1
|
Mansoor S, Hamid S, Tuan TT, Park JE, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv 2024; 77:108447. [PMID: 39251098 DOI: 10.1016/j.biotechadv.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
The burgeoning field of bioinformatics has seen a surge in computational tools tailored for omics data analysis driven by the heterogeneous and high-dimensional nature of omics data. In biomedical and plant science research multi-omics data has become pivotal for predictive analytics in the era of big data necessitating sophisticated computational methodologies. This review explores a diverse array of computational approaches which play crucial role in processing, normalizing, integrating, and analyzing omics data. Notable methods such similarity-based methods, network-based approaches, correlation-based methods, Bayesian methods, fusion-based methods and multivariate techniques among others are discussed in detail, each offering unique functionalities to address the complexities of multi-omics data. Furthermore, this review underscores the significance of computational tools in advancing our understanding of data and their transformative impact on research.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Thai Thanh Tuan
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea; Multimedia Communications Laboratory, University of Information Technology, Ho Chi Minh city 70000, Vietnam; Multimedia Communications Laboratory, Vietnam National University, Ho Chi Minh city 70000, Vietnam
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea.
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
2
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Balcke GU, Vahabi K, Giese J, Finkemeier I, Tissier A. Coordinated metabolic adaptation of Arabidopsis thaliana to high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:387-405. [PMID: 39175460 DOI: 10.1111/tpj.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
SUMMARYIn plants, exposure to high light irradiation induces various stress responses, which entail complex metabolic rearrangements. To explore these dynamics, we conducted time‐course experiments spanning 2 min to 72 h with Arabidopsis thaliana under high and control light. Comparative metabolomics, transcriptomics, redox proteomics, and stable isotope labeling on leaf rosettes identified a series of synchronous and successive responses that provide a deeper insight into well‐orchestrated mechanisms contributing to high‐light acclimation. We observed transient transcriptome downregulation related to light harvesting and electron flow before the profound remodeling of the photosynthetic apparatus. Throughout the entire time course, redox homeostasis is tightly balanced between downregulation of production and enhanced transformation of NADPH accompanied by redistribution of reducing equivalents across several subcellular compartments. In both light conditions, C4 acids such as malate and fumarate are produced via anaplerosis. In carbon units, their accumulation in vacuoles surpasses plastidic levels of starch and intensifies notably under high light. In parallel, citrate synthesis from pyruvate is significantly hindered diurnally. Isotopic labeling in 2‐oxoglutarate and glutamate suggests a moderate de novo synthesis of C5 acids from a vacuolar citrate reservoir during the light phase while they are largely renewed during the night. In the absence of a diurnal clockwise flow through the tricarboxylic acid (TCA) cycle, increased oxidation of photorespiratory glycine takes over as a source of reductants to fuel mitochondrial ATP production. These findings, along with previous research, contribute to a model integrating redox balance and linking increased carbon assimilation and nitrogen metabolism, especially in the context of an incomplete TCA cycle.
Collapse
Affiliation(s)
- Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Jonas Giese
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
4
|
Liu J, Zhu L, Cao D, Zhu X, Zhang H, Zhang Y, Liu J. Identification of Drought Stress-Responsive Genes in Rice by Random Walk with Multi-Restart Probability on MultiPlex Biological Networks. Int J Mol Sci 2024; 25:9216. [PMID: 39273165 PMCID: PMC11395135 DOI: 10.3390/ijms25179216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Exploring drought stress-responsive genes in rice is essential for breeding drought-resistant varieties. Rice drought resistance is controlled by multiple genes, and mining drought stress-responsive genes solely based on single omics data lacks stability and accuracy. Multi-omics correlation analysis and biological molecular network analysis provide robust solutions. This study proposed a random walk with a multi-restart probability (RWMRP) algorithm, based on the Restarted Random Walk (RWR) algorithm, to operate on rice MultiPlex biological networks. It explores the interactions between biological molecules across various levels and ranks potential genes. RWMRP uses eigenvector centrality to evaluate node importance in the network and adjusts the restart probabilities accordingly, diverging from the uniform restart probability employed in RWR. In the random walk process, it can be better to consider the global relationships in the network. Firstly, we constructed a MultiPlex biological network by integrating the rice protein-protein interaction, gene pathway, and gene co-expression network. Then, we employed RWMRP to predict the potential genes associated with rice tolerance to drought stress. Enrichment and correlation analyses resulted in the identification of 12 drought-related genes. We further conducted quantitative real-time polymerase chain reaction (qRT-PCR) analysis on these 12 genes, ultimately identifying 10 genes responsive to drought stress.
