1
|
Draper D, Riofrío L, Naranjo C, Marques I. The Complex Genetic Legacy of Hybridization and Introgression between the Rare Ocotea loxensis van der Werff and the Widespread O. infrafoveolata van der Werff (Lauraceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:1956. [PMID: 39065483 PMCID: PMC11280420 DOI: 10.3390/plants13141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Hybridization and introgression are complex evolutionary mechanisms that can increase species diversity and lead to speciation, but may also lead to species extinction. In this study, we tested the presence and genetic consequences of hybridization between the rare and Ecuadorian endemic O. loxensis van der Werff and the widespread O. infrafoveolata van der Werff (Lauraceae). Phenotypically, some trees are difficult to identify, and we expect that some might in fact be cryptic hybrids. Thus, we developed nuclear microsatellites to assess the existence of hybrids, as well as the patterns of genetic diversity and population structure in allopatric and sympatric populations. The results revealed high levels of genetic diversity, even in the rare O. loxensis, being usually significantly higher in sympatric than in allopatric populations. The Bayesian assignment of individuals into different genetic classes revealed a complex scenario with different hybrid generations occurring in all sympatric populations, but also in allopatric ones. The absence of some backcrossed hybrids suggests the existence of asymmetric gene flow, and that some hybrids might be more fitted than others might. The existence of current and past interspecific gene flow also explains the blurring of species boundaries in these species and could be linked to the high rates of species found in Ocotea.
Collapse
Affiliation(s)
- David Draper
- Center for Ecology, Evolution, and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Lorena Riofrío
- Facultad de Ciencias Exactas y Naturales, Universidad Tecnica Particular de Loja (UTPL), Loja 1101608, Ecuador; (L.R.); (C.N.)
| | - Carlos Naranjo
- Facultad de Ciencias Exactas y Naturales, Universidad Tecnica Particular de Loja (UTPL), Loja 1101608, Ecuador; (L.R.); (C.N.)
| | - Isabel Marques
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
2
|
Mora-Márquez F, Nuño JC, Soto Á, López de Heredia U. Missing genotype imputation in non-model species using self-organizing maps. Mol Ecol Resour 2024:e13992. [PMID: 38970328 DOI: 10.1111/1755-0998.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
Current methodologies of genome-wide single-nucleotide polymorphism (SNP) genotyping produce large amounts of missing data that may affect statistical inference and bias the outcome of experiments. Genotype imputation is routinely used in well-studied species to buffer the impact in downstream analysis, and several algorithms are available to fill in missing genotypes. The lack of reference haplotype panels precludes the use of these methods in genomic studies on non-model organisms. As an alternative, machine learning algorithms are employed to explore the genotype data and to estimate the missing genotypes. Here, we propose an imputation method based on self-organizing maps (SOM), a widely used neural networks formed by spatially distributed neurons that cluster similar inputs into close neurons. The method explores genotype datasets to select SNP loci to build binary vectors from the genotypes, and initializes and trains neural networks for each query missing SNP genotype. The SOM-derived clustering is then used to impute the best genotype. To automate the imputation process, we have implemented gtImputation, an open-source application programmed in Python3 and with a user-friendly GUI to facilitate the whole process. The method performance was validated by comparing its accuracy, precision and sensitivity on several benchmark genotype datasets with other available imputation algorithms. Our approach produced highly accurate and precise genotype imputations even for SNPs with alleles at low frequency and outperformed other algorithms, especially for datasets from mixed populations with unrelated individuals.
Collapse
Affiliation(s)
- Fernando Mora-Márquez
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Juan Carlos Nuño
- GI en Especies Leñosas (WooSp), Dpto. Matemática Aplicada, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Álvaro Soto
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Unai López de Heredia
- GI en Especies Leñosas (WooSp), Dpto. Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
3
|
Armendariz I, López de Heredia U, Soler M, Puigdemont A, Ruiz MM, Jové P, Soto Á, Serra O, Figueras M. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. BMC PLANT BIOLOGY 2024; 24:488. [PMID: 38825683 PMCID: PMC11145776 DOI: 10.1186/s12870-024-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.
