1
|
Luo Y, Nan L. Genome-wide identification of high-affinity nitrate transporter 2 (NRT2) gene family under phytohormones and abiotic stresses in alfalfa (Medicago sativa). Sci Rep 2024; 14:31920. [PMID: 39738449 DOI: 10.1038/s41598-024-83438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
The high-affinity nitrate transporter 2 (NRT2) protein plays an important role in nitrate uptake and transport in plants. In this study, the NRT2s gene family were systematically analyzed in alfalfa. We identified three MsNRT2 genes from the genomic database. They were named MsNRT2.1-2.3 based on their chromosomal location. The phylogenetic tree revealed that NRT2 proteins were categorized into two main subgroups, which were further confirmed by their gene structure and conserved motifs. Three MsNRT2 genes distributed on 2 chromosomes. Furthermore, we studied the expression patterns of MsNRT2 genes in six tissues based on RNA-sequencing data from the Short Read Archive (SRA) database of NCBI, and the results showed that MsNRT2 genes were widely expressed in six tissues. After leaves and roots were treated with drought, salt, abscisic acid (ABA) and salicylic acid (SA) for 0-48 h, and we used quantitative RT-PCR to analyze the expression levels of MsNRT2 genes and the results showed that most of the MsNRT2 genes responded to these stresses. However, there are specific genes that play a role under specific treatment conditions. This result provides a basis for further research on the target genes. In summary, MsNRT2s play an irreplaceable role in the growth, development and stress response of alfalfa, and this study provides valuable information and theoretical basis for future research on MsNRT2 function.
Collapse
Affiliation(s)
- Yanyan Luo
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Lili Nan
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
2
|
Tian Y, Jiang R, Qin J. Genome-Wide Identification and Expression Analysis of PaNRT Gene Family Under Various Nitrogen Conditions in Avocado ( Persea americana Mill.). Genes (Basel) 2024; 15:1600. [PMID: 39766867 PMCID: PMC11675230 DOI: 10.3390/genes15121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Avocado is an important economic fruit tree that requires a lot of nitrogen (N) to support growth and development. Nitrate transporter (NRT) gene family plays an essential role in N uptake and use in plants. However, no systematic identification of the NRT gene family has been reported in avocado. Methods: Bioinformatic analysis was used to identify and characterize the NRT gene family in avocado. The five N additions (29.75, 59.50, 119.00, 178.50, and 238.00 mg/L N) were used to identify the N requirement of avocado seedlings based on physiological indexes, while RNA-seq was conducted to analyze the response of PaNRTs under low-N and high-N conditions. Results: Sixty-one members of the NRT gene family were identified and dispersed on 12 chromosomes in avocado. Many cis-regulatory elements (CREs) related to phytohormonal and stress response were found in the PaNRTs promoter regions. The avocado leaves in N3 have the highest activities of N-assimilating enzymes and N content as well as the lowest activities of antioxidant enzymes. Thus, 29.75 mg/L and 119.00 mg/L were chosen as low-N supply and normal-N supply for transcriptome analysis. The transcriptome analysis showed that PaNRT1.11, PaNRT1.22, PaNRT1.32, PaNRT1.33, PaNRT1.38, and PaNRT1.52 and PaNRT1.56 among PaNRT1 members were up-regulated under normal-N condition in the leaves or roots, suggesting that these genes might affect N absorption under nitrate-sufficient conditions in avocado. RT-qPCR analysis found the relative expression patterns of selected genes among four samples were consistent with transcriptome data, suggesting that transcriptome data were reliable. Conclusions: This study would provide valuable information for identifying the functions of the NRT gene family in avocado.