Collapse
Affiliation(s)
- Jiacheng Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Liu Zhu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Dan Cao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinghui Zhu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Hongyan Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Yinqiong Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Jing Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Rosas-Saavedra C, Quiroz LF, Parra S, Gonzalez-Calquin C, Arias D, Ocarez N, Lopez F, Stange C. Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2788. [PMID: 37570943 PMCID: PMC10421225 DOI: 10.3390/plants12152788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.
Collapse
Affiliation(s)
- Carolina Rosas-Saavedra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Luis Felipe Quiroz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Samuel Parra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Christian Gonzalez-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Nallat Ocarez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Instituto de Investigaciones Agropecuarias (INIA), La Platina, Research Centre, Av. Santa Rosa 11610, Santiago 8820000, Chile
| | - Franco Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| |
Collapse
|
6
|
Singh V, Gupta K, Singh S, Jain M, Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1156606. [PMID: 37287713 PMCID: PMC10242046 DOI: 10.3389/fpls.2023.1156606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
Drought stress affects growth and productivity significantly in chickpea. An integrated multi-omics analysis can provide a better molecular-level understanding of drought stress tolerance. In the present study, comparative transcriptome, proteome and metabolome analyses of two chickpea genotypes with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the molecular mechanisms underlying drought stress response/tolerance. Pathway enrichment analysis of differentially abundant transcripts and proteins suggested the involvement of glycolysis/gluconeogenesis, galactose metabolism, and starch and sucrose metabolism in the DT genotype. An integrated multi-omics analysis of transcriptome, proteome and metabolome data revealed co-expressed genes, proteins and metabolites involved in phosphatidylinositol signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways, specifically in the DT genotype under drought. These stress-responsive pathways were coordinately regulated by the differentially abundant transcripts, proteins and metabolites to circumvent the drought stress response/tolerance in the DT genotype. The QTL-hotspot associated genes, proteins and transcription factors may further contribute to improved drought tolerance in the DT genotype. Altogether, the multi-omics approach provided an in-depth understanding of stress-responsive pathways and candidate genes involved in drought tolerance in chickpea.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Shubhangi Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
7
|
Moreno JC, Al-Babili S. Are carotenoids the true colors of crop improvement? THE NEW PHYTOLOGIST 2023; 237:1946-1950. [PMID: 36478583 DOI: 10.1111/nph.18660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Juan C Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 4700, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 4700, Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 4700, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 4700, Saudi Arabia
| |
Collapse
|
8
|
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: New insights and synthetic approaches. FRONTIERS IN PLANT SCIENCE 2023; 13:1072061. [PMID: 36743580 PMCID: PMC9891708 DOI: 10.3389/fpls.2022.1072061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Carotenoids are well-known isoprenoid pigments naturally produced by plants, algae, photosynthetic bacteria as well as by several heterotrophic microorganisms. In plants, they are synthesized in plastids where they play essential roles in light-harvesting and in protecting the photosynthetic apparatus from reactive oxygen species (ROS). Carotenoids are also precursors of bioactive metabolites called apocarotenoids, including vitamin A and the phytohormones abscisic acid (ABA) and strigolactones (SLs). Genetic engineering of carotenogenesis made possible the enhancement of the nutritional value of many crops. New metabolic engineering approaches have recently been developed to modulate carotenoid content, including the employment of CRISPR technologies for single-base editing and the integration of exogenous genes into specific "safe harbors" in the genome. In addition, recent studies revealed the option of synthetic conversion of leaf chloroplasts into chromoplasts, thus increasing carotenoid storage capacity and boosting the nutritional value of green plant tissues. Moreover, transient gene expression through viral vectors allowed the accumulation of carotenoids outside the plastid. Furthermore, the utilization of engineered microorganisms allowed efficient mass production of carotenoids, making it convenient for industrial practices. Interestingly, manipulation of carotenoid biosynthesis can also influence plant architecture, and positively impact growth and yield, making it an important target for crop improvements beyond biofortification. Here, we briefly describe carotenoid biosynthesis and highlight the latest advances and discoveries related to synthetic carotenoid metabolism in plants and microorganisms.
