1
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. Transcriptome Analysis Reveals Sugar and Hormone Signaling Pathways Mediating Flower Induction in Pitaya ( Hylocereus polyrhizus). Int J Mol Sci 2025; 26:1250. [PMID: 39941017 PMCID: PMC11818635 DOI: 10.3390/ijms26031250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Flower induction in pitaya (Hylocereus polyrhizus) is regulated by complex gene networks involving multiple signaling pathways that ensure flower bud (FB) formation, but its molecular determinants remain largely unknown. In this study, we aimed to identify key genes and pathways involved in pitaya flower induction by analyzing transcriptomics profiles from differentiating buds. Our results indicate that the flower induction process is driven by a combination of sugar, hormone, transcription factor (TF), and flowering-related genes. We found that during the FB induction period, the levels of sugar, starch, auxin (AUX), cytokinin (CTK) active forms dihydrozeatin riboside (dhZR), zeatin riboside (ZR), N6-isopentenyladenosine (iPA), and brassinosteroid (BR) increase in the late stage (LS), while active gibberellins (GA3, GA4) decrease, signaling a metabolic and hormonal shift essential for flowering. Differential gene expression analysis identified key genes involved in starch and sugar metabolism, AUX, CTK, BR synthesis, and (GA) degradation, with notable differential expression in photoperiod (COL, CDF, TCP), age-related (SPL), and key flowering pathways (FT, FTIP, AGL, SOC1). This study reveals a multidimensional regulatory network for FB formation in pitaya, primarily mediated by the crosstalk between sugar and hormone signaling pathways, providing new insights into the molecular mechanism of FB formation in pitaya.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (K.S.); (X.Z.); (J.C.); (J.C.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus). BMC PLANT BIOLOGY 2025; 25:47. [PMID: 39800709 PMCID: PMC11726943 DOI: 10.1186/s12870-024-05880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya. Our findings reveal that GA3 application induces significant bud dormancy and suppresses FB formation, highlighting GA3's role in modulating flowering in this species. RESULTS GA3 application during peak flowering period significantly altered hormone levels, reducing auxin (AUX), cytokinin (CTK) active forms dihydrozeatin riboside (dhZR), zeatin riboside (ZR), N6-isopentenyladenosine (iPA), and brassinosteroid (BR), while increasing jasmonic acid (JA), GA3, and gibberellin-4 (GA4) levels, with abscisic acid (ABA) levels remaining unchanged compared to control. Conversely, FB formation was associated with increased levels of AUX, dhZR, ZR, iPA, ABA, and JA, and decreased GA3 and GA4 levels. Transcriptomic analysis revealed batches of differentially expressed genes (DEGs) associated with phytohormone signal transduction, aligning with observed hormone changes. Notably, except four CONSTANS-like (CO) (HU06G02633, HU10G00019, HU04G00234, and HU02G01458), all other CO genes were preferentially active in GA3-treated buds. GA3 treatment inhibited genes linked to the ABC model (AP1, AP2, MADS-box, AGL, SPL) and floral identity genes (LFY, FT), favoring dormancy and clean sweep of FB formation. CONCLUSION These findings underscore the potential of GA3 as a powerful modulator of flowering and bud dormancy in pitaya. By elucidating the hormonal and genetic responses to GA3 treatment, this study contributes to our understanding of flowering regulation in pitaya and highlights the significant impact of GA3 on bud developmental pathways.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Arvanitidou C, Ramos-González M, Romero-Losada AB, García-Gómez ME, García-González M, Romero-Campero FJ. Transcriptomic characterization of the response to a microalgae extract in Arabidopsis thaliana and Solanum lycopersicum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5789-5798. [PMID: 38436436 DOI: 10.1002/jsfa.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/02/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The steady world population growth and the current climate emergency crisis demand the development of sustainable methods to increase crop performance and resilience to the abiotic and biotic stresses produced by global warming. Microalgal extracts are being established as sustainable sources to produce compounds that improve agricultural yield, concurrently contributing during their production process to atmospheric CO2 abatement through the photosynthetic activity of microalgae. RESULTS In the present study, we characterize the transcriptomic response in the model plant Arabidopsis thaliana and the plant of horticultural interest Solanum lycopersicum to the foliar application of a microalgae-based commercial preparation LRM™ (AlgaEnergy, Madrid, Spain). The foliar spray of LRM™ has a substantial effect over both transcriptomes potentially mediated by various compounds within LRM™, including its phytohormone content, activating systemic acquired resistance, possibly mediated by salicylic acid biosynthetic processes, and drought/heat acclimatization, induced by stomatal control and wax accumulation during cuticle development. Specifically, the agronomic improvements observed in treated S. lycopersicum (tomato) plants include an increase in the number of fruits, an acceleration in flowering time and the provision of higher drought resistance. The effect of LRM™ foliar spray in juvenile and adult plants was similar, producing a fast response detectable 2 h from its application that was also maintained 24 h later. CONCLUSION The present study improves our knowledge on the transcriptomic effect of a novel microalgal extract on crops and provides the first step towards a full understanding of the yield and resistance improvement of crops. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christina Arvanitidou
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Marcos Ramos-González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Ana B Romero-Losada
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - M Elena García-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Mercedes García-González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Francisco J Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
4
|
Wang J, Wang J, Li Y, Lv Y, Zhao J, Li H, Zhang B, Zhang M, Tian J, Li X, Xing L. Epigenomic mechanism regulating the quality and ripeness of apple fruit with differing harvest maturity. PHYSIOLOGIA PLANTARUM 2024; 176:e14278. [PMID: 38644530 DOI: 10.1111/ppl.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 04/23/2024]
Abstract
Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.
