1
|
Lee KR, Park ME, Kim HU. Domestication and engineering of pennycress (Thlaspi arvense L.): challenges and opportunities for sustainable bio-based feedstocks. PLANTA 2024; 260:127. [PMID: 39470818 DOI: 10.1007/s00425-024-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
MAIN CONCLUSION Pennycress, as an emerging oilseed crop with high oil content, faces challenges but offers potential for sustainable bioproducts; ongoing research aims to enhance its traits and quality. Pennycress (Thlaspi arvense L.) is an emerging oilseed crop with many advantages, such as high seed oil (27-39%) and monounsaturated fatty acid (55.6%) content, making it an attractive candidate to produce sustainable bioproducts. However, several challenges are associated with domesticating pennycress, including high silicle shatter, which reduces seed yield during harvest, non-uniformed germination rate and high contents of erucic acid and glucosinolates, which have adverse health effects on humans and animals. Pennycress, which can be easily and rapidly transformed using the floral dip method under vacuum, can achieve trait improvements. Ongoing research for pennycress domestication using mutation breeding, including ethylmethylsulfonate treatment and genome editing, aims to improve its quality. Pennycress can be used as an excellent platform for producing industrially important fatty acids such as hydroxy and epoxy fatty acids and docosahexaenoic acid. In conclusion, pennycress is a promising oilseed crop with multiple advantages and potential applications. Continuous improvements in quality and engineering for producing high-value bio-based feedstocks in pennycress will establish it as a sustainable and economically valuable crop.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
2
|
De Nicola GR, Montaut S, Leclair K, Garrioux J, Guillot X, Rollin P. Cultivated Winter-Type Lunaria annua L. Seed: Deciphering the Glucosinolate Profile Integrating HPLC, LC-MS and GC-MS Analyses, and Determination of Fatty Acid Composition. Molecules 2024; 29:3803. [PMID: 39202882 PMCID: PMC11357284 DOI: 10.3390/molecules29163803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Lunaria annua L. (Brassicaceae) is an ornamental plant newly identified in Europe as a promising industrial oilseed crop for its valuable very-long-chain monounsaturated fatty acids (MUFAs), especially erucic acid (EA) and nervonic acid (NA). L. annua seeds were obtained from annual winter-type plants selected and cultivated in Northern France. Using a systematic multiple-method approach, we set out to determine the profile and content of glucosinolates (GSLs), which are the relevant chemical tag of Brassicaceae. Intact GSLs were analyzed through a well-established LC-MS method. Identification and quantification were performed by HPLC-PDA of desulfo-GSLs (dGLs) according to the official EU ISO method. Moreover, GSL structures were confirmed by GC-MS analysis of the related isothiocyanates (ITCs). Seven GSLs were identified, directly or indirectly, as follows: 1-methylethyl GSL, (1S)-1-methylpropyl GSL, (Rs)-5-(methylsulfinyl)pentyl GSL, (Rs)-6-(methylsulfinyl)hexyl GSL, (2S)-2-hydroxy-4-pentenyl GSL, 2-phenylethyl GSL, and 1-methoxyindol-3-ylmethyl GSL. In other respects, the FA composition of the seed oil was determined. Results revealed cultivated L. annua seed to be a source of NA-rich oil, and presscake as a valuable coproduct. This presscake is indeed rich in GSLs (4.3% w/w), precursors of promising bioactive molecules for agricultural and nutraceutical applications.
