1
|
Wei L, Zhong Y, Wu X, Wei S, Liu Y. Roles of Nitric Oxide and Brassinosteroid in Improving Fruit Quality during Postharvest: Potential Regulators? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23671-23688. [PMID: 39406695 DOI: 10.1021/acs.jafc.4c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Most postharvest fruits are highly perishable, which directly impairs fruit taste and causes an economic loss of fresh products. Thus, it is necessary to find effective techniques to alleviate this issue. Recently, nitric oxide (NO) and brassinosteroid (BR) have been developed as postharvest alternatives to improve fruit quality. This work mainly reviews the recent processes of NO and BR in improving fruit quality during postharvest. Exogenous NO or BR treatments delayed fruit senescence, enhanced disease resistance, and alleviated chilling injury in postharvest fruit, and potential physiological and biochemical mechanisms mainly include (1) enhancing antioxidant and defense ability, (2) affecting ethylene biosynthesis, (3) regulating sugar and energy metabolism, (4) mediating plant hormone signaling, and (5) regulating protein S-nitrosylation and DNA methylation. This review concludes the functions and mechanisms of NO and BR in improving postharvest fruit quality. Additionally, a specific finding is the possible crosstalk of applications of NO and BR during postharvest fruit storage, which provides new insights into the applicability of NO and BR for delaying fruit senescence, enhancing disease resistances of fruit, and alleviating chilling injury in postharvest fruit.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yue Zhong
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiqing Liu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
2
|
Long Q, Zhang C, Zhu H, Zhou Y, Liu S, Liu Y, Ma X, An W, Zhou J, Zhao J, Zhang Y, Jin C. Comparative metabolomics combined with genome sequencing provides insights into novel wolfberry-specific metabolites and their formation mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1392175. [PMID: 38736439 PMCID: PMC11082402 DOI: 10.3389/fpls.2024.1392175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Wolfberry (Lycium, of the family Solanaceae) has special nutritional benefits due to its valuable metabolites. Here, 16 wolfberry-specific metabolites were identified by comparing the metabolome of wolfberry with those of six species, including maize, rice, wheat, soybean, tomato and grape. The copy numbers of the riboflavin and phenyllactate degradation genes riboflavin kinase (RFK) and phenyllactate UDP-glycosyltransferase (UGT1) were lower in wolfberry than in other species, while the copy number of the phenyllactate synthesis gene hydroxyphenyl-pyruvate reductase (HPPR) was higher in wolfberry, suggesting that the copy number variation of these genes among species may be the main reason for the specific accumulation of riboflavin and phenyllactate in wolfberry. Moreover, the metabolome-based neighbor-joining tree revealed distinct clustering of monocots and dicots, suggesting that metabolites could reflect the evolutionary relationship among those species. Taken together, we identified 16 specific metabolites in wolfberry and provided new insight into the accumulation mechanism of species-specific metabolites at the genomic level.
