1
|
Lamour J, Souza DC, Gimenez BO, Higuchi N, Chave J, Chambers J, Rogers A. Wood-density has no effect on stomatal control of leaf-level water use efficiency in an Amazonian forest. PLANT, CELL & ENVIRONMENT 2023; 46:3806-3821. [PMID: 37635450 DOI: 10.1111/pce.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.
Collapse
Affiliation(s)
- Julien Lamour
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Daisy C Souza
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Bruno O Gimenez
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
- Department of Geography, University of California, Berkeley, California, USA
| | - Niro Higuchi
- National Institute of Amazonian Research (INPA), Forest Management Laboratory (LMF), Manaus, Amazonas, Brazil
| | - Jérôme Chave
- Evolution and Biological Diversity (EDB), CNRS/IRD/UPS, Toulouse, France
| | - Jeffrey Chambers
- Department of Geography, University of California, Berkeley, California, USA
| | - Alistair Rogers
- Department of Environmental & Climate Sciences, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
2
|
Cox AJF, Hartley IP, Meir P, Sitch S, Dusenge ME, Restrepo Z, González-Caro S, Villegas JC, Uddling J, Mercado LM. Acclimation of photosynthetic capacity and foliar respiration in Andean tree species to temperature change. THE NEW PHYTOLOGIST 2023; 238:2329-2344. [PMID: 36987979 DOI: 10.1111/nph.18900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Climate warming is causing compositional changes in Andean tropical montane forests (TMFs). These shifts are hypothesised to result from differential responses to warming of cold- and warm-affiliated species, with the former experiencing mortality and the latter migrating upslope. The thermal acclimation potential of Andean TMFs remains unknown. Along a 2000 m Andean altitudinal gradient, we planted individuals of cold- and warm-affiliated species (under common soil and irrigation), exposing them to the hot and cold extremes of their thermal niches, respectively. We measured the response of net photosynthesis (Anet ), photosynthetic capacity and leaf dark respiration (Rdark ) to warming/cooling, 5 months after planting. In all species, Anet and photosynthetic capacity at 25°C were highest when growing at growth temperatures (Tg ) closest to their thermal means, declining with warming and cooling in cold-affiliated and warm-affiliated species, respectively. When expressed at Tg , photosynthetic capacity and Rdark remained unchanged in cold-affiliated species, but the latter decreased in warm-affiliated counterparts. Rdark at 25°C increased with temperature in all species, but remained unchanged when expressed at Tg . Both species groups acclimated to temperature, but only warm-affiliated species decreased Rdark to photosynthetic capacity ratio at Tg as temperature increased. This could confer them a competitive advantage under future warming.
Collapse
Affiliation(s)
- Andrew J F Cox
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stephen Sitch
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Mirindi Eric Dusenge
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Zorayda Restrepo
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Sebastian González-Caro
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Juan Camilo Villegas
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Lina M Mercado
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| |
Collapse
|
3
|
Mujawamariya M, Wittemann M, Dusenge ME, Manishimwe A, Ntirugulirwa B, Zibera E, Nsabimana D, Wallin G, Uddling J. Contrasting warming responses of photosynthesis in early- and late-successional tropical trees. TREE PHYSIOLOGY 2023:tpad035. [PMID: 36971469 DOI: 10.1093/treephys/tpad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at 25°C (Vcmax25), stomatal conductance (gs) and the slope parameter of the stomatal conductance-photosynthesis model (g1), in ten early- (ES) and eight late-successional (LS) tropical tree species grown at three sites along an elevation gradient in Rwanda, differing by 6.8°C in daytime ambient air temperature. The effect of seasonal drought on An was also investigated. We found that warm climate decreased wet-season An in LS species, but not in ES species. Values of Vcmax25 were lower at the warmest site across both successional groups, and An and Vcmax25 were higher in ES compared to LS species. Stomatal conductance exhibited no significant site differences and g1 was similar across both sites and successional groups. Drought strongly reduced An at warmer sites but not at the coolest montane site and this response was similar in both ES and LS species. Our results suggest that warming has negative effects on leaf-level photosynthesis in LS species, while both LS and ES species suffer photosynthesis declines in a warmer climate with more pronounced droughts. The contrasting responses of An between successional groups may lead to shifts in species' competitive balance in a warmer world, to the disadvantage of LS trees.