Collapse
Affiliation(s)
- Gina Rosalinda De Nicola
- Research Centre for Vegetables and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Via dei Fiori 8, 51017 Pescia, Italy
| | - Sabine Montaut
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Kayla Leclair
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Joëlle Garrioux
- Terres Inovia, 270 Avenue de la Pomme de Pin, BP 90635, Ardon, 45166 Olivet, France;
| | | | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d’Orléans, UMR 7311, BP 6759, F-45067 Orléans, Cedex 2, France;
| |
Collapse
|
3
|
Li Y, Kong F, Wu S, Song W, Shao Y, Kang M, Chen T, Peng L, Shu Q. Integrated analysis of metabolome, transcriptome, and bioclimatic factors of Acer truncatum seeds reveals key candidate genes related to unsaturated fatty acid biosynthesis, and potentially optimal production area. BMC PLANT BIOLOGY 2024; 24:284. [PMID: 38627650 PMCID: PMC11020666 DOI: 10.1186/s12870-024-04936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 β-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangwei Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjin Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Hunan Agricultural University, Changsha, 410128, China
| | - Tiantian Chen
- Taishan Academy of Forestry Sciences, Tai'an, 271002, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Mohanty SS, Mohanty K. Valorization of Chlorella thermophila biomass cultivated in dairy wastewater for biopesticide production against bacterial rice blight: a circular biorefinery approach. BMC PLANT BIOLOGY 2023; 23:644. [PMID: 38097976 PMCID: PMC10722807 DOI: 10.1186/s12870-023-04579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Biopesticides offer a sustainable and efficient alternative to synthetic pesticides, providing a safer and more eco-friendly solution to pest management. The present work proposes an innovative approach that integrates crop protection and wastewater treatment using thermophilic microalgal strain Chlorella thermophila (CT) cultivated in nutrient-rich dairy wastewater as a growth medium. The microalgae was cultivated mixotrophically and was able to reduce both organic carbon as well as nutrient load of the dairy wastewater efficiently. The integrated circular biorefinery approach combines biomass cultivation, extraction of biopesticide compounds, and conversion to biocrude. The antimicrobial activity of the biopesticidal extracts against Xanthomonas oryzae and Pantoea agglomerans, the causative agent of bacterial rice blight, is assessed through in vitro studies. The biomass extract obtained is able to inhibit the growth of both the above-mentioned plant pathogens successfully. Mass spectroscopy analysis indicates the presence of Neophytadiene that has previously been reported for the inhibition of several pathogenic bacteria and fungi. Several other value-added products such as linoleic acid and nervonic acids were also been detected in the microalgal biomass which have extremely high nutraceutical and medicinal values. Furthermore, the study investigates the potential for co-production of biocrude from the biorefinery process via hydrothermal liquefaction. Overall, the findings of this present work represent an innovative and sustainable approach that combines wastewater treatment and crop protection using microalgal biomass.
Collapse
Affiliation(s)
- Satya Sundar Mohanty
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam, India
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Kaustubha Mohanty
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam, India.
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| |
Collapse
|
5
|
Aihaiti M, Shi H, Liu Y, Hou C, Song X, Li M, Li J. Nervonic acid reduces the cognitive and neurological disturbances induced by combined doses of D-galactose/AlCl 3 in mice. Food Sci Nutr 2023; 11:5989-5998. [PMID: 37823115 PMCID: PMC10563680 DOI: 10.1002/fsn3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 10/13/2023] Open
Abstract
Nervonic acid (NA) is a kind of ultra-long-chain monounsaturated fatty acid, which can repair nerve cell damage caused by oxidative stress. Alzheimer's disease (AD) is a nervous system disease and often accompanied by the decline of learning and memory capacity. In this study, the combined dose of D-galactose/AlCl3 was used to establish a mouse model of AD. Meanwhile, the mice were treated with different doses of NA (10.95 and 43.93 mg/kg). The results showed that NA delayed the decline of locomotion and learning ability caused by D-galactose/AlCl3, increased the activity of total superoxide dismutase, catalase, glutathione peroxidase, and reduced the content of malondialdehyde in vivo. Besides, NA reduced the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), aspartate aminotransferase, alanine aminotransferase, increased the levels of 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, alleviated the cell morphology damage induced by D-galactose/AlCl3 in hippocampus and liver tissue. Furthermore, the intervention of NA upregulated the expression levels of PI3K, AKT, and mTOR genes and downregulated the expression levels of TNF-α, IL-6, and IL-1β genes. Therefore, we speculate the intervention of NA could be an effective way in improving cognitive impairment through the activation of PI3K signaling pathway. These results suggest that NA has the potential to be developed as antioxidant drug for the prevention and early therapy of AD.