Collapse
Affiliation(s)
- Yuan Tian
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China;
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| | - Ruiyuan Jiang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China;
| | - Jian Qin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China
| |
Collapse
|
3
|
Li G, Yang D, Hu Y, Xu J, Lu Z. Genome-Wide Identification and Expression Analysis of Nitrate Transporter (NRT) Gene Family in Eucalyptus grandis. Genes (Basel) 2024; 15:930. [PMID: 39062710 PMCID: PMC11275818 DOI: 10.3390/genes15070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Eucalyptus grandis is an important planted hardwood tree worldwide with fast growth and good wood performance. The nitrate transporter (NRT) gene family is a major core involved in nitrogen (N) absorption and utilization in plants, but the comprehensive characterization of NRT genes in E. grandis remains mostly elusive. In this study, a total of 75 EgNRT genes were identified from the genome of E. grandis that were distributed unevenly across ten chromosomes, except Chr9. A phylogenetic analysis showed that the EgNRT proteins could be divided into three classes, namely NRT1, NRT2 and NRT3, which contained 69, 4 and 2 members, respectively. The cis-regulatory elements in the promoter regions of EgNRT genes were mainly involved in phytohormone and stress response. The transcriptome analysis indicated that the differentially expressed genes of leaf and root in E. grandis under different N supply conditions were mainly involved in the metabolic process and plant hormone signal transduction. In addition, the transcriptome-based and RT-qPCR analysis revealed that the expression of 13 EgNRT genes, especially EgNRT1.3, EgNRT1.38, EgNRT1.39 and EgNRT1.52, was significantly upregulated in the root under low-N-supply treatment, suggesting that those genes might play a critical role in root response to nitrate deficiency. Taken together, these results would provide valuable information for characterizing the roles of EgNRTs and facilitate the clarification of the molecular mechanism underlying EgNRT-mediated N absorption and distribution in E. grandis.
Collapse
Affiliation(s)
- Guangyou Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| | - Deming Yang
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| | - Yang Hu
- Xinhui Research Institute of Forestry Science, Jiangmen 529100, China;
| | - Jianmin Xu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| | - Zhaohua Lu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (G.L.); (D.Y.); (J.X.)
| |
Collapse
|
4
|
Xu Q, Wang Y, Sun W, Li Y, Xu Y, Cheng B, Li X. Genome-wide identification of nitrate transporter 1/peptide transporter family ( NPF) induced by arbuscular mycorrhiza in the maize genome. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:757-774. [PMID: 38846454 PMCID: PMC11150374 DOI: 10.1007/s12298-024-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The Transporter 1/Peptide Transporter Family (NPF) is essential for the uptake and transport of nitrate nitrogen. Significant increases in nitrogen have been increasingly reported for many mycorrhizal plants, but there are few reports on maize. Here, we have identified the maize NPF family and screened for arbuscular mycorrhiza fungi (AMF) induced NPFs. In this study, a systematic analysis of the maize NPF gene family was performed. A total of 82 NPF genes were identified in maize. ZmNPF4.5 was strongly induced by AMF in both low and high nitrogen. Lotus japonicus hairy root-induced transformation experiments showed that ZmNPF4.5 promoter-driven GUS activity was restricted to cells containing tufts. Yeast backfill experiments indicate that ZmNPF4.5 functions in nitrate uptake. Therefore, we speculate that ZmNPF4.5 is a key gene for nitrate-nitrogen uptake in maize through the mycorrhizal pathway. This is a reference value for further exploring the acquisition of nitrate-nitrogen by maize through AMF pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01464-3.
