1
|
Somtrakoon K, Chouychai W. Enhancing growth and phytoremediation efficiency of Pennisetum purpureum cv. Mahasarakham in weathered PAH-contaminated soil through thidiazuron application. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2336-2347. [PMID: 39145743 DOI: 10.1080/15226514.2024.2389561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are phytotoxic, which can limit their phytoremediation. When the ability of plants to phytoremediation PAHs is compromised, the application of plant growth regulators can enhance the growth of the plants. This study aimed to determine the best plant growth regulator (1-naphthalene acetic acid, 6-benzyladenine, or thidiazuron) to enhance the phytoremediation ability of sweet grass (Pennisetum purpureum cv. Mahasarakham) when grown in weather PAH-contaminated soil. In a greenhouse study, 0.01 mg/l thidiazuron resulted in the highest growth of sweet grass when compared to the other tested plant growth regulators (dry shoot weight 24.11 ± 1.28 g and dry root weight 0.70 ± 0.02 g). Sweet grass was grown in soil contaminated with PAH, which demonstrated the toxicity to sweet grass by reducing the total chlorophyll (1.01 µg/g fresh weight) and carotenoid (0.28 µg/g fresh weight) contents with proline increased (6.63 µg/g fresh weight). Meanwhile, total chlorophyll, carotenoid, and proline content in leaves of sweet grass grown in non-contaminated soil were 1.68, 0.44, and 5.23 µg/g fresh weight, respectively. When sweet grass was used to phytoremediate PAHs, there were reductions in acenaphthylene (4.69 ± 0.50%), acenaphthene (10.69 ± 1.47%), and phenanthrene (3.61 ± 0.07%), which compared to levels of over 30% in non-planted soil. For the three PAHs, the bioconcentration factors were 1.6 to 2.4, but the translocation factors were below 1, showing limited movement to the aerial parts of the plant, thereby suggesting that the main mechanism is rhizoremediation. Sweet grass is an excellent candidate for PAH remediation, especially when thidiazuron is applied to relieve plant stress.
Collapse
Affiliation(s)
- Khanitta Somtrakoon
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand
| | - Waraporn Chouychai
- Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, Thailand
| |
Collapse
|
2
|
Liu X, Xu Y, Sun W, Wang J, Gao Y, Wang L, Xu W, Wang S, Jiu S, Zhang C. Strigolactones modulate stem length and diameter of cherry rootstocks through interaction with other hormone signaling pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1092654. [PMID: 36844087 PMCID: PMC9948674 DOI: 10.3389/fpls.2023.1092654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Stem growth and development has considerable effects on plant architecture and yield performance. Strigolactones (SLs) modulate shoot branching and root architecture in plants. However, the molecular mechanisms underlying SLs regulate cherry rootstocks stem growth and development remain unclear. Our studies showed that the synthetic SL analog rac-GR24 and the biosynthetic inhibitor TIS108 affected stem length and diameter, aboveground weight, and chlorophyll content. The stem length of cherry rootstocks following TIS108 treatment reached a maximum value of 6.97 cm, which was much higher than that following rac-GR24 treatments at 30 days after treatment. Stem paraffin section showed that SLs affected cell size. A total of 1936, 743, and 1656 differentially expressed genes (DEGs) were observed in stems treated with 10 μM rac-GR24, 0.1 μM rac-GR24, and 10 μM TIS108, respectively. RNA-seq results highlighted several DEGs, including CKX, LOG, YUCCA, AUX, and EXP, which play vital roles in stem growth and development. UPLC-3Q-MS analysis revealed that SL analogs and inhibitors affected the levels of several hormones in the stems. The endogenous GA3 content of stems increased significantly with 0.1 μM rac-GR24 or 10 μM TIS108 treatment, which is consistent with changes in the stem length following the same treatments. This study demonstrated that SLs affected stem growth of cherry rootstocks by changing other endogenous hormone levels. These results provide a solid theoretical basis for using SLs to modulate plant height and achieve sweet cherry dwarfing and high-density cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songtao Jiu
- *Correspondence: Songtao Jiu, ; Caixi Zhang,
| | - Caixi Zhang
- *Correspondence: Songtao Jiu, ; Caixi Zhang,
| |
Collapse
|
3
|
Zhai L, Xie L, Xu J, Xu B, Dong J, Zhang X. Study on exogenous application of thidiazuron on seed size of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2022; 13:998698. [PMID: 36147221 PMCID: PMC9486165 DOI: 10.3389/fpls.2022.998698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Thidiazuron (TDZ) is a novel and efficient cytokinin commonly used in tissue culture, and numerous studies have demonstrated that TDZ can increase berry size. However, no study to date has explored the effect of TDZ on seed size of Brassica napus and the mechanism. To shed light on the effect of TDZ on the seed size of B. napus, four different concentrations of TDZ were applied to B. napus. Results indicated that TDZ treatment could increase the seed diameter and silique length of B. napus to varying degrees and 100 and 200 μmol/L TDZ treatments were the most effective with a 3.6 and 4.6% increase in seed diameter, respectively. In addition, the yield of B. napus was also substantially increased under TDZ treatment. On the other hand, confocal micrographs of embryos and cotyledon cells suggested that embryos and their cotyledon epidermal cells treated with 200 μmol/L TDZ were obviously larger in size than the control. Furthermore, TDZ promoted the upregulation of some key maternal tissue growth-related genes, including two G-protein signaling genes (AGG3 and RGA1) and two transcriptional regulators (ANT and GS2). The expression analysis of genes related to the auxin metabolic pathways, G-protein signaling, endosperm growth and transcriptional regulators confirmed that treatment with TDZ negatively regulated the key genes ABI5, AGB1, AP2, ARF2, and ARF18 during bud development stage and florescence. The results strongly suggested that TDZ might regulate the transcriptional levels of key genes involved in auxin metabolic pathways, G-protein signaling, endosperm growth and transcriptional regulators, which resulted in bigger cotyledon epidermal cells and seed size in B. napus. This study explored the mechanism of TDZ treatment on the seed size of B. napus and provided an important reference for improving rapeseed yield.
