1
|
Ruiz-Bayón A, Cara-Rodríguez C, Sarmiento-Mañús R, Muñoz-Viana R, Lozano FM, Ponce MR, Micol JL. Roles of the Arabidopsis KEULE Gene in Postembryonic Development. Int J Mol Sci 2024; 25:6667. [PMID: 38928373 PMCID: PMC11204279 DOI: 10.3390/ijms25126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by trans-SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate. Due to the crucial function of KEULE, all Arabidopsis (Arabidopsis thaliana) keule mutants identified to date are seedling lethal. Here, we identified the Arabidopsis serrata4-1 (sea4-1) and sea4-2 mutants, which carry recessive, hypomorphic alleles of KEULE. Homozygous sea4-1 and sea4-2 plants are viable and fertile but have smaller rosettes and fewer leaves at bolting than the wild type. Their leaves are serrated, small, and wavy, with a complex venation pattern. The mutant leaves also develop necrotic patches and undergo premature senescence. RNA-seq revealed transcriptome changes likely leading to reduced cell wall integrity and an increase in the unfolded protein response. These findings shed light on the roles of KEULE in postembryonic development, particularly in the patterning of rosette leaves and leaf margins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain; (A.R.-B.); (C.C.-R.); (R.S.-M.); (R.M.-V.); (F.M.L.); (M.R.P.)
| |
Collapse
|
2
|
Lup SD, Navarro-Quiles C, Micol JL. Versatile mapping-by-sequencing with Easymap v.2. FRONTIERS IN PLANT SCIENCE 2023; 14:1042913. [PMID: 36778692 PMCID: PMC9909543 DOI: 10.3389/fpls.2023.1042913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Mapping-by-sequencing combines Next Generation Sequencing (NGS) with classical genetic mapping by linkage analysis to establish gene-to-phenotype relationships. Although numerous tools have been developed to analyze NGS datasets, only a few are available for mapping-by-sequencing. One such tool is Easymap, a versatile, easy-to-use package that performs automated mapping of point mutations and large DNA insertions. Here, we describe Easymap v.2, which also maps small insertion/deletions (InDels), and includes workflows to perform QTL-seq and variant density mapping analyses. Each mapping workflow can accommodate different experimental designs, including outcrossing and backcrossing, F2, M2, and M3 mapping populations, chemically induced mutation and natural variant mapping, input files containing single-end or paired-end reads of genomic or complementary DNA sequences, and alternative control sample files in FASTQ and VCF formats. Easymap v.2 can also be used as a variant analyzer in the absence of a mapping algorithm and includes a multi-threading option.
Collapse
|
3
|
Antoniadi I, Mateo-Bonmatí E, Pernisová M, Brunoni F, Antoniadi M, Villalonga MGA, Ament A, Karády M, Turnbull C, Doležal K, Pěnčík A, Ljung K, Novák O. IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth. FRONTIERS IN PLANT SCIENCE 2022; 13:932008. [PMID: 36311087 PMCID: PMC9616112 DOI: 10.3389/fpls.2022.932008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 06/12/2023]
Abstract
Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule. Multiple mutant lines, blocking specific parts of cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on root growth, the ipt29 double mutant instead surprisingly exhibits reduced primary root length compared to the wild type. This mutant is impaired in cis-zeatin (cZ) production, a cytokinin-type that had been considered inactive in the past. Here we have further investigated the intriguing ipt29 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data suggest that despite the ipt29 short-root phenotype, cZ application has a negative impact on primary root growth and can activate a cytokinin response in the stele. Grafting experiments revealed that the root phenotype of ipt29 depends mainly on local signaling which does not relate directly to cytokinin levels. Notably, ipt29 displayed increased auxin levels in the root tissue. Moreover, analyses of the differential contributions of ipt2 and ipt9 to the ipt29 short-root phenotype demonstrated that, despite its deficiency on cZ levels, ipt2 does not show any root phenotype or auxin homeostasis variation, while ipt9 mutants were indistinguishable from ipt29. We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating effects on auxin homeostasis and therefore influencing plant growth.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eduardo Mateo-Bonmatí
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Markéta Pernisová
- Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), and NCBR, Faculty of Science, Masaryk University, Brno, Czechia
| | - Federica Brunoni