Collapse
Affiliation(s)
- Iker Armendariz
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Unai López de Heredia
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Marçal Soler
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Adrià Puigdemont
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Maria Mercè Ruiz
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Patricia Jové
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Álvaro Soto
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Olga Serra
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Mercè Figueras
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain.
| |
Collapse
|
4
|
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Mol Phylogenet Evol 2023; 187:107869. [PMID: 37423562 DOI: 10.1016/j.ympev.2023.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.
Collapse
Affiliation(s)
- Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia.
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Patrick S Fahey
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney, Sydney 2000, NSW, Australia; Qld Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Qld, Australia
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia
| | - David J Cantrill
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| |
Collapse
|
5
|
Tóth EG, Cseke K, Benke A, Lados BB, Tomov VT, Zhelev P, Kámpel JD, Borovics A, Köbölkuti ZA. Key triggers of adaptive genetic variability of sessile oak [Q. petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection and association of SNP loci from ddRAD-seq data. Heredity (Edinb) 2023:10.1038/s41437-023-00629-2. [PMID: 37316726 PMCID: PMC10382515 DOI: 10.1038/s41437-023-00629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Knowledge on the genetic composition of Quercus petraea in south-eastern Europe is limited despite the species' significant role in the re-colonisation of Europe during the Holocene, and the diverse climate and physical geography of the region. Therefore, it is imperative to conduct research on adaptation in sessile oak to better understand its ecological significance in the region. While large sets of SNPs have been developed for the species, there is a continued need for smaller sets of SNPs that are highly informative about the possible adaptation to this varied landscape. By using double digest restriction site associated DNA sequencing data from our previous study, we mapped RAD-seq loci to the Quercus robur reference genome and identified a set of SNPs putatively related to drought stress-response. A total of 179 individuals from eighteen natural populations at sites covering heterogeneous climatic conditions in the southeastern natural distribution range of Q. petraea were genotyped. The detected highly polymorphic variant sites revealed three genetic clusters with a generally low level of genetic differentiation and balanced diversity among them but showed a north-southeast gradient. Selection tests showed nine outlier SNPs positioned in different functional regions. Genotype-environment association analysis of these markers yielded a total of 53 significant associations, explaining 2.4-16.6% of the total genetic variation. Our work exemplifies that adaptation to drought may be under natural selection in the examined Q. petraea populations.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary.
| | - Klára Cseke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Attila Benke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Botond B Lados
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Vladimir T Tomov
- Department of Landscape Architecture, Faculty of Ecology and Landscape Architecture, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, Faculty of Forestry, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - József D Kámpel
- Ottó Herman Environmental and Agricultural Technical School, Vocational School and College (Agricultural Vocational Centre of the Kisalföld Region), Ernuszt Kelemen 1, Szombathely, 9700, Hungary
| | - Attila Borovics
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Zoltán A Köbölkuti
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
- Departement of Applied Forest Genetics Research, Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| |
Collapse
|
6
|
Qualitative and Quantitative Anatomical Analysis of the Constitutive Bark of Q. ilex x Q. suber Hybrids. PLANTS 2022; 11:plants11192475. [PMID: 36235341 PMCID: PMC9572208 DOI: 10.3390/plants11192475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022]
Abstract
Hybridization and introgression between cork oak (Quercus suber) and holm oak (Q. ilex) have traditionally been reckoned as undesirable processes, since hybrid individuals lack the profitable bark characteristics of cork oak. Nevertheless, a systematic and quantitative description of the bark of these hybrids at the microscopic level, based on a significant number of individuals, is not available to date. In this work we provide such a qualitative and quantitative description, identifying the most relevant variables for their classification. Hybrids show certain features intermediate between those of the parent species (such as phellem percentage in the outer bark, which was approximately 40% as a mean value for hybrids, 20% in holm oak and almost 99% in cork oak), as well as other unique features, such as the general suberization of inactive phloem (up to 25% in certain individuals), reported here for the first time. These results suggest a relevant hybridization-induced modification of the genetic expression patterns. Therefore, hybrid individuals provide a valuable material to disentangle the molecular mechanisms underpinning bark development in angiosperms.
