1
|
Falade EO, Kouamé KJEP, Zhu Y, Zheng Y, Ye X. A review: Examining the effects of modern extraction techniques on functional and structural properties of cellulose and hemicellulose in Brewer's Spent Grain dietary fiber. Carbohydr Polym 2025; 348:122883. [PMID: 39562135 DOI: 10.1016/j.carbpol.2024.122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Brewer's Spent Grain (BSG) is a by-product of the brewing industry, rich in dietary fibers that offer various health benefits. This review delves into the molecular and structural transformations of BSG and dietary fibers (arabinoxylan, beta-glucan, cellulose etc.) extracted from BSG, triggered by recent advancements in extraction technologies. Through an analysis of current methodologies, such as advanced solubilization methods and emerging technologies like ultrasonication, this paper discusses their significant improvement in yield of BSG-dietary fiber and impact on the structural and functional properties of BSG-dietary fibers (BSG-DF). The review highlights how these technologies enhance fiber solubilization and modify physicochemical properties, thereby improving their functionality in food applications. Furthermore, the review aims to bridge gaps in current research and suggest future directions for optimizing extraction processes to better exploit these fibers in the food industries.
Collapse
Affiliation(s)
- Ebenezer Ola Falade
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Kouadio Jean Eric-Parfait Kouamé
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yanyun Zhu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China
| | - Xingqian Ye
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Zhejiang University-Zhongyuan Institue, Zhengzhou 45001, Henan, China.
| |
Collapse
|
2
|
Bigini V, Sillo F, Giulietti S, Pontiggia D, Giovannini L, Balestrini R, Savatin DV. Oligogalacturonide application increases resistance to Fusarium head blight in durum wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3070-3091. [PMID: 38334507 DOI: 10.1093/jxb/erae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.
Collapse
Affiliation(s)
- Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Ple Aldo Moro, 5 00185 Rome, Italy
| | - Luca Giovannini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Botticella E, Testone G, Buffagni V, Palombieri S, Taddei AR, Lafiandra D, Lucini L, Giannino D, Sestili F. Mutations in starch biosynthesis genes affect chloroplast development in wheat pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108354. [PMID: 38219425 DOI: 10.1016/j.plaphy.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Starch bioengineering in cereals has produced a plethora of genotypes with new nutritional and technological functionalities. Modulation of amylose content from 0 to 100% was inversely correlated with starch digestibility and promoted a lower glycemic index in food products. In wheat, starch mutants have been reported to exhibit various side effects, mainly related to the seed phenotype. However, little is known about the impact of altered amylose content and starch structure on plant metabolism. Here, three bread wheat starch mutant lines with extreme phenotypes in starch branching and amylose content were used to study plant responses to starch structural changes. Omics profiling of gene expression and metabolic patterns supported changes, confirmed by ultrastructural analysis in the chloroplast of the immature seeds. In detail, the identification of differentially expressed genes belonging to functional categories related to photosynthesis, chloroplast and thylakoid (e.g. CURT1), the alteration in the accumulation of photosynthesis-related compounds, and the chloroplast alterations (aberrant shape, grana stacking alteration, and increased number of plastoglobules) suggested that the modification of starch structure greatly affects starch turnover in the chloroplast, triggering oxidative stress (ROS accumulation) and premature tissue senescence. In conclusion, this study highlighted a correlation between starch structure and chloroplast functionality in the wheat kernel.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria, km 29.300, Monterotondo, 00015, Rome, Italy.
| | - Valentina Buffagni
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria, km 29.300, Monterotondo, 00015, Rome, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Science, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy.
| |
Collapse
|
4
|
Palombieri S, Bonarrigo M, Cammerata A, Quagliata G, Astolfi S, Lafiandra D, Sestili F, Masci S. Characterization of Triticum turgidum sspp. durum, turanicum, and polonicum grown in Central Italy in relation to technological and nutritional aspects. FRONTIERS IN PLANT SCIENCE 2023; 14:1269212. [PMID: 38126019 PMCID: PMC10731273 DOI: 10.3389/fpls.2023.1269212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Introduction Wheat is a staple food, with the two most common species being Triticum aestivum and Triticum turgidum ssp. durum. Moreover, the latter, T. turgidum, includes other tetraploid subspecies, among which the sspp. turanicum (Khorasan wheat) and polonicum (Polish wheat), whose importance has increased in the last decades, representing alternative crops for marginal areas, in addition to being a source of genetic diversity. Methods In this work, different accessions of these three subspecies of T. turgidum have been grown in 2 years in the same environment and have been characterized for technological properties and factors affecting nutritional quality, such as fiber amount and the content of micro- and macro-nutrients in grains, and for root morphological traits. Results These analyses allowed the identification, in particular, of a Polish wheat accession showing better technological performances, a higher amount of positive micro- and macro-elements, and a lower amount of toxic cadmium. The modern variety Svevo and the Polish Pol2 showed the lowest and the highest shoot:root ratio, respectively. The high shoot:root ratio in Pol2 was mainly attributable to the decrease in root growth. Although Pol2 had a lower root biomass, its particular root morphology made it more efficient for nutrient uptake, as evident from the greater accumulation of micro- and macro-nutrients. Discussion These results underline that it is not possible to draw general conclusions about the difference between primitive and modern wheats, but rather a case-by-case approach should be chosen.