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Mariana Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Anita Ament
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michal Karády
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
4
|
Poethig RS, Cullina WL, Doody E, Floyd T, Fouracre JP, Hu T, Xu M, Zhao J. Short-interval traffic lines: versatile tools for genetic analysis in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2022; 12:6677228. [PMID: 36018241 PMCID: PMC9526051 DOI: 10.1093/g3journal/jkac202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022]
Abstract
Traffic lines are transgenic stocks of Arabidopsis thaliana that contain a pair of linked seed-specific eGFP and DsRed markers. These stocks were originally developed for the purpose of studying recombination, but can also be used to follow the inheritance of unmarked chromosomes placed in trans to the marked chromosome. They are particularly useful for this latter purpose if the distance between markers is short, making double recombination within this interval relatively rare. We generated 163 traffic lines that cover the Arabidopsis genome in overlapping intervals of approximately 1.2 Mb (6.9 cM). These stocks make it possible to predict the genotype of a plant based on its seed fluorescence (or lack thereof) and facilitate many experiments in genetic analysis that are difficult, tedious, or expensive to perform using current techniques. Here, we show how these lines enable a phenotypic analysis of alleles with weak or variable phenotypes, genetic mapping of novel mutations, introducing transgenes into a lethal or sterile genetic background, and separating closely linked mutations.
Collapse
Affiliation(s)
- R Scott Poethig
- Corresponding author: Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA.
| | - William L Cullina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Erin Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Taré Floyd
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA,Department of Biological Sciences, University of South Carolina, Charlottesville, SC 29208, USA
| | - Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
5
|
Casanova‐Sáez R, Mateo‐Bonmatí E, Šimura J, Pěnčík A, Novák O, Staswick P, Ljung K. Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. THE NEW PHYTOLOGIST 2022; 235:263-275. [PMID: 35322877 PMCID: PMC9322293 DOI: 10.1111/nph.18114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.
Collapse
Affiliation(s)
- Rubén Casanova‐Sáez
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Eduardo Mateo‐Bonmatí
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Jan Šimura
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Aleš Pěnčík
- Laboratory of Growth RegulatorsFaculty of SciencePalacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27OlomoucCzech Republic
| | - Ondřej Novák
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
- Laboratory of Growth RegulatorsFaculty of SciencePalacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27OlomoucCzech Republic
| | - Paul Staswick
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | - Karin Ljung
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| |
Collapse
|
6
|
Lup SD, Wilson-Sánchez D, Micol JL. Mapping-by-Sequencing of Point and Insertional Mutations with Easymap. Methods Mol Biol 2022; 2484:343-361. [PMID: 35461462 DOI: 10.1007/978-1-0716-2253-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Random mutagenesis followed by screening for phenotypes of interest is a widely used strategy for genetic dissection of biological pathways; however, identifying the causal gene traditionally required time-consuming mapping approaches based on iterative linkage analysis. Mapping-by-sequencing accelerates this process, efficiently linking the phenotype of a mutant to a narrow candidate genomic region, using next-generation sequencing (NGS) data from a mapping population segregating for the mutant phenotype. To enable researchers at any bioinformatics skill level to conduct mapping-by-sequencing, we developed the Easymap mapping software. In this protocol we break down the steps involved in mapping-by-sequencing. First, we describe different ways of obtaining a mapping population and the steps used to generate NGS data. Next, we show how to analyze the NGS data using Easymap and how to obtain a list of candidate mutations, along with comprehensive information for assessing the potential causality of each candidate. Thus, this protocol enables the user to conduct mapping-by-sequencing using Easymap, facilitating the identification of causal loci for a mutant phenotype of interest.
Collapse
Affiliation(s)
- Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain.
| |
Collapse
|