Collapse
|
7
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
8
|
Sousa F, Costa J, Ribeiro C, Varandas M, Pina-Martins F, Simões F, Matos J, Glushkova M, Miguel C, Veloso MM, Oliveira M, Pinto Ricardo C, Batista D, Paulo OS. Population structure in Quercus suber L. revealed by nuclear microsatellite markers. PeerJ 2022; 10:e13565. [PMID: 35729909 PMCID: PMC9206845 DOI: 10.7717/peerj.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Quercus suber L. is a sclerophyllous tree species native to the western Mediterranean, a region that is considered highly vulnerable to increased temperatures and severe dry conditions due to environmental changes. Understanding the population structure and demographics of Q. suber is essential in order to anticipate whether populations at greater risk and the species as a whole have the genetic background and reproductive dynamics to enable rapid adaptation. The genetic diversity of Q. suber has been subject to different studies using both chloroplast and nuclear data, but population structure patterns remain unclear. Here, we perform genetic analyses on Q. suber using 13 nuclear microsatellite markers, and analysed 17 distinct locations across the entire range of the species. Structure analyses revealed that Q. suber may contain three major genetic clusters that likely result from isolation in refugia combined with posterior admixture and putative introgression from other Quercus species. Our results show a more complex structure scenario than previously inferred for Q. suber using nuclear markers and suggest that different southern populations contain high levels of genetic variation that may contribute to the resilience of Q. suber in a context of environmental change and adaptive pressure.
Collapse
Affiliation(s)
- Filipe Sousa
- Faculdade de Ciências, Universidade de Lisboa, cE3c—Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal
| | - Joana Costa
- Faculdade de Ciências, Universidade de Lisboa, cE3c—Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal,RAIZ, Herdade de Espirra, Pegões, Portugal
| | - Carla Ribeiro
- Faculdade de Ciências, Universidade de Lisboa, cE3c—Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal
| | - Marta Varandas
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Unidade de Investigação de Biotecnologia e Recursos Genéticos, Oeiras, Portugal
| | - Francisco Pina-Martins
- Faculdade de Ciências, Universidade de Lisboa, cE3c—Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal,Polytechnic Institute of Setúbal, ESTBarreiro, Setúbal, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Unidade de Investigação de Biotecnologia e Recursos Genéticos, Oeiras, Portugal
| | - José Matos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Unidade de Investigação de Biotecnologia e Recursos Genéticos, Oeiras, Portugal
| | - Maria Glushkova
- Forest Research Institute of B.A.S., Department of Forest Genetics, Physiology and Plantations, Sofia, Bulgaria
| | - Célia Miguel
- Faculdade de Ciências, Universidade de Lisboa, Biosystems & Integrative Sciences Institute, Lisboa, Portugal,iBET, Oeiras, Portugal
| | - Maria Manuela Veloso
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Unidade de Investigação de Biotecnologia e Recursos Genéticos, Oeiras, Portugal
| | - Margarida Oliveira
- Universidade Nova de Lisboa (ITQB-NOVA), Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cândido Pinto Ricardo
- Universidade Nova de Lisboa (ITQB-NOVA), Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Dora Batista
- Faculdade de Ciências, Universidade de Lisboa, cE3c—Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal,Instituto Superior de Agronomia, Universidade de Lisboa, LEAF—Linking Landscape, Environment, Agriculture and Food (LEAF), Lisboa, Portugal
| | - Octávio S. Paulo
- Faculdade de Ciências, Universidade de Lisboa, cE3c—Centre for Ecology, Evolution and Environmental Changes, Lisboa, Portugal
| |
Collapse
|
9
|
Cardoni S, Piredda R, Denk T, Grimm GW, Papageorgiou AC, Schulze E, Scoppola A, Salehi Shanjani P, Suyama Y, Tomaru N, Worth JRP, Cosimo Simeone M. 5S-IGS rDNA in wind-pollinated trees (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:909-926. [PMID: 34808015 PMCID: PMC9299691 DOI: 10.1111/tpj.15601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 05/31/2023]
Abstract
Standard models of plant speciation assume strictly dichotomous genealogies in which a species, the ancestor, is replaced by two offspring species. The reality in wind-pollinated trees with long evolutionary histories is more complex: species evolve from other species through isolation when genetic drift exceeds gene flow; lineage mixing can give rise to new species (hybrid taxa such as nothospecies and allopolyploids). The multi-copy, potentially multi-locus 5S rDNA is one of few gene regions conserving signal from dichotomous and reticulate evolutionary processes down to the level of intra-genomic recombination. Therefore, it can provide unique insights into the dynamic speciation processes of lineages that diversified tens of millions of years ago. Here, we provide the first high-throughput sequencing (HTS) of the 5S intergenic spacers (5S-IGS) for a lineage of wind-pollinated subtropical to temperate trees, the Fagus crenata - F. sylvatica s.l. lineage, and its distant relative F. japonica. The observed 4963 unique 5S-IGS variants reflect a complex history of hybrid origins, lineage sorting, mixing via secondary gene flow, and intra-genomic competition between two or more paralogous-homoeologous 5S rDNA lineages. We show that modern species are genetic mosaics and represent a striking case of ongoing reticulate evolution during the past 55 million years.