Collapse
Affiliation(s)
- Alice Stra
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamyaa O. Almarwaey
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yagiz Alagoz
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Chodasiewicz M, Kerber O, Gorka M, Moreno JC, Maruri-Lopez I, Minen RI, Sampathkumar A, Nelson ADL, Skirycz A. 2',3'-cAMP treatment mimics the stress molecular response in Arabidopsis thaliana. PLANT PHYSIOLOGY 2022; 188:1966-1978. [PMID: 35043968 PMCID: PMC8968299 DOI: 10.1093/plphys/kiac013] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 05/12/2023]
Abstract
The role of the RNA degradation product 2',3'-cyclic adenosine monophosphate (2',3'-cAMP) is poorly understood. Recent studies have identified 2',3'-cAMP in plant material and determined its role in stress signaling. The level of 2',3'-cAMP increases upon wounding, in the dark, and under heat, and 2',3'-cAMP binding to an RNA-binding protein, Rbp47b, promotes stress granule (SG) assembly. To gain further mechanistic insights into the function of 2',3'-cAMP, we used a multi-omics approach by combining transcriptomics, metabolomics, and proteomics to dissect the response of Arabidopsis (Arabidopsis thaliana) to 2',3'-cAMP treatment. We demonstrated that 2',3'-cAMP is metabolized into adenosine, suggesting that the well-known cyclic nucleotide-adenosine pathway of human cells might also exist in plants. Transcriptomics analysis revealed only minor overlap between 2',3'-cAMP- and adenosine-treated plants, suggesting that these molecules act through independent mechanisms. Treatment with 2',3'-cAMP changed the levels of hundreds of transcripts, proteins, and metabolites, many previously associated with plant stress responses, including protein and RNA degradation products, glucosinolates, chaperones, and SG components. Finally, we demonstrated that 2',3'-cAMP treatment influences the movement of processing bodies, confirming the role of 2',3'-cAMP in the formation and motility of membraneless organelles.
Collapse
Affiliation(s)
| | - Olga Kerber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michal Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Juan C Moreno
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Israel Maruri-Lopez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina I Minen
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
10
|
Mi J, Vallarino JG, Petřík I, Novák O, Correa SM, Chodasiewicz M, Havaux M, Rodriguez-Concepcion M, Al-Babili S, Fernie AR, Skirycz A, Moreno JC. A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato. Metab Eng 2022; 70:166-180. [PMID: 35031492 DOI: 10.1016/j.ymben.2022.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
Collapse
Affiliation(s)
- Jianing Mi
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jose G Vallarino
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Sandra M Correa
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
| | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
| | - Michel Havaux
- Aix-Marseille University, CEA, CNRS UMR7265, BIAM, CEA/Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | | | - Salim Al-Babili
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alisdair R Fernie
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany; Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Juan C Moreno
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg1 D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
11
|
Moreno JC, Stange C. Heterologous complementation in bacteria for functional analysis of genes encoding carotenoid biosynthetic enzymes. Methods Enzymol 2022; 671:471-488. [DOI: 10.1016/bs.mie.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Moreno JC, Rojas BE, Vicente R, Gorka M, Matz T, Chodasiewicz M, Peralta‐Ariza JS, Zhang Y, Alseekh S, Childs D, Luzarowski M, Nikoloski Z, Zarivach R, Walther D, Hartman MD, Figueroa CM, Iglesias AA, Fernie AR, Skirycz A. Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO J 2021; 40:e106800. [PMID: 34156108 PMCID: PMC8327957 DOI: 10.15252/embj.2020106800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.
Collapse
Affiliation(s)
- Juan C Moreno
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Bruno E Rojas
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Michal Gorka
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Timon Matz
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- BioinformaticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | | | | | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Dorothee Childs
- European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | | | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- BioinformaticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Raz Zarivach
- Faculty of Natural SciencesThe Ben Gurion University of the NegevBeer ShevaIsrael
| | - Dirk Walther
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Matías D Hartman
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Boyce Thompson InstituteIthacaUSA
| |
Collapse
|
13
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|