1
|
Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KSH. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc 2023; 98:1200-1224. [PMID: 36990691 DOI: 10.1111/brv.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
In spite of their small global area and restricted distributions, tropical montane forests (TMFs) are biodiversity hotspots and important ecosystem services providers, but are also highly vulnerable to climate change. To protect and preserve these ecosystems better, it is crucial to inform the design and implementation of conservation policies with the best available scientific evidence, and to identify knowledge gaps and future research needs. We conducted a systematic review and an appraisal of evidence quality to assess the impacts of climate change on TMFs. We identified several skews and shortcomings. Experimental study designs with controls and long-term (≥10 years) data sets provide the most reliable evidence, but were rare and gave an incomplete understanding of climate change impacts on TMFs. Most studies were based on predictive modelling approaches, short-term (<10 years) and cross-sectional study designs. Although these methods provide moderate to circumstantial evidence, they can advance our understanding on climate change effects. Current evidence suggests that increasing temperatures and rising cloud levels have caused distributional shifts (mainly upslope) of montane biota, leading to alterations in biodiversity and ecological functions. Neotropical TMFs were the best studied, thus the knowledge derived there can serve as a proxy for climate change responses in under-studied regions elsewhere. Most studies focused on vascular plants, birds, amphibians and insects, with other taxonomic groups poorly represented. Most ecological studies were conducted at species or community levels, with a marked paucity of genetic studies, limiting understanding of the adaptive capacity of TMF biota. We thus highlight the long-term need to widen the methodological, thematic and geographical scope of studies on TMFs under climate change to address these uncertainties. In the short term, however, in-depth research in well-studied regions and advances in computer modelling approaches offer the most reliable sources of information for expeditious conservation action for these threatened forests.
Collapse
Affiliation(s)
- Erik O Mata-Guel
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Malcolm C K Soh
- National Park Boards, 1 Cluny Road, Singapore, 259569, Singapore
| | - Connor W Butler
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rebecca J Morris
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Kelvin S-H Peh
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
2
|
Xie C, Li M, Jim CY, Liu D. Environmental Factors Driving the Spatial Distribution Pattern of Venerable Trees in Sichuan Province, China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3581. [PMID: 36559693 PMCID: PMC9780929 DOI: 10.3390/plants11243581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Venerable trees are important natural resources and cultural heritage, offering historical, ecological, social and economic value. However, global warming and anthropogenic activities have threatened their welfare and survival. A comprehensive understanding of their current and future spatial patterns, vis-á-vis environmental conditions, can inform the co-management of sustainable resource use and conservation. We employed the existing spatial occurrence data and environmental variables (bioclimate and elevation) to simulate the optimal habitats for venerable trees in China's Sichuan Province. We evaluated the current and future climate scenarios of 2100 with double CO2 concentration. The BIOCLIM and QGIS spatial analyses assessed the primary factors of geographical distribution. The results identified 10,720 venerable trees from 123 species, 81 genera and 42 families. Cupressus funebris dominated, with the maximum importance value, followed by Ginkgo biloba, Ficus virens var. sublanceolata, and Phoebe zhennan. The elevation distribution of tree abundance and species richness demonstrated a unimodal pattern, skewing to the low-elevation end, with a concentration in the 600-1500 m low-medium altitude. The majority of trees and excellent habitats were found in eastern Sichuan with a less harsh terrain and climate. The bio3 (isothermality) and bio7 (temperature annual range) factors significantly influenced tree occurrence. Temperature imposed a greater effect on distribution than moisture under the current climate scenario. For the future climate-change scenario, the suitable habitats were predicted to maintain an overall stable pattern, with largely contiguous expansions of better habitats. However, climate warming would shrink the excellent habitats on the plains. The findings can inform strategies and guidelines for venerable-tree conservation in Sichuan. Furthermore, vulnerable areas could be identified. The future range expansion sites could be enlisted to cultivate new trees to replenish the venerable-tree pool. Habitat patches that remain sustainable could provide refugia with the potential for protected-area designation.