Collapse
Affiliation(s)
- Lu Zhai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - Lingli Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - JinSong Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Agriculture, Yangtze University, Hubei, China
| | - Benbo Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Life Science, Yangtze University, Hubei, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, China
| | - XueKun Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, China
- College of Agriculture, Yangtze University, Hubei, China
| |
Collapse
|
4
|
Catalano A, Ceramella J, Iacopetta D, Mariconda A, Scali E, Bonomo MG, Saturnino C, Longo P, Aquaro S, Sinicropi MS. Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees. Antibiotics (Basel) 2022; 11:947. [PMID: 35884201 PMCID: PMC9312276 DOI: 10.3390/antibiotics11070947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| |
Collapse
|
5
|
Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis. FORESTS 2022. [DOI: 10.3390/f13050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Populus ussuriensis is an important tree species with high economic and ecologic values. However, traditional sexual propagation is time-consuming and inefficient, challenging afforestation and wood production using P. ussuriensis, and requires a rapid and efficient regeneration system. The present study established a rapid, efficient, and stable shoot regeneration method from root explants in P. ussuriensis using several plant growth regulators. Most shoot buds (15.2 per explant) were induced at high efficiency under WPM medium supplemented with 221.98 μM 6-BA, 147.61 μM IBA, and 4.54 μM TDZ within two weeks. The shoot buds were further multiplicated and elongated under WPM medium supplemented with 221.98 μM 6-BA, 147.61 μM IBA, and 57.74 μM GA3 for four weeks. The average number and efficiency of elongation of multiplication and elongation for induced shoot buds were 75.2 and 78%, respectively. All the shoots were rooted within a week and none of them showed abnormality in rooting. The time spent for the entire regeneration of this direct shoot organogenesis was seven weeks, much shorter than conventional indirect organogenesis with the callus induction phase, and no abnormal growth was observed. This novel regeneration system will not only promote the massive propagation, but also accelerate the genetic engineering studies for trait improvement of P. ussuriensis species.
Collapse
|
6
|
Yang H, Yang Y, Wang Q, He J, Liang L, Qiu H, Wang Y, Zou L. Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida 'Isa's Murmur'. PLANTS (BASEL, SWITZERLAND) 2022; 11:1232. [PMID: 35567233 PMCID: PMC9100124 DOI: 10.3390/plants11091232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022]
Abstract
As a valuable ornamental plant, Sinningia hybrida 'Isa's Murmur' (S. hybrida) has genetic flower diversity, which has great potential to develop different flower characters in the horticultural market. The present study focuses on establishing a practical approach for the sustainable propagation of S. hybrida. Compared with aseptic seeding leaves explants, field-grown leaves explants are more suitable for adventitious shoot regeneration. Adding 0.1 mg L-1 NAA and 2.0 mg L-1 TDZ could obtain the highest adventitious shoot proliferation coefficient (24.5), and the induction rate was 91.7%. The shoot proliferation coefficient (20.7) and the greatest shoot length and induction rate (95.3%) were achieved in 0.1 mg L-1 NAA and 2.0 mg L-1 BA medium, accompanied by rooting formation. Adding 0.5 mg L-1 GA3, 1.0 mg L-1 BA, and 0.2 mg L-1 IBA to MS medium can effectively prolong the regenerated buds for rooting. The best for rooting was 1/2 MS medium containing 0.3 mg L-1 IBA, with the maximum number of roots (13.4 per shoot) and survival rate for transplanting (100%). This work aims to build an efficient, definitive, and scalable protocol for S. hybrida regeneration useful for large-scale cultivation and even more protoplast fusion and genetic transformation to develop more colorful or fragrant flowers.
Collapse
Affiliation(s)
- Honglin Yang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (H.Y.); (Q.W.); (L.L.); (H.Q.); (Y.W.)
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China;
| | - Qiang Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (H.Y.); (Q.W.); (L.L.); (H.Q.); (Y.W.)
| | - Jinyu He
- College of Life Sciences, China West Normal University, Nanchong 637009, China;
| | - Liyun Liang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (H.Y.); (Q.W.); (L.L.); (H.Q.); (Y.W.)
| | - Hui Qiu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (H.Y.); (Q.W.); (L.L.); (H.Q.); (Y.W.)
| | - Yue Wang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (H.Y.); (Q.W.); (L.L.); (H.Q.); (Y.W.)
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (H.Y.); (Q.W.); (L.L.); (H.Q.); (Y.W.)
| |
Collapse
|