Collapse
Affiliation(s)
- Simone Cardoni
- Department of Agricultural and Forestry Science (DAFNE)Università degli studi della TusciaViterbo01100Italy
| | - Roberta Piredda
- Department of Veterinary MedicineUniversity of Bari ‘Aldo Moro’Valenzano70010Italy
| | - Thomas Denk
- Swedish Museum of Natural HistoryStockholm10405Sweden
| | | | | | | | - Anna Scoppola
- Department of Agricultural and Forestry Science (DAFNE)Università degli studi della TusciaViterbo01100Italy
| | - Parvin Salehi Shanjani
- Natural Resources Gene Bank, Research Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | - Yoshihisa Suyama
- Graduate School of Agricultural ScienceTohoku UniversityOsakiMiyagi989‐6711Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaAichi464‐8601Japan
| | - James R. P. Worth
- Ecological Genetics LaboratoryForestry and Forest Products Research Institute (FFPRI)TsukubaIbaraki305‐8687Japan
| | - Marco Cosimo Simeone
- Department of Agricultural and Forestry Science (DAFNE)Università degli studi della TusciaViterbo01100Italy
| |
Collapse
|
10
|
Piredda R, Grimm GW, Schulze ED, Denk T, Simeone MC. High-throughput sequencing of 5S-IGS in oaks: Exploring intragenomic variation and algorithms to recognize target species in pure and mixed samples. Mol Ecol Resour 2020; 21:495-510. [PMID: 32997899 DOI: 10.1111/1755-0998.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Measuring biological diversity is a crucial but difficult undertaking, as exemplified in oaks where complex patterns of morphological, ecological, biogeographical and genetic differentiation collide with traditional taxonomy, which measures biodiversity in number of species (or higher taxa). In this pilot study, we generated high-throughput sequencing amplicon data of the intergenic spacer of the 5S nuclear ribosomal DNA cistron (5S-IGS) in oaks, using six mock samples that differ in geographical origin, species composition and pool complexity. The potential of the marker for automated genotaxonomy applications was assessed using a reference data set of 1,770 5S-IGS cloned sequences, covering the entire taxonomic breadth and distribution range of western Eurasian Quercus, and applying similarity (blast) and evolutionary approaches (maximum-likelihood trees and Evolutionary Placement Algorithm). Both methods performed equally well, allowing correct identification of species in sections Ilex and Cerris in the pure and mixed samples, and main lineages shared by species of sect. Quercus. Application of different cut-off thresholds revealed that medium- to high-abundance (>10 or 25) sequences suffice for a net species identification of samples containing one or a few individuals. Lower thresholds identify phylogenetic correspondence with all target species in highly mixed samples (analogous to environmental bulk samples) and include rare variants pointing towards reticulation, incomplete lineage sorting, pseudogenic 5S units and in situ (natural) contamination. Our pipeline is highly promising for future assessments of intraspecific and interpopulation diversity, and of the genetic resources of natural ecosystems, which are fundamental to empower fast and solid biodiversity conservation programmes worldwide.
Collapse
Affiliation(s)
| | - Guido W Grimm
- Orléans, France.,Department of Palaeontology, University of Vienna, Vienna, Austria
| | | | - Thomas Denk
- Swedish Museum of Natural History, Stockholm, Sweden
| | - Marco Cosimo Simeone
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli studi della Tuscia, Viterbo, Italy
| |
Collapse
|