Collapse
Affiliation(s)
- Chunping Xie
- College of Sciences, Qiongtai Normal University, Haikou 571127, China
| | - Meng Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - C. Y. Jim
- Department of Social Sciences, Education University of Hong Kong, Hong Kong 999077, China
| | - Dawei Liu
- Nanjing Forest Police College, Nanjing 210023, China
| |
Collapse
|
3
|
Hwang BC, Giardina CP, Litton CM, Francisco KS, Pacheco C, Thomas N, Uehara T, Metcalfe DB. Impacts of insect frass and cadavers on soil surface litter decomposition along a tropical forest temperature gradient. Ecol Evol 2022; 12:e9322. [PMID: 36188494 PMCID: PMC9493466 DOI: 10.1002/ece3.9322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Insect herbivores play important roles in shaping many ecosystem processes, but how climate change will alter the effects of insect herbivory are poorly understood. To address this knowledge gap, we quantified for the first time how insect frass and cadavers affected leaf litter decomposition rates and nutrient release along a highly constrained 4.3°C mean annual temperature (MAT) gradient in a Hawaiian montane tropical wet forest. We constructed litterbags of standardized locally sourced leaf litter, with some amended with insect frass + cadavers to produce treatments designed to simulate ambient (Control = no amendment), moderate (Amended-Low = 2 × Control level), or severe (Amended-High = 11 × Control level) insect outbreak events. Multiple sets of these litterbags were deployed across the MAT gradient, with individual litterbags collected periodically over one year to assess how rising MAT altered the effects of insect deposits on litter decomposition rates and nitrogen (N) release. Increased MAT and insect inputs additively increased litter decomposition rates and N immobilization rates, with effects being stronger for Amended-High litterbags. However, the apparent temperature sensitivity (Q 10) of litter decomposition was not clearly affected by amendments. The effects of adding insect deposits in this study operated differently than the slower litter decomposition and greater N mobilization rates often observed in experiments which use chemical fertilizers (e.g., urea, ammonium nitrate). Further research is required to understand mechanistic differences between amendment types. Potential increases in outbreak-related herbivore deposits coupled with climate warming will accelerate litter decomposition and nutrient cycling rates with short-term consequences for nutrient cycling and carbon storage in tropical montane wet forests.
Collapse
Affiliation(s)
- Bernice C. Hwang
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Christian P. Giardina
- Pacific Southwest Research Station, USDA Forest ServiceInstitute of Pacific Islands ForestryHiloHawaiiUSA
| | - Creighton M. Litton
- Department of Natural Resources and Environmental ManagementUniversity of Hawai‘i at MānoaHonoluluHawaiiUSA
| | - Kainana S. Francisco
- Pacific Southwest Research Station, USDA Forest ServiceInstitute of Pacific Islands ForestryHiloHawaiiUSA
| | - Cody Pacheco
- Pacific Southwest Research Station, USDA Forest ServiceInstitute of Pacific Islands ForestryHiloHawaiiUSA
| | - Naneaikealaula Thomas
- Pacific Southwest Research Station, USDA Forest ServiceInstitute of Pacific Islands ForestryHiloHawaiiUSA
| | - Tyler Uehara
- Pacific Southwest Research Station, USDA Forest ServiceInstitute of Pacific Islands ForestryHiloHawaiiUSA
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| |
Collapse
|
4
|
Lyu M, Giardina CP, Litton CM. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest. GLOBAL CHANGE BIOLOGY 2021; 27:3824-3836. [PMID: 33934457 DOI: 10.1111/gcb.15664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Tropical forests exert a disproportionately large influence on terrestrial carbon (C) balance but projecting the effects of climate change on C cycling in tropical forests remains uncertain. Reducing this uncertainty requires improved quantification of the independent and interactive effects of variable and changing temperature and precipitation regimes on C inputs to, cycling within and loss from tropical forests. Here, we quantified aboveground litterfall and soil-surface CO2 efflux ("soil respiration"; FS ) in nine plots organized across a highly constrained 5.2°C mean annual temperature (MAT) gradient