences were obtained from the five DNA barcodes with no variable sites from any of the barcode sequences. A total of 66 ISSR bands were generated from A. villosum populations using the selected six ISSR primers; 56 bands, 84.85% for all the seven A. villosum populations were polymorphic. The A. villosum populations showed high genetic diversity (H = 0.3281, I = 0.4895), whereas the gene flow was weak (Nm = 0.6143). Gst (0.4487) and AMOVA analysis indicated that there is obvious genetic differentiation amongA. villosum populations and more genetic variations existed within each population. The genetic relationship of each population was relatively close as the genetic distances were between 0.0844 and 0.3347.
Collapse
Affiliation(s)
- Lu Gong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China
| | - Xiaoxia Ding
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juan Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Wan Guan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medicial Products Administration, Guangzhou, China.,Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Lv T, Harris AJ, Liu Y, Liu T, Liang R, Ma Z, Su X. Population genetic structure and evolutionary history of Psammochloa villosa (Trin.) Bor (Poaceae) revealed by AFLP marker. Ecol Evol 2021; 11:10258-10276. [PMID: 34367573 PMCID: PMC8328423 DOI: 10.1002/ece3.7831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/26/2023] Open
Abstract
Psammochloa villosa is an ecologically important desert grass that occurs in the Inner Mongolian Plateau where it is frequently the dominant species and is involved in sand stabilization and wind breaking. We sought to generate a preliminary demographic framework for P. villosa to support the future studies of this species, its conservation, and sustainable utilization. To accomplish this, we characterized the genetic diversity and structure of 210 individuals from 43 natural populations of P. villosa using amplified fragment length polymorphism (AFLP) markers. We obtained 1,728 well-defined amplified bands from eight pairs of primers, of which 1,654 bands (95.7%) were polymorphic. Results obtained from the AFLPs suggested effective alleles among populations of 1.32, a Nei's standard genetic distance value of 0.206, a Shannon index of 0.332, a coefficient of gene differentiation (G ST) of 0.469, and a gene flow parameter (Nm) of 0.576. All these values indicate that there is abundant genetic diversity in P. villosa, but limited gene flow. An analysis of molecular variance (AMOVA) showed that genetic variation mainly exists within populations (64.2%), and we found that the most genetically similar populations were often not geographically adjacent. Thus, this suggests that the mechanisms of gene flow are surprisingly complex in this species and may occur over long distances. In addition, we predicted the distribution dynamics of P. villosa based on the spatial distribution modeling and found that its range has contracted continuously since the last interglacial period. We speculate that dry, cold climates have been critical in determining the geographic distribution of P. villosa during the Quaternary period. Our study provides new insights into the population genetics and evolutionary history of P. villosa in the Inner Mongolian Plateau and provides a resource that can be used to design in situ conservation actions and prioritize sustainable utilization.
Collapse
Affiliation(s)
- Ting Lv
- School of GeosciencesQinghai Normal UniversityXiningChina
- Academy of Plateau Science and SustainabilityXiningChina
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Yuping Liu
- Academy of Plateau Science and SustainabilityXiningChina
- Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai‐Tibet Plateau in Qinghai ProvinceSchool of Life ScienceQinghai Normal UniversityXiningChina
| | - Tao Liu
- School of GeosciencesQinghai Normal UniversityXiningChina
| | - Ruifang Liang
- Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai‐Tibet Plateau in Qinghai ProvinceSchool of Life ScienceQinghai Normal UniversityXiningChina
| | - Zilan Ma
- Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai‐Tibet Plateau in Qinghai ProvinceSchool of Life ScienceQinghai Normal UniversityXiningChina
| | - Xu Su
- School of GeosciencesQinghai Normal UniversityXiningChina
- Academy of Plateau Science and SustainabilityXiningChina
- Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai‐Tibet Plateau in Qinghai ProvinceSchool of Life ScienceQinghai Normal UniversityXiningChina
- Key Laboratory of Education Ministry of Earth Surface Processes and Ecological Conservation of the Qinghai‐Tibet PlateauQinghai Normal UniversityXiningChina
| |
Collapse
|
9
|
Yin H, Wang L, Shi Y, Qian C, Zhou H, Wang W, Ma XF, Tran LSP, Zhang B. The East Asian Winter Monsoon Acts as a Major Selective Factor in the Intraspecific Differentiation of Drought-Tolerant Nitraria tangutorum in Northwest China. PLANTS 2020; 9:plants9091100. [PMID: 32867062 PMCID: PMC7570063 DOI: 10.3390/plants9091100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The influence of Quaternary climate fluctuation on the geographical structure and genetic diversity of species distributed in the regions of the Qinghai–Tibet Plateau (QTP) has been well established. However, the underlying role of the East Asian monsoon system (EAMS) in shaping the genetic structure of the population and the demography of plants located in the arid northwest of China has not been explored. In the present study, Nitraria tangutorum, a drought-tolerant desert shrub that is distributed in the EAMS zone and has substantial ecological and economic value, was profiled to better understand the influence of EAMS evolution on its biogeographical patterns and demographic history. Thus, the phylogeographical structure and historical dynamics of this plant species were elucidated using its five chloroplast DNA (cpDNA) fragments. Hierarchical structure analysis revealed three distinct, divergent lineages: West, East-A, and East-B. The molecular dating was carried out using a Bayesian approach to estimate the time of intraspecies divergence. Notably, the eastern region, which included East-A and East-B lineages, was revealed to be the original center of distribution and was characterized by a high level of genetic diversity, with the intraspecific divergence time dated to be around 2.53 million years ago (Ma). These findings, combined with the data obtained by ecological niche modeling analysis, indicated that the East lineages have undergone population expansion and differentiation, which were closely correlated with the development of the EAMS, especially the East Asian winter monsoon (EAWM). The West lineage appears to have originated from the migration of N. tangutorum across the Hexi corridor at around 1.85 Ma, and subsequent colonization of the western region. These results suggest that the EAWM accelerated the population expansion of N. tangutorum and subsequent intraspecific differentiation. These findings collectively provide new information on the impact of the evolution of the EAMS on intraspecific diversification and population demography of drought-tolerant plant species in northwest China.
Collapse
Affiliation(s)
- Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Lirong Wang
- College of Ecological Environment and Resources, Qinghai Nationalities University, Xining 810007, China;
| | - Yong Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; (C.Q.); (X.-F.M.)
| | - Huakun Zhou
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China;
| | - Wenying Wang
- Department of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Department of Ecology and Agriculture Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; (C.Q.); (X.-F.M.)
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Correspondence: (L.-S.P.T.); (B.Z.)
| | - Benyin Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
- Correspondence: (L.-S.P.T.); (B.Z.)
| |
Collapse
|