Collapse
Affiliation(s)
- Qiang Xu
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yanping Wang
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Wen Sun
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yuanhao Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Wang D, Quan M, Qin S, Fang Y, Xiao L, Qi W, Jiang Y, Zhou J, Gu M, Guan Y, Du Q, Liu Q, El‐Kassaby YA, Zhang D. Allelic variations of WAK106-E2Fa-DPb1-UGT74E2 module regulate fibre properties in Populus tomentosa. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:970-986. [PMID: 37988335 PMCID: PMC10955495 DOI: 10.1111/pbi.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Wood formation, intricately linked to the carbohydrate metabolism pathway, underpins the capacity of trees to produce renewable resources and offer vital ecosystem services. Despite their importance, the genetic regulatory mechanisms governing wood fibre properties in woody plants remain enigmatic. In this study, we identified a pivotal module comprising 158 high-priority core genes implicated in wood formation, drawing upon tissue-specific gene expression profiles from 22 Populus samples. Initially, we conducted a module-based association study in a natural population of 435 Populus tomentosa, pinpointing PtoDPb1 as the key gene contributing to wood formation through the carbohydrate metabolic pathway. Overexpressing PtoDPb1 led to a 52.91% surge in cellulose content, a reduction of 14.34% in fibre length, and an increment of 38.21% in fibre width in transgenic poplar. Moreover, by integrating co-expression patterns, RNA-sequencing analysis, and expression quantitative trait nucleotide (eQTN) mapping, we identified a PtoDPb1-mediated genetic module of PtoWAK106-PtoDPb1-PtoE2Fa-PtoUGT74E2 responsible for fibre properties in Populus. Additionally, we discovered the two PtoDPb1 haplotypes that influenced protein interaction efficiency between PtoE2Fa-PtoDPb1 and PtoDPb1-PtoWAK106, respectively. The transcriptional activation activity of the PtoE2Fa-PtoDPb1 haplotype-1 complex on the promoter of PtoUGT74E2 surpassed that of the PtoE2Fa-PtoDPb1 haplotype-2 complex. Taken together, our findings provide novel insights into the regulatory mechanisms of fibre properties in Populus, orchestrated by PtoDPb1, and offer a practical module for expediting genetic breeding in woody plants via molecular design.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shitong Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weina Qi
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yongsen Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyue Gu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yicen Guan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qing Liu
- CSIRO Agriculture and FoodBlack MountainCanberraACTAustralia
| | - Yousry A. El‐Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences CentreUniversity of British ColumbiaVancouverBCCanada
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
6
|
Nestor BJ, Bayer PE, Fernandez CGT, Edwards D, Finnegan PM. Approaches to increase the validity of gene family identification using manual homology search tools. Genetica 2023; 151:325-338. [PMID: 37817002 PMCID: PMC10692271 DOI: 10.1007/s10709-023-00196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Identifying homologs is an important process in the analysis of genetic patterns underlying traits and evolutionary relationships among species. Analysis of gene families is often used to form and support hypotheses on genetic patterns such as gene presence, absence, or functional divergence which underlie traits examined in functional studies. These analyses often require precise identification of all members in a targeted gene family. Manual pipelines where homology search and orthology assignment tools are used separately are the most common approach for identifying small gene families where accurate identification of all members is important. The ability to curate sequences between steps in manual pipelines allows for simple and precise identification of all possible gene family members. However, the validity of such manual pipeline analyses is often decreased by inappropriate approaches to homology searches including too relaxed or stringent statistical thresholds, inappropriate query sequences, homology classification based on sequence similarity alone, and low-quality proteome or genome sequences. In this article, we propose several approaches to mitigate these issues and allow for precise identification of gene family members and support for hypotheses linking genetic patterns to functional traits.
Collapse
Affiliation(s)
- Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia.
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia.