Collapse
Affiliation(s)
- Qiyuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Changjian Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Hui Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yutong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Xuemin Ma
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Wei An
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jun Zhou
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
3
|
Liu Z, Huang D, Yao Y, Pan X, Zhang Y, Huang Y, Ding Z, Wang C, Liao W. The Crucial Role of SlGSNOR in Regulating Postharvest Tomato Fruit Ripening. Int J Mol Sci 2024; 25:2729. [PMID: 38473974 DOI: 10.3390/ijms25052729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) is a well-known regulator in controlling protein S-nitrosylation modification and nitric oxide (NO) homeostasis. Here, a GSNOR inhibitor N6022 and SlGSNOR silencing were applied to investigate the roles of SlGSNOR in tomato fruit postharvest ripening. We found that the application of N6022 and S-nitrosoglutathione (GSNO, a NO donor), and SlGSNOR silencing delayed the transition of fruit skin color by improving total chlorophyll level by 88.57%, 44.78%, and 91.03%, respectively. Meanwhile, total carotenoid and lycopene contents were reduced by these treatments. Concurrently, the activity of chlorophyll biosynthesis enzymes and the expression of related genes were upregulated, and the transcript abundances of total carotenoid bioproduction genes were downregulated, by N6022 and GSNO treatments and SlGSNOR silencing. In addition, fruit softening was postponed by N6022, GSNO, and SlGSNOR silencing, through delaying the decrease of firmness and declining cell wall composition; structure-related enzyme activity; and gene expression levels. Furthermore, N6022, GSNO, and SlGSNOR silencing enhanced the accumulation of titratable acid; ascorbic acid; total phenol; and total flavonoid, but repressed the content of soluble sugar and soluble protein accompanied with the expression pattern changes of nutrition-related genes. In addition, the endogenous NO contents were elevated by 197.55%; 404.59%; and 713.46%, and the endogenous SNOs contents were enhanced by 74.65%; 93.49%; and 94.85%; by N6022 and GSNO treatments and SlGSNOR silencing, respectively. Altogether, these results indicate that SlGSNOR positively promotes tomato postharvest fruit ripening, which may be largely on account of its negative roles in the endogenous NO level.
Collapse
Affiliation(s)
- Zesheng Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yanqin Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yi Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zhiqi Ding
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
4
|
Lin Y, Wang C, Cao S, Sun Z, Zhang Y, Li M, He W, Wang Y, Chen Q, Zhang Y, Wang X, Luo Y, Tang H. Proanthocyanidins Delay Fruit Coloring and Softening by Repressing Related Gene Expression during Strawberry ( Fragaria × ananassa Duch.) Ripening. Int J Mol Sci 2023; 24:ijms24043139. [PMID: 36834547 PMCID: PMC9962922 DOI: 10.3390/ijms24043139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Proanthocyanidins (PAs), also known as condensed tannins, are widespread throughout the plant kingdom, presenting diverse biological and biochemical activities. Being one of the most abundant groups of natural polyphenolic antioxidant, PAs are applied to improve plant tolerance to (a)biotic stresses and delay the senescence of fruit by scavenging the reactive oxygen species (ROS) and enhancing antioxidant responses. The effects of PAs on coloring and softening of strawberries (Fragaria × ananassa Duch.), a worldwide demanded edible fruit and typical material for studying non-climacteric fruit ripening, were firstly assessed in this work. The results showed that exogenous PAs delayed the decrease in fruit firmness and anthocyanins accumulation but improved the fruit skin brightness. Strawberries treated with PAs had similar total soluble solids, total phenolics, and total flavonoids, but lower titratable acidity content. Moreover, the contents of endogenous PAs, abscisic acid and sucrose, were somehow increased by PA treatment, while no obvious change was found in fructose and glucose content. In addition, the anthocyanin- and firmness-related genes were significantly repressed, while the PA biosynthetic gene (anthocyanin reductase, ANR) was highly up-regulated by PA treatment at the key point for fruit softening and coloring. In summary, the results presented in this study suggest that PAs slow down strawberry coloration and softening by inhibiting the expression of related genes, which could be helpful for a better understanding of the biological role of PAs and provide a new strategy to regulate strawberry ripening.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuaipeng Cao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqing Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.L.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.L.); (H.T.)