Collapse
Affiliation(s)
- Myriam Mujawamariya
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Mirindi Eric Dusenge
- Western Center for Climate Change, Sustainable Livelihoods and Health, Department of Geography, The University of Western Ontario, London, Ontario, Canada
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - Aloysie Manishimwe
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Bonaventure Ntirugulirwa
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
- Rwanda Forestry Authority, Muhanga P.O. Box 46, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda
| | - Donat Nsabimana
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- School of Forestry and Biodiversity, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Gong J, Zhang Z, Wang B, Shi J, Zhang W, Dong Q, Song L, Li Y, Liu Y. N addition rebalances the carbon and nitrogen metabolisms of Leymus chinensis through leaf N investment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:221-232. [PMID: 35714430 DOI: 10.1016/j.plaphy.2022.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Intensifying nitrogen (N) deposition disturbs the growth of grassland plants due to an imbalance between their carbon (C) and N metabolism. However, it's unclear how plant physiological strategies restore balance. We investigated the effects of multiple N addition levels (0-25 g N m-2 yr-1) on the coordination of C and N metabolism in a dominant grass (Leymus chinensis) in a semiarid grassland in northern China. To do so, we evaluated photosynthetic parameters, leaf N allocation, C- and N-based metabolites, and metabolic enzymes. We found that a moderate N level (10 g N m-2 yr-1) promoted carboxylation and electron transport by allocating more N to the photosynthetic apparatus and increasing ribulose bisphosphate carboxylase/oxygenase activity, thereby increasing photosynthetic capacity. The highest N level (25 g N m-2 yr-1) promoted N investment in nonphotosynthetic pathways and increased the free amino acids in the leaves. N addition stimulated the accumulation of C and N compounds across organs by activating sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. This enhancement triggered a transformation of primary metabolites (nonstructural carbohydrates, proteins, amino acids) to secondary metabolites (flavonoids, phenols, and alkaloids) for temporary storage or as defense compounds. Citric acid, as the C skeleton for enhanced N metabolism, decreased significantly, and malic acid increased by catalysis of phosphoenolpyruvate carboxylase. Our findings show the adaptability of L. chinensis to different N-addition levels by adjusting its allocations of C and N metabolic compounds and confirm the roles of C and N coordination by grassland plants in these adaptations.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Biao Wang
- College of Materials Science and Engineering, College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Jiayu Shi
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Qi Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Liangyuan Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Ying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
5
|
Dusenge ME, Wittemann M, Mujawamariya M, Ntawuhiganayo EB, Zibera E, Ntirugulirwa B, Way DA, Nsabimana D, Uddling J, Wallin G. Limited thermal acclimation of photosynthesis in tropical montane tree species. GLOBAL CHANGE BIOLOGY 2021; 27:4860-4878. [PMID: 34233063 DOI: 10.1111/gcb.15790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early-successional species Harungana montana and the late-successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.8℃ in daytime ambient air temperature. Their physiological and growth performance was investigated at each site. The optimum temperature of net photosynthesis (ToptA ) did not significantly increase in warm-grown trees in either species. Similarly, the thermal optima (ToptV and ToptJ ) and activation energies (EaV and EaJ ) of maximum Rubisco carboxylation capacity (Vcmax ) and maximum electron transport rate (Jmax ) were largely unaffected by warming. However, Vcmax , Jmax and foliar dark respiration (Rd ) at 25℃ were significantly reduced by warming in both species, and this decline was partly associated with concomitant reduction in total leaf nitrogen content. The ratio of Jmax /Vcmax decreased with increasing leaf temperature for both species, but the ratio at 25℃ was constant across sites. Furthermore, in H. montana, stomatal conductance at 25℃ remained constant across the different temperature treatments, while in S. guineense it increased with warming. Total dry biomass increased with warming in H. montana but remained constant in S. guineense. The biomass allocated to roots, stem and leaves was not affected by warming in H. montana, whereas the biomass allocated to roots significantly increased in S. guineense. Overall, our findings show that in these two tropical montane rainforest tree species, the capacity to acclimate the thermal optimum of photosynthesis is limited while warming-induced reductions in respiration and photosynthetic capacity rates are tightly coupled and linked to responses of leaf nitrogen.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
| | - Elisée B Ntawuhiganayo
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
- World Agroforestry (ICRAF), Huye, Rwanda
| | - Etienne Zibera
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Huye, Rwanda
- Rwanda Agriculture and Animal Resources Development Board, Kigali, Rwanda
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Donat Nsabimana
- School of Forestry, Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre (GGBC), University of Gothenburg, Gothenburg, Sweden
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|