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| | - Cassandria G Tay Fernandez
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
7
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Deng QY, Luo JT, Zheng JM, Tan WF, Pu ZJ, Wang F. Genome-wide systematic characterization of the NRT2 gene family and its expression profile in wheat (Triticum aestivum L.) during plant growth and in response to nitrate deficiency. BMC PLANT BIOLOGY 2023; 23:353. [PMID: 37420192 DOI: 10.1186/s12870-023-04333-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is a major cereal crop that is grown worldwide, and it is highly dependent on sufficient N supply. The molecular mechanisms associated with nitrate uptake and assimilation are still poorly understood in wheat. In plants, NRT2 family proteins play a crucial role in NO3- acquisition and translocation under nitrate limited conditions. However, the biological functions of these genes in wheat are still unclear, especially their roles in NO3- uptake and assimilation. RESULTS In this study, a comprehensive analysis of wheat TaNRT2 genes was conducted using bioinformatics and molecular biology methods, and 49 TaNRT2 genes were identified. A phylogenetic analysis clustered the TaNRT2 genes into three clades. The genes that clustered on the same phylogenetic branch had similar gene structures and nitrate assimilation functions. The identified genes were further mapped onto the 13 wheat chromosomes, and the results showed that a large duplication event had occurred on chromosome 6. To explore the TaNRT2 gene expression profiles in wheat, we performed transcriptome sequencing after low nitrate treatment for three days. Transcriptome analysis revealed the expression levels of all TaNRT2 genes in shoots and roots, and based on the expression profiles, three highly expressed genes (TaNRT2-6A.2, TaNRT2-6A.6, and TaNRT2-6B.4) were selected for qPCR analysis in two different wheat cultivars ('Mianmai367' and 'Nanmai660') under nitrate-limited and normal conditions. All three genes were upregulated under nitrate-limited conditions and highly expressed in the high nitrogen use efficiency (NUE) wheat 'Mianmai367' under low nitrate conditions. CONCLUSION We systematically identified 49 NRT2 genes in wheat and analysed the transcript levels of all TaNRT2s under nitrate deficient conditions and over the whole growth period. The results suggest that these genes play important roles in nitrate absorption, distribution, and accumulation. This study provides valuable information and key candidate genes for further studies on the function of TaNRT2s in wheat.
Collapse
Affiliation(s)
- Qing-Yan Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jiang-Tao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Jian-Min Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China
| | - Wen-Fang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| | - Zong-Jun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Chengdu, Sichuan, 610066, China.
| | - Fang Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, Sichuan, China.
| |
Collapse
|
9
|
Zhou X, Xiang X, Zhang M, Cao D, Du C, Zhang L, Hu J. Combining GS-assisted GWAS and transcriptome analysis to mine candidate genes for nitrogen utilization efficiency in Populus cathayana. BMC PLANT BIOLOGY 2023; 23:182. [PMID: 37020197 PMCID: PMC10074878 DOI: 10.1186/s12870-023-04202-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Forest trees such as poplar, shrub willow, et al. are essential natural resources for sustainable and renewable energy production, and their wood can reduce dependence on fossil fuels and reduce environmental pollution. However, the productivity of forest trees is often limited by the availability of nitrogen (N), improving nitrogen use efficiency (NUE) is an important way to address it. Currently, NUE genetic resources are scarce in forest tree research, and more genetic resources are urgently needed. RESULTS Here, we performed genome-wide association studies (GWAS) using the mixed linear model (MLM) to identify genetic loci regulating growth traits in Populus cathayana at two N levels, and attempted to enhance the signal strength of single nucleotide polymorphism (SNP) detection by performing genome selection (GS) assistance GWAS. The results of the two GWAS analyses identified 55 and 40 SNPs that were respectively associated with plant height (PH) and ground diameter (GD), and 92 and 69 candidate genes, including 30 overlapping genes. The prediction accuracy of the GS model (rrBLUP) for phenotype exceeds 0.9. Transcriptome analysis of 13 genotypes under two N levels showed that genes related to carbon and N metabolism, amino acid metabolism, energy metabolism, and signal transduction were differentially expressed in the xylem of P. cathayana under N treatment. Furthermore, we observed strong regional patterns in gene expression levels of P. cathayana, with significant differences between different regions. Among them, P. cathayana in Longquan region exhibited the highest response to N. Finally, through weighted gene co-expression network analysis (WGCNA), we identified a module closely related to the N metabolic process and eight hub genes. CONCLUSIONS Integrating the GWAS, RNA-seq and WGCNA data, we ultimately identified four key regulatory genes (PtrNAC123, PtrNAC025, Potri.002G233100, and Potri.006G236200) involved in the wood formation process, and they may affect P. cathayana growth and wood formation by regulating nitrogen metabolism. This study will provide strong evidence for N regulation mechanisms, and reliable genetic resources for growth and NUE genetic improvement in poplar.