| |
Collapse
|
5
|
Su N, Liu Z, Wang L, Liu Y, Niu M, Chen X, Cui J. Improving the anthocyanin accumulation of hypocotyls in radish sprouts by hemin-induced NO. BMC PLANT BIOLOGY 2022; 22:224. [PMID: 35490232 PMCID: PMC9055698 DOI: 10.1186/s12870-022-03605-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health benefits of anthocyanins impel researchers and food producers to explorer new methods to increase anthocyanin contents in plant foods. Our previous studies revealed a positive role of nitric oxide (NO) in anthocyanin accumulation in radish (Raphanus sativus L.) sprouts. The application of hemin, an inducer of heme oxygenase-1 (HO-1), can effectively elevate NO production in vivo. Hemin treatment also improves plant growth and stress tolerance. This study is aimed to assess the effects of hemin treatment on anthocyanin production in radish sprouts, and to investigate whether NO signalling is involved in this process. RESULTS The application of hemin significantly up regulated the expressions of many anthocyanins biosynthesis related structure and regulatory genes, leading to increased anthocyanins accumulation in radish hypocotyls. Hemin treatment also raised NO contents in radish sprouts, probably through enhancing nitrate reductase (NR) activity and Nitric Oxide-Associated 1 (NOA1) expression. Comparing the effects of Zinc Protoporphyrin (ZnPP, HO-1 activity inhibitor), Sodium Nitroprusside (SNP, NO donor) and carboxy-PTIO (cPTIO, NO-scavenger) on anthocyanin and NO production, a positive role of NO signalling has been revealed in hemin-derived anthocyanin accumulation. A positive feedback loop between HO-1 and NO may be involved in regulating this process. CONCLUSIONS Hemin induced anthocyanin accumulation in radish sprouts through HO-1 and NO signalling network.
Collapse
Affiliation(s)
- Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yuanyuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
6
|
Dar NA, Mir MA, Mir JI, Mansoor S, Showkat W, Parihar TJ, Haq SAU, Wani SH, Zaffar G, Masoodi KZ. MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Mol Biol Rep 2022; 49:5353-5364. [PMID: 35088377 DOI: 10.1007/s11033-021-07077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
AIM Anthocyanin, an essential ingredient of functional foods, is present in a wide range of plants, including black carrots. The current investigation was carried out to analyse the effect of cold stress on the expression of major anthocyanins and anthocyanin biosynthetic pathway genes, MYB6 and LDOX-1. METHODS AND RESULTS Five cultivated carrot genotypes belonging to the eastern group, having anthocyanin pigment, were used in the current study. The qRT-PCR analysis revealed that relative gene expression of transcription factor MYB-6 and LDOX1gene was highly expressed upon cold stress compared to non-stress samples. High-performance liquid chromatography-based quantification of Cyanidin 3-O-glucoside (Kuromanin chloride), Ferulic acid, 3,5-Dimethoxy-4-hydroxycinnamic acid (Sinapic acid), and Rutin revealed a significant increase in these major anthocyanins in response to cold stress when compared to control plants. CONCLUSION We conclude that MYB6 and LDOX1 gene expression increases upon cold stress, which induces accumulation of major anthocyanins in purple black carrot and suggests a possible cross-link between cold stress and anthocyanin biosynthesis in purple black carrot.
Collapse
Affiliation(s)
- Niyaz A Dar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Mudasir A Mir
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Javid I Mir
- Central Institute of Temperate Horticulture, Rangreth, Srinagar, Jammu and Kashmir, 191132, India
| | - Sheikh Mansoor
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Wasia Showkat
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tasmeen J Parihar
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Syed Anam Ul Haq
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, SKUAST-Kashmir, Khudwani, Jammu and Kashmir, 192101, India
| | - Gul Zaffar
- Division of Plant Breeding & Genetics, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Laboratory (K-Lab), Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
7
|
Kaya C, Ugurlar F, Ashraf M, Noureldeen A, Darwish H, Ahmad P. Methyl Jasmonate and Sodium Nitroprusside Jointly Alleviate Cadmium Toxicity in Wheat ( Triticum aestivum L.) Plants by Modifying Nitrogen Metabolism, Cadmium Detoxification, and AsA-GSH Cycle. FRONTIERS IN PLANT SCIENCE 2021; 12:654780. [PMID: 34421936 PMCID: PMC8374870 DOI: 10.3389/fpls.2021.654780] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/21/2021] [Indexed: 05/18/2023]
Abstract