Collapse
Affiliation(s)
- Mayile Aihaiti
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Haidan Shi
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Yaojie Liu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Chen Hou
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Xiaoyu Song
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Mengting Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| | - Jianke Li
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
6
|
Wu CC, Honda K, Kazuhito F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review. World J Microbiol Biotechnol 2023; 39:234. [PMID: 37358633 PMCID: PMC10293357 DOI: 10.1007/s11274-023-03595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fujiyama Kazuhito
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
8
|
Yang T, Zhang R, Tian X, Yao G, Shen Y, Wang S, Mao J, Li G, Liu A, Sun W, Ma Y. The chromosome-level genome assembly and genes involved in biosynthesis of nervonic acid of Malania oleifera. Sci Data 2023; 10:298. [PMID: 37208438 DOI: 10.1038/s41597-023-02218-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
Nervonic acid (C24:1 Δ15, NA) is a very long-chain monounsaturated fatty acid, a clinically indispensable resource in maintaining the brain and nerve cells development and regeneration. Till now, NA has been found in 38 plant species, among which the garlic-fruit tree (Malania oleifera) has been evaluated to be the best candidate for NA production. Here, we generated a high-quality chromosome-scale assembly of M. oleifera employing PacBio long-read, short-read Illumina as well as Hi-C sequencing data. The genome assembly consisted of 1.5 Gb with a contig N50 of ~4.9 Mb and a scaffold N50 of ~112.6 Mb. ~98.2% of the assembly was anchored into 13 pseudo-chromosomes. It contains ~1123 Mb repeat sequences, and 27,638 protein-coding genes, 568 tRNAs, 230 rRNAs and 352 other non-coding RNAs. Additionally, we documented candidate genes involved in NA biosynthesis including 20 KCSs, 4 KCRs, 1 HCD and 1 ECR, and profiled the expression patterns of these genes in developing seeds. The high-quality assembly of the genome provides insights into the genome evolution of the M. oleifera genome and candidate genes involved in NA biosynthesis in the seeds of this important woody tree.
Collapse
Affiliation(s)
- Tianquan Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Tian
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Gang Yao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yuanting Shen
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sihai Wang
- Yunnan Academy of Forestry, Kunming, 650201, China
| | - Jianfeng Mao
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-901 87, Sweden
| | - Guangyuan Li
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, 650224, China.
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
10
|
Wang J, Hu H, Liang X, Tahir ul Qamar M, Zhang Y, Zhao J, Ren H, Yan X, Ding B, Guo J. High-quality genome assembly and comparative genomic profiling of yellowhorn ( Xanthoceras sorbifolia) revealed environmental adaptation footprints and seed oil contents variations. FRONTIERS IN PLANT SCIENCE 2023; 14:1147946. [PMID: 37025151 PMCID: PMC10070836 DOI: 10.3389/fpls.2023.1147946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Yellowhorn (Xanthoceras sorbifolia) is a species of deciduous tree that is native to Northern and Central China, including Loess Plateau. The yellowhorn tree is a hardy plant, tolerating a wide range of growing conditions, and is often grown for ornamental purposes in parks, gardens, and other landscaped areas. The seeds of yellowhorn are edible and contain rich oil and fatty acid contents, making it an ideal plant for oil production. However, the mechanism of its ability to adapt to extreme environments and the genetic basis of oil synthesis remains to be elucidated. In this study, we reported a high-quality and near gap-less yellowhorn genome assembly, containing the highest genome continuity with a contig N50 of 32.5 Mb. Comparative genomics analysis showed that 1,237 and 231 gene families under expansion and the yellowhorn-specific gene family NB-ARC were enriched in photosynthesis and root cap development, which may contribute to the environmental adaption and abiotic stress resistance of yellowhorn. A 3-ketoacyl-CoA thiolase (KAT) gene (Xso_LG02_00600) was identified under positive selection, which may be associated with variations of seed oil content among different yellowhorn cultivars. This study provided insights into environmental adaptation and seed oil content variations of yellowhorn to accelerate its genetic improvement.