Collapse
Affiliation(s)
- Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Min Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
10
|
Ahmad N, Jiang Z, Zhang L, Hussain I, Yang X. Insights on Phytohormonal Crosstalk in Plant Response to Nitrogen Stress: A Focus on Plant Root Growth and Development. Int J Mol Sci 2023; 24:ijms24043631. [PMID: 36835044 PMCID: PMC9958644 DOI: 10.3390/ijms24043631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Nitrogen (N) is a vital mineral component that can restrict the growth and development of plants if supplied inappropriately. In order to benefit their growth and development, plants have complex physiological and structural responses to changes in their nitrogen supply. As higher plants have multiple organs with varying functions and nutritional requirements, they coordinate their responses at the whole-plant level based on local and long-distance signaling pathways. It has been suggested that phytohormones are signaling substances in such pathways. The nitrogen signaling pathway is closely associated with phytohormones such as auxin (AUX), abscisic acid (ABA), cytokinins (CKs), ethylene (ETH), brassinosteroid (BR), strigolactones (SLs), jasmonic acid (JA), and salicylic acid (SA). Recent research has shed light on how nitrogen and phytohormones interact to modulate physiology and morphology. This review provides a summary of the research on how phytohormone signaling affects root system architecture (RSA) in response to nitrogen availability. Overall, this review contributes to identifying recent developments in the interaction between phytohormones and N, as well as serving as a foundation for further study.
Collapse
Affiliation(s)
- Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Iqbal Hussain
- Department of Horticulture, Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
11
|
An Eight-mRNA Prognostic Model to Predict Survival in Hepatic Cellular Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023. [DOI: 10.1155/2023/7278231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background. Transcriptional dysregulation plays a critical role in the onset and development of malignant tumors. Employing gene dysregulation to forecast the change of tumors is valuable for cancer diagnosis. However, the prognostic prediction for HCC using combined gene models remains insufficient. Methods. The expression profiles of GSE103512 and TCGA-LIHC were downloaded. Gene Ontology (Go) was used to evaluate the overlapping differential genes (DEG) in TCGA and GSE103512. The core genes in the critical module most significantly related to HCC were obtained by WGCNA. Eight genes most significantly related to HCC and OS were identified by reweighted coexpression network analysis and Cox regression. Results. We selected eight genes, FZEB1, CDK1, RAD54L, COL1A2, ATP1B3, CASP8, USP39, and HOXB7. Moreover, we constructed an eight-gene model and forecasted the prognosis of HCC. ROC curve of the eight-mRNA prognostic model was screened out (
), suggesting that this model exhibited a good prediction performance. Survival analysis showed that the survival rate of patients in the high-risk group was significantly lower than that in the low-risk group. Conclusion. The eight-mRNAs model might forecast the OS of HCC patients and advance remedial decision-making.
Collapse
|
12
|
Liu J, Wang C, Peng J, Ju J, Li Y, Li C, Su J. Genome-wide investigation and expression profiles of the NPF gene family provide insight into the abiotic stress resistance of Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2023; 14:1103340. [PMID: 36743489 PMCID: PMC9893419 DOI: 10.3389/fpls.2023.1103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Membrane transporters encoded by NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NPF) genes, which play crucial roles in plant growth, development and resistance to various stresses, are involved in the transport of nitrate (NO3 -) and peptides. In several plant species, NPF genes are involved in the resistance to abiotic stresses; however, whether the whole NPF gene family in cotton contributes to this resistance has not been systematically investigated. Here, 201 genes encoding NPF proteins with a peptide transporter (PTR) domain were confirmed in three different Gossypium species, namely, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The NPF proteins in these three Gossypium species and Arabidopsis thaliana were classified into three different subfamilies via phylogenetic analysis. Among the genes that encode these proteins, most GhNPF genes in the same subfamily contained similar gene structures and conserved domains. Predictions of the promoters of these genes revealed that the cis-acting elements included phytohormone- and light-responsive elements, indicating that some of these genes might be expressed in response to abiotic stress. Furthermore, 52 common potential candidate genes in 98 GhNPFs were predicted to exhibit specific spatiotemporal expression patterns in different tissues based on two RNA sequencing (RNA-seq) datasets. Finally, the gene expression profiles of abiotic stress indicated that 31 GhNPF genes were upregulated in at least one treatment period. Under abiotic stress for 12 and 24 h, the expression of GhNPF8 was upregulated upon cold treatment but downregulated with heat treatment, salt treatment and drought treatment. Furthermore, the expression of genes GhNPF8, GhNPF54 and GhNPF43 peaked at 6 h after heat and salt treatment. These results indicated that these genes exhibit underlying characteristics related to responses to abiotic stress. The verification of NPFs and analysis of their expression profiles in different tissues and in response to different abiotic stresses of cotton provide a basis for further studying the relationship between abiotic stress resistance and nitrogen (N) transport in cotton, as well as identifying candidate genes to facilitate their functional identification.