The principal intent of the investigation was to examine the influence of joint application of methyl jasmonate (MeJA, 10 μM) and a nitric oxide-donor sodium nitroprusside (SNP, 100 μM) to wheat plants grown under cadmium (Cd as CdCl2, 100 μM) stress. Cd stress suppressed plant growth, chlorophylls (Chl), and PSII maximum efficiency (F v /F m ), but it elevated leaf and root Cd, and contents of leaf proline, phytochelatins, malondialdehyde, and hydrogen peroxide, as well as the activity of lipoxygenase. MeJA and SNP applied jointly or singly improved the concentrations of key antioxidant biomolecules, e.g., reduced glutathione and ascorbic acid and the activities of the key oxidative defense system enzymes such as catalase, superoxide dismutase, dehydroascorbate reductase, glutathione S-transferase, and glutathione reductase. Exogenously applied MeJA and SNP jointly or singly also improved nitrogen metabolism by activating the activities of glutamine synthetase, glutamate synthase, and nitrate and nitrite reductases. Compared with individual application of MeJA or SNP, the combined application of both showed better effect in terms of improving plant growth and key metabolic processes and reducing tissue Cd content, suggesting a putative interactive role of both compounds in alleviating Cd toxicity in wheat plants. MAIN FINDINGS The main findings are that exogenous application of methyl jasmonate and nitric oxide-donor sodium nitroprusside alleviated the cadmium (Cd)-induced adverse effects on growth of wheat plants grown under Cd by modulating key physiological processes and up-regulating enzymatic antioxidants and the ascorbic acid-glutathione cycle-related enzymes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
8
|
Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. PLANT CELL REPORTS 2021; 40:1395-1414. [PMID: 33974111 DOI: 10.1007/s00299-021-02705-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide is a dynamic gaseous molecule involved in signalling, crosstalk with stress regulators, and plant abiotic-stress responses. It has great exploratory potentials for engineering abiotic stress tolerance in crops. Nitric oxide (NO), a redox-active gaseous signalling molecule, though present uniformly through the eukaryotes, maintain its specificity in plants with respect to its formation, signalling, and functions. Its cellular concentrations are decisive for its function, as a signalling molecule at lower concentrations, but triggers nitro-oxidative stress and cellular damage when produced at higher concentrations. Besides, it also acts as a potent stress alleviator. Discovered in animals as neurotransmitter, NO has come a long way to being a stress radical and growth regulator in plants. As a key redox molecule, it exhibits several key cellular and molecular interactions including with reactive chemical species, hydrogen sulphide, and calcium. Apart from being a signalling molecule, it is emerging as a key player involved in regulations of plant growth, development and plant-environment interactions. It is involved in crosstalk with stress regulators and is thus pivotal in these stress regulatory mechanisms. NO is getting an unprecedented attention from research community, being investigated and explored for its multifaceted roles in plant abiotic stress tolerance. Through this review, we intend to present the current knowledge and updates on NO biosynthesis and signalling, crosstalk with stress regulators, and how biotechnological manipulations of NO pathway are leading towards developing transgenic crop plants that can withstand environmental stresses and climate change. The targets of various stress responsive miRNA signalling have also been discussed besides giving an account of current approaches used to characterise and detect the NO.
Collapse
Affiliation(s)
- Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China.
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Jin Shang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
9
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020; 324:211-219. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) is a short-life and free radical molecule involved in a wide range of cellular, physiological and stressful processes in higher plants. In recent years it has been observed that exogenous NO application can palliate adverse damages against abiotic and biotic stresses. Conversely, there is accumulating information indicating that endogenous NO participates significantly in the mechanism of modulation of the ripening in climacteric and non-climacteric fruits. Even more, when NO is exogenously applied, it can mediate beneficial effects during ripening and postharvest storage being one of the main effects the increase of antioxidant systems. Consequently, NO could be a promising biotechnological tool to improve crops through ameliorating nutritional indexes and to alleviate damages during fruit ripening and postharvest management. Thus, this approach should be complementary to previous strategies to allow preserving the quality and healthiness of fruits with a view of enhancing their added value. The present mini-review aims to provide an overview of NO biochemistry in plants and updated information on the relevance of NO in fruit ripening and postharvest stages with a view to its biotechnological applications.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture. Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|