Collapse
Affiliation(s)
- Juan Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xizhen Liang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Yunxiang Zhang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianguo Zhao
- Engineering Research Center of Coalbased Ecological Carbon Sequestration Technology of the Ministry of Education, Datong University, Taigu, Shanxi, China
| | - Hongqian Ren
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xingrong Yan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Baopeng Ding
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Engineering Research Center of Coalbased Ecological Carbon Sequestration Technology of the Ministry of Education, Datong University, Taigu, Shanxi, China
| | - Jinping Guo
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
11
|
Wang X, Zhu X, Li X, Li Z, Mao Y, Zhang S, Liu X, Liu X, Liu Y, Cao F, Zhang J. Transcriptomic and metabolomic analyses provide insights into the attenuation of neuroinflammation by nervonic acid in MPTP-stimulated PD model mice. Food Funct 2023; 14:277-291. [PMID: 36484706 DOI: 10.1039/d2fo02595g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nervonic acid is one of the most promising bioactive fatty acids, which is believed to be beneficial for the recovery of human cognitive disorders. However, the detailed neuroprotective effects and mode of action of nervonic acid have not yet been fully elucidated. In this study, we used an MPTP-stimulated mouse Parkinson's disease (PD) model as a target to investigate the neuroprotective effects by behavioral tests and integrative analysis of trancriptomes and metabolomes of PD mouse brain with nervonic acid injections. The KEGG pathway enrichment analysis of transcriptomes showed that the genes involved in neuroinflammation were significantly increased after MPTP induction and have been greatly inhibited by nervonic acid injection, while nervonic acid also greatly improved nerve growth and synaptic plasticity pathways which were significantly downregulated by MPTP. At the same time, the upregulation of oleic acid and arachidonic acid metabolism pathways and the downregulation of amino acid metabolism pathways in metabolomes were particularly highlighted in the nervonic acid protection groups compared with the PD model. Meanwhile, it was found that arachidonic acid, oleic acid and taurine play an important regulatory role in the neuroprotective mechanism of nervonic acid through fatty acid metabolism by integrative analysis. Therefore, our study laid a solid foundation for further studies on the specific role of nervonic acid in the inhibition of PD at the level of metabolic regulation.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.,Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Shunbin Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Xingguo Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Yapeng Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.,Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
12
|
Li B, Song D, Guo T, Xu X, Ai C, Zhou W. Combined physiological and metabolomic analysis reveals the effects of different biostimulants on maize production and reproduction. FRONTIERS IN PLANT SCIENCE 2022; 13:1062603. [PMID: 36507449 PMCID: PMC9727306 DOI: 10.3389/fpls.2022.1062603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Plant biostimulants (PBs) are a potential strategy to improve crop growth and grain quality. In the present study, 100 mg/L trehalose, chitosan, humic acid and gamma-aminobutyric acid treatments were applied to analyze the effects of maize production and reproductive characteristics. The contents of nitrogen, phosphorus and potassium and grain quality were significantly affected by the PBs, but not yield. The seed germination rate of all PB treatments was significantly reduced, but the drought resistance of progeny seedlings was significantly improved, with humic acid having the strongest effect. Liquid chromatography mass spectrometry analysis indicated that the disruption of the tricarboxylic acid cycle, probably due to the blockage of intermediate anabolism, reduced the supply of energy and nutrients in the early stages of germination, thus inhibiting seed germination, while the increased resistance of the offspring seedlings may be due to the up-regulation of the synthesis of unsaturated fatty acids and alkaloids by humic acid treatment. This study revealed the similarity and heterogeneity of the effects of different PBs on nutrient accumulation, yield characteristics and grain quality of maize, providing guidance for the application of PBs in intensive and sustainable agricultural production.
Collapse
Affiliation(s)
- Bingyan Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dali Song
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Guo
- Institution of Plant Nutrition and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinpeng Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Liang Q, Liu JN, Fang H, Dong Y, Wang C, Bao Y, Hou W, Zhou R, Ma X, Gai S, Wang L, Li S, Yang KQ, Sang YL. Genomic and transcriptomic analyses provide insights into valuable fatty acid biosynthesis and environmental adaptation of yellowhorn. FRONTIERS IN PLANT SCIENCE 2022; 13:991197. [PMID: 36147226 PMCID: PMC9486082 DOI: 10.3389/fpls.2022.991197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Yellowhorn (Xanthoceras sorbifolium) is an oil-bearing tree species growing naturally in poor soil. The kernel of yellowhorn contains valuable fatty acids like nervonic acid. However, the genetic basis underlying the biosynthesis of valued fatty acids and adaptation to harsh environments is mainly unexplored in yellowhorn. Here, we presented a haplotype-resolved chromosome-scale genome assembly of yellowhorn with the size of 490.44 Mb containing scaffold N50 of 34.27 Mb. Comparative genomics, in combination with transcriptome profiling analyses, showed that expansion of gene families like long-chain acyl-CoA synthetase and ankyrins contribute to yellowhorn fatty acid biosynthesis and defense against abiotic stresses, respectively. By integrating genomic and transcriptomic data of yellowhorn, we found that the transcription of 3-ketoacyl-CoA synthase gene XS04G00959 was consistent with the accumulation of nervonic and erucic acid biosynthesis, suggesting its critical regulatory roles in their biosynthesis. Collectively, these results enhance our understanding of the genetic basis underlying the biosynthesis of valuable fatty acids and adaptation to harsh environments in yellowhorn and provide foundations for its genetic improvement.