Collapse
|
13
|
Cheng J, Tan H, Shan M, Duan M, Ye L, Yang Y, He L, Shen H, Yang Z, Wang X. Genome-wide identification and characterization of the NPF genes provide new insight into low nitrogen tolerance in Setaria. FRONTIERS IN PLANT SCIENCE 2022; 13:1043832. [PMID: 36589108 PMCID: PMC9795848 DOI: 10.3389/fpls.2022.1043832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Introduction Nitrogen (N) is essential for plant growth and yield production and can be taken up from soil in the form of nitrate or peptides. The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes play important roles in the uptake and transportation of these two forms of N. Methods Bioinformatic analysis was used to identify and characterize the NPF genes in Setaria. RNA-seq was employed to analyze time-series low nitrate stress response of the SiNPF genes. Yeast and Arabidopsis mutant complementation were used to test the nitrate transport ability of SiNRT1.1B1 and SiNRT1.1B2. Results We identified 92 and 88 putative NPF genes from foxtail millet (Setaria italica L.) and its wild ancestor green foxtail (Setaria viridis L.), respectively. These NPF genes were divided into eight groups according to their sequence characteristics and phylogenetic relationship, with similar intron-exon structure and motifs in the same subfamily. Twenty-six tandem duplication and 13 segmental duplication events promoted the expansion of SiNPF gene family. Interestingly, we found that the tandem duplication of the SiNRT1.1B gene might contribute to low nitrogen tolerance of foxtail millet. The gene expression atlas showed that the SiNPFs were divided into two major clusters, which were mainly expressed in root and the above ground tissues, respectively. Time series transcriptomic analysis further revealed the response of these SiNPF genes to short- and long- time low nitrate stress. To provide natural variation of gene information, we carried out a haplotype analysis of these SiNPFs and identified 2,924 SNPs and 400 InDels based on the re-sequence data of 398 foxtail millet accessions. We also predicted the three-dimensional structure of the 92 SiNPFs and found that the conserved proline 492 residues were not in the substrate binding pocket. The interactions of SiNPF proteins withNO 3 - were analyzed using molecular docking and the pockets were then identified. We found that the SiNPFs-NO 3 - binding energy ranged from -3.8 to -2.7 kcal/mol. Discussion Taken together, our study provides a comprehensive understanding of the NPF gene family in Setaria and will contribute to function dissection of these genes for crop breeding aimed at improving high nitrogen use efficiency.