Collapse
Affiliation(s)
- Jing Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiahe Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yu Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yongqian Lv
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Jianwen Tian
- Ningxia Academy of Agriculture and Forestry, Yinchuan, China
| | - Xiaolong Li
- Ningxia Academy of Agriculture and Forestry, Yinchuan, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
5
|
Guerrero C, Cerezo S, Feito I, Rodríguez L, Samach A, Mercado JA, Pliego-Alfaro F, Palomo-Ríos E. Effect of heterologous expression of FT gene from Medicago truncatula in growth and flowering behavior of olive plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1323087. [PMID: 38455727 PMCID: PMC10917891 DOI: 10.3389/fpls.2024.1323087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Olive (Olea europaea L. subsp. europaea) is one of the most important crops of the Mediterranean Basin and temperate areas worldwide. Obtaining new olive varieties adapted to climatic changing conditions and to modern agricultural practices, as well as other traits such as biotic and abiotic stress resistance and increased oil quality, is currently required; however, the long juvenile phase, as in most woody plants, is the bottleneck in olive breeding programs. Overexpression of genes encoding the 'florigen' Flowering Locus T (FT), can cause the loss of the juvenile phase in many perennials including olives. In this investigation, further characterization of three transgenic olive lines containing an FT encoding gene from Medicago truncatula, MtFTa1, under the 35S CaMV promoter, was carried out. While all three lines flowered under in vitro conditions, one of the lines stopped flowering after acclimatisation. In soil, all three lines exhibited a modified plant architecture; e.g., a continuous branching behaviour and a dwarfing growth habit. Gene expression and hormone content in shoot tips, containing the meristems from which this phenotype emerged, were examined. Higher levels of OeTFL1, a gene encoding the flowering repressor TERMINAL FLOWER 1, correlated with lack of flowering. The branching phenotype correlated with higher content of salicylic acid, indole-3-acetic acid and isopentenyl adenosine, and lower content of abscisic acid. The results obtained confirm that heterologous expression of MtFTa1 in olive induced continuous flowering independently of environmental factors, but also modified plant architecture. These phenotypical changes could be related to the altered hormonal content in transgenic plants.
Collapse
Affiliation(s)
- Consuelo Guerrero
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Sergio Cerezo
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Isabel Feito
- Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias, Finca Experimental “La Mata”, Grado, Spain
| | - Lucía Rodríguez
- Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias, Finca Experimental “La Mata”, Grado, Spain
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José A. Mercado
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| | - Elena Palomo-Ríos
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Spanish National Research Council (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
6
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:954693. [PMID: 36479508 PMCID: PMC9720737 DOI: 10.3389/fpls.2022.954693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Piriformospora indica, the mutualistic biotrophic root colonizing endosymbiotic fungus belonging to the order Sebacinales, offers host plants various benefits and enhances its growth and performance. The effect of colonization of P. indica in Piper nigrum L. cv. Panniyur1 on growth advantages, floral induction and evocation was investigated. Growth and yield benefits are credited to the alteration in the phytohormone levels fine-tuned by plants in response to the fungal colonization and perpetuation. The remarkable upregulation in the phytohormone levels, as estimated by LC- MS/MS and quantified by qRT-PCR, revealed the effectual contribution by the endophyte. qRT-PCR results revealed a significant shift in the expression of putative flowering regulatory genes in the photoperiod induction pathway (FLOWERING LOCUS T, LEAFY, APETALA1, AGAMOUS, SUPPRESSOR OF CONSTANS 1, GIGANTEA, PHYTOCHROMEA, and CRYPTOCHROME1) gibberellin biosynthetic pathway genes (GIBBERELLIN 20-OXIDASE2, GIBBERELLIN 2-OXIDASE, DELLA PROTEIN REPRESSOR OF GA1-3 1) autonomous (FLOWERING LOCUS C, FLOWERING LOCUS VE, FLOWERING LOCUS CA), and age pathway (SQUAMOSA PROMOTER LIKE9, APETALA2). The endophytic colonization had no effect on vernalization (FLOWERING LOCUS C) or biotic stress pathways (SALICYLIC ACID INDUCTION DEFICIENT 2, WRKY family transcription factor 22). The data suggest that P. nigrum responds positively to P. indica colonization, affecting preponement in floral induction as well as evocation, and thereby shortening the juvenile phase of the crop.