Collapse
Affiliation(s)
- Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wenrui Hou
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lichang Wang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shouke Li
- Worth Agricultural Development Co. Ltd., Weifang, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ya Lin Sang
- College of Forestry, Shandong Agricultural University, Tai’an, Shandong, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
14
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to Produce Tailored Chain-Length Fatty Acids and Their Derivatives. ACS Synth Biol 2022; 11:2564-2577. [DOI: 10.1021/acssynbio.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kindom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
15
|
Li Y, Kong F, Zan M, Peng L, Wang Z, Shu Q. Optimization technology and kinetic studies of Acer truncatum seed oil saponification and crystallization separation of nervonic acid. J Food Sci 2022; 87:3925-3937. [PMID: 35904249 DOI: 10.1111/1750-3841.16262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Acer truncatum seed oil (ATSO) contains abundant unsaturated fatty acids, with significant quantities of nervonic acid (NA, > 5%), which was authenticated as a new food resource in China. For the sake of minimizing animal consumption and the importance of NA for human health, extraction of NA from plants has become a research hotspot. In the present study, three extraction factors were determined to significantly influence the saponification reaction based on single-factor experiments: NaOH dosage, reaction time, and reaction temperature. These three factors were used to further optimize the saponification process through the response surface methodology, and the highest yield of mixed fatty acids was 83.12%. Moreover, the activation energy (40.8228 kJ/mol), the pre-exponential factor [2.568 × 106 m3 /(kmol·min)], and the kinetic equation [rA = kcA cB = 2.568 × 106 ·exp(- 4970 . 1 T ) $\frac{{{\rm{4970}}{\rm{.1}}}}{{\rm{T}}})$ cA cB ] of the ATSO saponification reaction were determined by combining the chemical reaction rate equation of the elementary reaction, the Arrhenius equation, and the NaOH concentration in the substrate. Finally, the mixed fatty acids of ATSO were crystallized by triple-stage low-temperature crystallization, and we achieved 25.05% purity for NA. This study provides a technological basis and strategy for specific fatty acid production from ASTO, as well as other vegetable oils important in the field of food and health supplement products. PRACTICAL APPLICATION: Nervonic acid (NA) is an essential component of neural cells and neural tissue, and it is vital for maintaining the normal work of nerve tissues in organisms and promotes neurodevelopment. NA has traditionally been mainly obtained from shark hunting, which is now restricted due to an international ban on shark fishing. The alternative way to produce NA cheaply and in large quantities is from plant sources. The techniques utilized in this study provide an effective method of NA separation from Acer truncatum seed oil for industrial production.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Fan Kong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Zan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Liping Peng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Wang P, Xiong X, Zhang X, Wu G, Liu F. A Review of Erucic Acid Production in Brassicaceae Oilseeds: Progress and Prospects for the Genetic Engineering of High and Low-Erucic Acid Rapeseeds ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2022; 13:899076. [PMID: 35645989 PMCID: PMC9131074 DOI: 10.3389/fpls.2022.899076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 06/02/2023]
Abstract
Erucic acid (C22:1, ω-9, EA) is a very-long-chain monounsaturated fatty acid (FA) that is an important oleochemical product with a wide range of uses in metallurgy, machinery, rubber, the chemical industry, and other fields because of its hydrophobicity and water resistance. EA is not easily digested and absorbed in the human body, and high-EA rapeseed (HEAR) oil often contains glucosinolates. Both glucosinolates and EA are detrimental to health and can lead to disease, which has resulted in strict guidelines by regulatory bodies on maximum EA contents in oils. Increasingly, researchers have attempted to enhance the EA content in Brassicaceae oilseeds to serve industrial applications while conversely reducing the EA content to ensure food safety. For the production of both LEAR and HEAR, biotechnology is likely to play a fundamental role. Elucidating the metabolic pathways of EA can help inform the improvement of Brassicaceae oilseeds through transgenic technology. In this paper, we introduce the industrial applications of HEAR oil and health benefits of low-EA rapeseed (LEAR) oil first, following which we review the biosynthetic pathways of EA, introduce the EA resources from plants, and focus on research related to the genetic engineering of EA in Brassicaceae oilseeds. In addition, the effects of the environment on EA production are addressed, and the safe cultivation of HEAR and LEAR is discussed. This paper supports further research into improving FAs in Brassicaceae oilseeds through transgenic technologies and molecular breeding techniques, thereby advancing the commercialization of transgenic products for better application in various fields.