Collapse
Affiliation(s)
- Jinjin Cheng
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meng Shan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mengmeng Duan
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Ling Ye
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yulu Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lu He
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Huimin Shen
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zhirong Yang
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
14
|
Zhang H, Li Z, Xu G, Bai G, Zhang P, Zhai N, Zheng Q, Chen Q, Liu P, Jin L, Zhou H. Genome-wide identification and characterization of NPF family reveals NtNPF6.13 involving in salt stress in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:999403. [PMID: 36311086 PMCID: PMC9608447 DOI: 10.3389/fpls.2022.999403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Proteins of the Nitrate Transporter 1/Peptide Transporter (NPF) family transport a diverse variety of substrates, such as nitrate, peptides, hormones and chloride. In this study, a systematic analysis of the tobacco (Nicotiana tabacum) NPF family was performed in the cultivated 'K326'. In total, 143 NtNPF genes were identified and phylogenetically classified into eight subfamilies, NPF1 to NPF8, based on the classification of NPF families in other plant species. The chromosomal locations and structures of the NtNPF genes were analyzed. The expression profiles of NtNPF genes under NaCl stress were analyzed to screen the possible NPF genes involving in chloride regulation in tobacco. Most NtNPF6 genes responded to salt stress in the roots and leaves. The expression of NtNPF6.13 was significantly down-regulated after salt stress for 12h. The chloride content was reduced in the roots of ntnpf6.13 mutant. These findings support the participation of NtNPF6.13 in chloride uptake. Several other NtNPF genes that play potential roles in chloride metabolism of tobacco require further study.
Collapse
Affiliation(s)
- Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Ge Bai
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Peipei Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
15
|
Javed T, I I, Singhal RK, Shabbir R, Shah AN, Kumar P, Jinger D, Dharmappa PM, Shad MA, Saha D, Anuragi H, Adamski R, Siuta D. Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:877544. [PMID: 35574130 PMCID: PMC9106419 DOI: 10.3389/fpls.2022.877544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 05/05/2023]
Abstract
The efficiency with which plants use nutrients to create biomass and/or grain is determined by the interaction of environmental and plant intrinsic factors. The major macronutrients, especially nitrogen (N), limit plant growth and development (1.5-2% of dry biomass) and have a direct impact on global food supply, fertilizer demand, and concern with environmental health. In the present time, the global consumption of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to 50% of applied N. The dynamic range of ideal internal N concentrations is extremely large, necessitating stringent management to ensure that its requirements are met across various categories of developmental and environmental situations. Furthermore, approximately 60 percent of arable land is mineral deficient and/or mineral toxic around the world. The use of chemical fertilizers adds to the cost of production for the farmers and also increases environmental pollution. Therefore, the present study focused on the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and customized nano and bio-fertilizers which had shown to be effective in improving nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting precision farming, crop modeling, and the use of remote sensing technologies such as chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer. This study also discussed the role of crucial plant attributes such as root structure architecture in improving the uptake and transport of N efficiency. The crosstalk of N with other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed thoroughly in this analysis. At the end, this review highlights the more efficient and accurate molecular strategies and techniques such as N transporters, transgenes, and omics, which are opening up intriguing possibilities for the detailed investigation of the molecular components that contribute to nitrogen utilization efficiency, thus expanding our knowledge of plant nutrition for future global food security.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Indu I
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rajesh Kumar Singhal
- Indian Council of Agricultural Research (ICAR)-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Breeding and Genetics, Seed Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Pawan Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Arid Horticulture, Bikaner, India
| | - Dinesh Jinger
- Research Centre, Indian Council of Agricultural Research (ICAR)-Indian Institute of Soil and Water Conservation, Anand, India