Collapse
Affiliation(s)
- R. S. Lekshmi
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S. Sora
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - E. V. Soniya
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Tahir MM, Tong L, Fan L, Liu Z, Li S, Zhang X, Li K, Shao Y, Zhang D, Mao J. Insights into the complicated networks contribute to adventitious rooting in transgenic MdWOX11 apple microshoots under nitrate treatments. PLANT, CELL & ENVIRONMENT 2022; 45:3134-3156. [PMID: 35902247 DOI: 10.1111/pce.14409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root formation is a bottleneck for the mass propagation of microshoots, and nitrate is an essential nutrient regulating adventitious roots. WOX11 is involved in adventitious rooting. But the crosstalk between nitrate and WOX11 is completely unknown. In this study, MdWOX11 transgenic apple microshoots were grown on different nitrate treatments. Low nitrate promotes adventitious rooting in overexpressed microshoots more than wild type and RNA interference microshoots. In contrast, medium nitrate significantly inhibits it in overexpressed and RNA interference microshoots compared with wild type microshoots. Stem anatomy indicated that medium nitrate delays root primordia formation compared with low nitrate. Methyl jasmonate and zeatin riboside played positive and negative roles in adventitious rooting, respectively. Transcriptomic analysis was conducted to understand the molecular mechanisms behind the phenotypes better. Hormone signalling, sugar metabolism, nitrogen metabolism, cell cycle and root development pathway-related genes were selected for their potential involvement in adventitious rooting. Results suggest that nitrogen signaling and MdWOX11 expression affect cytokinin accumulation and response to cytokinin through regulating the expression of genes related to cytokinin synthesis and transduction pathways, which ultimately affect adventitious rooting. This study provided important insights into the complicated networks involved in adventitious rooting in transgenic microshoots under nitrate treatments.
Collapse
Affiliation(s)
- Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Lu Tong
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Xiaoyun Zhang
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
- Agricultural College, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Ke Li
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Yun Shao
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of the National Center for Apple Improvement, Northwest A & F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
8
|
Khan FS, Gan ZM, Li EQ, Ren MK, Hu CG, Zhang JZ. Transcriptomic and physiological analysis reveals interplay between salicylic acid and drought stress in citrus tree floral initiation. PLANTA 2021; 255:24. [PMID: 34928452 DOI: 10.1007/s00425-021-03801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and drought stress promote more flowering in sweet orange. The physiological response and molecular mechanism underlying stress-induced floral initiation were discovered by transcriptome profiling. Numerous flowering-regulated genes were identified, and ectopically expressed CsLIP2A promotes early flowering in Arabidopsis. Floral initiation is a critical developmental mechanism associated with external factors, and citrus flowering is mainly regulated by drought stress. However, little is known about the intricate regulatory network involved in stress-induced flowering in citrus. To understand the molecular mechanism of floral initiation in citrus, flower induction was performed on potted Citrus sinensis trees under the combined treatment of salicylic acid (SA) and drought (DR). Physiological analysis revealed that SA treatment significantly normalized the drastic effect of drought stress by increasing antioxidant enzyme activities (SOD, POD, and CAT), relative leaf water content, total chlorophyll, and proline contents and promoting more flowering than drought treatment. Analysis of transcriptome changes in leaves from different treatments showed that 1135, 2728 and 957 differentially expressed genes (DEGs) were revealed in response to DR, SD (SA + DR), and SA (SA + well water) treatments in comparison with the well watered plants, respectively. A total of 2415, 2318 and 1933 DEGs were expressed in DR, SD, and SA in comparison with water recovery, respectively. Some key flowering genes were more highly expressed in SA-treated drought plants than in DR-treated plants. GO enrichment revealed that SA treatment enhances the regulation and growth of meristem activity under drought conditions, but no such a pathway was found to be highly enriched in the control. Furthermore, we focused on various hormones, sugars, starch metabolism, and biosynthesis-related genes. The KEGG analysis demonstrated that DEGs enriched in starch sucrose metabolism and hormonal signal transduction pathways probably account for stress-induced floral initiation in citrus. In addition, a citrus LIPOYLTRANSFERSAE 2A homologous (LIP2A) gene was upregulated by SD treatment. Ectopic expression of CsLIP2A exhibited early flowering in transgenic Arabidopsis. Taken together, this study provides new insight that contributes to citrus tree floral initiation under the SA-drought scenario as well as an excellent reference for stress-induced floral initiation in woody trees.
Collapse
Affiliation(s)
- Faiza Shafique Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - En-Qing Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Ke Ren
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|