1
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
2
|
Zhang C, Zhang X, Wu Y, Li X, Du C, Di N, Chen Y. Genome-wide identification and evolution of the SAP gene family in sunflower ( Helianthus annuus L.) and expression analysis under salt and drought stress. PeerJ 2024; 12:e17808. [PMID: 39099650 PMCID: PMC11296301 DOI: 10.7717/peerj.17808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Stress-associated proteins (SAPs) are known to play an important role in plant responses to abiotic stresses. This study systematically identified members of the sunflower SAP gene family using sunflower genome data. The genes of the sunflower SAP gene family were analyzed using bioinformatic methods, and gene expression was assessed through fluorescence quantification (qRT-PCR) under salt and drought stress. A comprehensive analysis was also performed on the number, structure, collinearity, and phylogeny of seven Compositae species and eight other plant SAP gene families. The sunflower genome was found to have 27 SAP genes, distributed across 14 chromosomes. The evolutionary analysis revealed that the SAP family genes could be divided into three subgroups. Notably, the annuus variety exhibited amplification of the SAP gene for Group 3. Among the Compositae species, C. morifolium demonstrated the highest number of collinearity gene pairs and the closest distance on the phylogenetic tree, suggesting relative conservation in the evolutionary process. An analysis of gene structure revealed that Group 1 exhibited the most complex gene structure, while the majority of HaSAP genes in Group 2 and Group 3 lacked introns. The promoter analysis revealed the presence of cis-acting elements related to ABA, indicating their involvement in stress responses. The expression analysis indicated the potential involvement of 10 genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) in sunflower salt tolerance. The expression of these 10 genes were then examined under salt and drought stress using qRT-PCR, and the tissue-specific expression patterns of these 10 genes were also analyzed. HaSAP1, HaSAP21, and HaSAP23 exhibited consistent expression patterns under both salt and drought stress, indicating these genes play a role in both salt tolerance and drought resistance in sunflower. The findings of this study highlight the significant contribution of the SAP gene family to salt tolerance and drought resistance in sunflower.
Collapse
Affiliation(s)
| | - Xiaohong Zhang
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | - Yue Wu
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | | | - Chao Du
- Bayannur Institute of Agriculture and Animal Science, Bayannur, China
| | - Na Di
- Hetao College, Bayannur, China
| | | |
Collapse
|
3
|
Htwe CSS, Rajkumar S, Pathania P, Agrawal A. Transcriptome Profiling during Sequential Stages of Cryopreservation in Banana ( Musa AAA cv Borjahaji) Shoot Meristem. PLANTS (BASEL, SWITZERLAND) 2023; 12:1165. [PMID: 36904022 PMCID: PMC10005800 DOI: 10.3390/plants12051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Cryopreservation approaches have been implemented in gene banks as a strategy to back up plant genetic resource collections that are vegetatively propagated. Different strategies have been employed to effectively cryopreserve plant tissue. There is little information on the cellular processes and molecular adjustments that confer resilience to the multiple stresses imposed during a cryoprotocol. In the present work, the cryobionomics of banana (Musa sp.), a non-model species, was investigated through the transcriptomic approach using RNA-Seq. Proliferating meristems of in vitro explants (Musa AAA cv 'Borjahaji') were cryopreserved using the droplet-vitrification technique. Transcriptome profiling analysis of eight cDNA libraries including the bio-replicates for T0 (stock cultures (control tissue), T1 (high sucrose pre-cultured), T2 (vitrification solution-treated) and T3 (liquid nitrogen-treated) meristem tissues was carried out. The raw reads obtained were mapped with a Musa acuminata reference genome sequence. A total of 70 differentially expressed genes (DEGs) comprising 34 upregulated and 36 downregulated were identified in all three phases as compared to control (T0). Among the significant DEGs (>log FC 2.0), during sequential steps, 79 in T1, 3 in T2 and the 4 in T3 were upregulated and 122 in T1, 5 in T2 and 9 in T3 were downregulated. Gene ontology (GO) enrichment analysis showed that these significant DEGs were involved in the upregulation of biological process (BP-170), cellular component (CC-10) and molecular function (MF-94) and downregulation of biological process (BP-61), cellular component (CC-3) and molecular function (MF-56). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were involved in the biosynthesis of secondary metabolites, glycolysis/gluconeogenesis, MAPK signaling, EIN 3-lke 1 protein, 3-ketoacy-CoA synthase 6-like, and fatty acid elongation during cryopreservation. For the first time, a comprehensive transcript profiling during four stages of cryopreservation in banana were carried out, which will pave the way for devising an effective cryopreservation protocol.
Collapse
Affiliation(s)
- Chaw Su Su Htwe
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
- Division of Plant Genetic Resources, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subramani Rajkumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Pooja Pathania
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Anuradha Agrawal
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
4
|
Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta NK, Gupta S, Schramm C, Anderson P, Jenkins CLD, Soole KL, Langridge P, Shavrukov Y. Expression of Specific Alleles of Zinc-Finger Transcription Factors, HvSAP8 and HvSAP16, and Corresponding SNP Markers, Are Associated with Drought Tolerance in Barley Populations. Int J Mol Sci 2021; 22:12156. [PMID: 34830037 PMCID: PMC8617764 DOI: 10.3390/ijms222212156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Two genes, HvSAP8 and HvSAP16, encoding Zinc-finger proteins, were identified earlier as active in barley plants. Based on bioinformatics and sequencing analysis, six SNPs were found in the promoter regions of HvSAP8 and one in HvSAP16, among parents of two barley segregating populations, Granal × Baisheshek and Natali × Auksiniai-2. ASQ and Amplifluor markers were developed for HvSAP8 and HvSAP16, one SNP in each gene, and in each of two populations, showing simple Mendelian segregation. Plants of F6 selected breeding lines and parents were evaluated in a soil-based drought screen, revealing differential expression of HvSAP8 and HvSAP16 corresponding with the stress. After almost doubling expression during the early stages of stress, HvSAP8 returned to pre-stress level or was strongly down-regulated in plants with Granal or Baisheshek genotypes, respectively. For HvSAP16 under drought conditions, a high expression level was followed by either a return to original levels or strong down-regulation in plants with Natali or Auksiniai-2 genotypes, respectively. Grain yield in the same breeding lines and parents grown under moderate drought was strongly associated with their HvSAP8 and HvSAP16 genotypes. Additionally, Granal and Natali genotypes with specific alleles at HvSAP8 and HvSAP16 were associated with improved performance under drought via higher 1000 grain weight and more shoots per plant, respectively.
Collapse
Affiliation(s)
- Akmaral Baidyussen
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Bekzak Amantayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Grigory Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda Region 100435, Kazakhstan; (G.S.); (S.S.)
| | - Sergey Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda Region 100435, Kazakhstan; (G.S.); (S.S.)
| | - Narendra K. Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303 329, India; (N.K.G.); (S.G.)
| | - Sunita Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303 329, India; (N.K.G.); (S.G.)
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Langridge
- Wheat Initiative, Julius-Kühn-Institute, 14195 Berlin, Germany;
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5005, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|