| | - Prathibha M. Dharmappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Horticultural Research, Bengaluru, India
| | - Munsif Ali Shad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene, Hubei Hongshan Laboratory, Wuhan, China
| | - Debanjana Saha
- Centurion University of Technology and Management, Jatni, India
| | - Hirdayesh Anuragi
- Indian Council of Agricultural Research (ICAR)- Central Agroforestry Research Institute, Jhansi, India
| | - Robert Adamski
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| | - Dorota Siuta
- Faculty of Process and Environmental Engineering, Łódź University of Technology, Łódź, Poland
| |
Collapse
|
16
|
Liang Q, Dong M, Gu M, Zhang P, Ma Q, He B. MeNPF4.5 Improves Cassava Nitrogen Use Efficiency and Yield by Regulating Nitrogen Uptake and Allocation. FRONTIERS IN PLANT SCIENCE 2022; 13:866855. [PMID: 35548292 PMCID: PMC9083203 DOI: 10.3389/fpls.2022.866855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
Improving nitrogen use efficiency (NUE) is a very important goal of crop breeding throughout the world. Cassava is an important food and energy crop in tropical and subtropical regions, and it mainly use nitrate as an N source. To evaluate the effect of the nitrate transporter gene MeNPF4.5 on the uptake and utilization of N in cassava, two MeNPF4.5 overexpression lines (MeNPF4.5 OE-22 and MeNPF4.5 OE-34) and one MeNPF4.5 RNA interference (RNAi) line (MeNPF4.5 Ri-1) were used for a tissue culture experiment, combining with a field trial. The results indicated that MeNPF4.5 is a plasma membrane transporter mainly expressed in roots. The gene is induced by NO3 -. Compared with the wild type, MeNPF4.5 OE-22 exhibited improved growth, yield, and NUE under both low N and normal N levels, especially in the normal N treatment. However, the growth and N uptake of RNAi plants were significantly reduced, indicating poor N uptake and utilization capacity. In addition, photosynthesis and the activities of N metabolism-related enzymes (glutamine synthetase, glutamine oxoglutarate aminotransferase, and glutamate dehydrogenase) of leaves in overexpression lines were significantly higher than those in wild type. Interestingly, the RNAi line increased enzymatic activity but decreased photosynthesis. IAA content of roots in overexpressed lines were lower than that in wild type under low N level, but higher than that of wild type under normal N level. The RNAi line increased IAA content of roots under both N levels. The IAA content of leaves in the overexpression lines was significantly higher than that of the wild type, but showed negative effects on that of the RNAi lines. Thus, our results demonstrated that the MeNPF4.5 nitrate transporter is involved in regulating the uptake and utilization of N in cassava, which leads to the increase of N metabolizing enzyme activity and photosynthesis, along with the change of endogenous hormones, thereby improving the NUE and yield of cassava. These findings shed light that MeNPF4.5 is involved in N use efficiency use in cassava.
Collapse
Affiliation(s)
- Qiongyue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Mengmeng Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Minghua Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Genome-wide identification of nitrate transporter 2 (NRT2) gene family and functional analysis of MeNRT2.2 in cassava (Manihot esculenta Crantz). Gene 2022; 809:146038. [PMID: 34688819 DOI: 10.1016/j.gene.2021.146038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Nitrate transporter 2 (NRT2) proteins play an important role in nitrate uptake and utilization in plants. The NRT2 family has been identified and functionally characterized in many plants. However, no systematic identification of NRT2 family members has been reported in cassava (Manihot esculenta Crantz). In this study, six MeNRT2 genes were identified from cassava genome and named as MeNRT2.1-2.6 according to their chromosomal locations. Phylogenetic tree showed that NRT2 proteins were divided into four main subgroups, which was further supported by their gene structure and conserved motifs. All six MeNRT2 genes are randomly distributed on 4 chromosomes (LG8, LG11, LG13, and LG17), two tandem duplicated genes (MeNRT2.3/MeNRT2.4) and a pair of segmental duplicated gene (MeNRT2.1/MeNRT2.2) was detected. Subsequently, expression profiles of MeNRT2 genes in eight different tissues and in response to nitrate deficient treatment were analyzed. The results showed that the MeNRT2 genes had differential expression patterns. All of MeNRT2 genes induced by nitrate deficiency, of them the MeNRT2.2 had the highest expression level after treatment. Arabidopis transformed with MeNRT2.2 gene showed higher fresh weight than wild type plants in response to N starvation, suggesting that MeNRT2.2 play important role in adapting to low nitrogen. Taken together, our results provide the reference for further analyses of the molecular functions of the MeNRT2 gene family, but also some candidate genes for developing nitrogen efficient crops.
Collapse
|