in tropical montane wet forest. We used five consecutive years of these measurements, during which annual rainfall (AR) steadily increased, in order to: (a) estimate total belowground C flux (TBCF); (b) examine how interannual variation in AR alters the apparent temperature dependency (Q10 ) of above- and belowground C fluxes; and (c) quantify stand-level C allocation responses to MAT and AR. Averaged across all years, FS , litterfall, and TBCF increased positively and linearly with MAT, which accounted for 49, 47, and 46% of flux rate variation, respectively. Rising AR lowered TBCF and FS , but increased litterfall, with patterns representing interacting responses to declining light. The Q10 of FS , litterfall, and TBCF all decreased with increasing AR, with peak sensitivity to MAT in the driest year and lowest sensitivity in the wettest. These findings support the conclusion that for this tropical montane wet forest, variations in light, water, and nutrient availability interact to strongly influence productivity (litterfall+TBCF), the sensitivity of above- and belowground C fluxes to rising MAT (Q10 of FS , litterfall, and TBCF), and C allocation patterns (TBCF:[litterfall+TBCF]).
Collapse
Affiliation(s)
- Maokui Lyu
- Ecology Postdoctoral Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Christian P Giardina
- Institute of Pacific Islands Forestry, Pacific Southwest Research Station, USDA Forest Service, Hilo, HI, USA
| | - Creighton M Litton
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Zhang Q, Luo D, Yang L, Xie J, Yang Z, Zhou J, Li X, Xiong D, Chen Y, Yang Y. Variations in Rainfall Affect the Responses of Foliar Chemical Properties of Cunninghamia lanceolata Seedlings to Soil Warming. FRONTIERS IN PLANT SCIENCE 2021; 12:705861. [PMID: 34394162 PMCID: PMC8363246 DOI: 10.3389/fpls.2021.705861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Climate warming is becoming an increasingly serious threat. Understanding plant stoichiometry changes under climate warming is crucial for predicting the effects of future warming on terrestrial ecosystem productivity. Nevertheless, how plant stoichiometry responds to warming when interannual rainfall variation is considered, remains poorly understood. We performed a field soil warming experiment (+5°C) using buried heating cables in subtropical areas of China from 2015 to 2018. Stoichiometric patterns of foliar C:N:P:K:Ca:Mg, non-structural carbohydrate, and stable isotope of Cunninghamia lanceolata seedlings were studied. Our results showed that soil warming decreased foliar P and K concentrations, C:Ca, P:Ca, and P:Mg ratios. However, soil warming increased foliar Ca concentration, δ15N value, C:P and N:P ratios. The response ratios of foliar N, C:N, and δ15N to soil warming were correlated with rainfall. Our findings indicate that there was non-homeostasis of N and C:N under warming conditions. Three possible reasons for this result are considered and include interannual variations in rainfall, increased loss of N, and N limitation in leaves. Piecewise structural equation models showed that stoichiometric non-homeostasis indirectly affected the growth of C. lanceolata seedlings in response to soil warming. Consequently, the growth of C. lanceolata seedlings remained unchanged under the warming treatment. Taken together, our results advance the understanding of how altered foliar stoichiometry relates to changes in plant growth in response to climate warming. Our results emphasize the importance of rainfall variations for modulating the responses of plant chemical properties to warming. This study provides a useful method for predicting the effects of climate warming on economically important timber species.
Collapse
Affiliation(s)
- Qiufang Zhang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Dawei Luo
- Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liuming Yang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Jinsheng Xie
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Zhijie Yang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Jiacong Zhou
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Xiaojie Li
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Decheng Xiong
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Yuehmin Chen
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| |
Collapse
|