Collapse
Affiliation(s)
- Pandi Wang
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Xiong
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Gang Wu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fang Liu
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
He X, Lu TQ, Li JY, Mao P, Zhang L, Zheng GW, Tian B. Germplasm resources of three wood plant species enriched with nervonic acid. PLANT DIVERSITY 2022; 44:308-315. [PMID: 35769596 PMCID: PMC9209899 DOI: 10.1016/j.pld.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/15/2023]
Abstract
Nervonic acid (NA) is a very-long-chain monounsaturated fatty acid with pharmaceutical and nutraceutical functions that plays an important role in treating several neurological disorders. One major source of NA is plant seed oil. Here we report fatty acid profiles of seeds and germplasm diversity of six plant species, including three woody plants with high amounts of NA-enriched seed oil, Malania oleifera, Macaranga adenantha, and M. indica. M. oleifera had the largest seed (average 7.40 g single seed), highest oil content (58.71%), and highest NA level (42.22%). The germplasm diversity of M. oleifera is associated with its habitat but not elevation. Seeds of M. adenantha contained higher NA levels (28.41%) than M. indica (21.77%), but M. indica contained a significantly higher oil content (29.22%) and seed yield. M. adenantha germplasm varied among populations, with one population having seeds with high oil content (22.63%) and NA level (37.78%).Although M. indica grow naturally at a range of elevations, no significant differences were detected between M. indica populations. These results suggest that M. indica and M. oleifera have greater potential as a source of NA, which will contribute to constructing a germplasm resource nursery and establishing a selection and breeding program to improve the development of NA-enriched plants.
Collapse
Affiliation(s)
- Xing He
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Quan Lu
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Ying Li
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- Xinping Branch, Yuxi Tobacco Company, Xinping, 653400, China
| | - Ping Mao
- Guangnan Forestry and Grassland Bureau, Guangnan, 663300, China
| | - Li Zhang
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wei Zheng
- Traditional Chinese Medicine College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Bo Tian
- Key Laboratory of Sustainable Utilization of Tropical Plant Resources, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| |
Collapse
|
18
|
Wang SH, Chen J, Yang W, Hua M, Ma YP. Fruiting character variability in wild individuals of Malania oleifera, a highly valued endemic species. Sci Rep 2021; 11:23605. [PMID: 34880377 PMCID: PMC8655003 DOI: 10.1038/s41598-021-03080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
Malania oleifera (Olacaceae), a tree species endemic to Southwest China, has seed oils enriched with nervonic acid and is therefore good source of this chemical. Because of this, there are promising industrial perspective in the artificial cultivation and use of this species. Understanding the variability in the fruit characters among individuals forms the basis or resource prospection. In the current investigation, fifty-three mature fruiting trees were sampled from two locations with divergent climates (Guangnan and Funing). Morphological characterization of fruits (fruit and stone weight, fruit transverse and longitudinal diameter, stone transverse and longitudinal diameter) was conducted, and the concentration of seed oil and its fatty acid composition were also analyzed in all individuals. Differences in all the morphological characters studied were more significant among individual trees than between different geographic localities, even though these had different climates. Eleven fatty acids were identified contributing between 91.39 and 96.34% of the lipids, and the major components were nervonic acid (38.93–47.24%), octadecenoic acid (26.79–32.08%), docosenoic acid (10.94–17.24%). The seed oil content (proportion of oil in seed kernel) and the proportion of nervonic acid were both higher in Funing, which has a higher average climatic temperature than Guangnan. The concentrations of nervonic acid and octadecenoic acid with the low coefficients of variation in the seed oil of M. oleifera were relatively stable in contrast to the other fatty acids. There were significant positive correlations between fruit morphological characters, but the amount of seed oil and the concentrations of its components were not correlated with any morphological character. This study provides an understanding of morphological variation in wild M. oleifera individuals. Wild individuals with excellent fruit traits could be selected and would make promising candidates for commercial cultivation.
Collapse
Affiliation(s)
- Si-Hai Wang
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China. .,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China.
| | - Jian Chen
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Wei Yang
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Mei Hua
- Yunnan Provincial Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.,Key Laboratory of the State Forestry Administration on Conservation of Rare, Endangered and Endemic Forest Plants, Kunming, 650201, China
| | - Yong-Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
19
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|