Collapse
Affiliation(s)
- Samuela Palombieri
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Marco Bonarrigo
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Alessandro Cammerata
- Council for Agricultural Research and Economics, Research Centre for Engineering and Agro-Food Processing, Rome, Italy
| | - Giulia Quagliata
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefania Astolfi
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Sissons M, Palombieri S, Sestili F, Lafiandra D. Impact of Variation in Amylose Content on Durum Wheat cv. Svevo Technological and Starch Properties. Foods 2023; 12:4112. [PMID: 38002170 PMCID: PMC10670430 DOI: 10.3390/foods12224112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Reserve starch, the main component of durum wheat semolina, is constituted of two glucan homopolymers (amylose and amylopectin) that differ in their chemical structure. Amylose is mainly a linear structure formed of α-1,4-linked glucose units, with a lower polymerization degree, whereas amylopectin is a highly branched structure of α-1,4-chains linked by α-1,6-bonds. Variation of the amylose/amylopectin ratio has a profound effect on the starch properties which may impact the wheat technological and nutritional characteristics and their possible use in the food and non-food sector. In this work a set of genotypes, with a range of amylose from 14.9 to 57.8%, derived from the durum wheat cv. Svevo was characterised at biochemical and rheological level and used to produce pasta to better understand the role of amylose content in a common genetic background. A negative correlation was observed between amylose content and semolina swelling power, starch peak viscosity, and pasta stickiness. A worsening of the firmness was observed in the low amylose pasta compared to the control (cv. Svevo), whereas no difference was highlighted in the high amylose samples. The resistant starch was higher in the high amylose (HA) pasta compared to the control and low amylose (LA) pasta. Noteworthy, the extent of starch digestion was reduced in the HA pasta while the LA genotypes offered a higher starch digestion, suggesting other possible applications.
Collapse
Affiliation(s)
- Mike Sissons
- NSW Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Tamworth, NSW 2340, Australia
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| |
Collapse
|
6
|
Prins A, Kosik O. Genetic Approaches to Increase Arabinoxylan and β-Glucan Content in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3216. [PMID: 37765380 PMCID: PMC10534680 DOI: 10.3390/plants12183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Wheat is one of the three staple crops feeding the world. The demand for wheat is ever increasing as a relatively good source of protein, energy, nutrients, and dietary fiber (DF) when consumed as wholemeal. Arabinoxylan and β-glucan are the major hemicelluloses in the cell walls and dietary fiber in wheat grains. The amount and structure of DF varies between grain tissues. Reducing post-prandial glycemic response as well as intestinal transit time and contribution to increased fecal bulk are only a few benefits of DF consumption. Dietary fiber is fermented in the colon and stimulates growth of beneficial bacteria producing SCFA, considered responsible for a wide range of health benefits, including reducing the risk of heart disease and colon cancer. The recommended daily intake of 25-30 g is met by only few individuals. Cereals cover nearly 40% of fiber in the Western diet. Therefore, wheat is a good target for improving dietary fiber content, as it would increase the fiber intake and simultaneously impact the health of many people. This review reflects the current status of the research on genetics of the two major dietary fiber components, as well as breeding approaches used to improve their quantity and quality in wheat grain.
Collapse
Affiliation(s)
- Anneke Prins
- Department of Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK;
| | - Ondrej Kosik
- Department of Plant Sciences for the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
7
|
Molecular insights into the role of amylose/amylopectin ratio on gluten protein organization. Food Chem 2023; 404:134675. [DOI: 10.1016/j.foodchem.2022.134675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
8
|
García-Pérez P, Giuberti G, Sestili F, Lafiandra D, Botticella E, Lucini L. The functional implications of high-amylose wholegrain wheat flours: An in vitro digestion and fermentation approach combined with metabolomics. Food Chem 2023; 418:135959. [PMID: 36996655 DOI: 10.1016/j.foodchem.2023.135959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Wheat flour is one of the most prevalent foodstuffs for human consumption, and novel strategies are underway to enhance its nutritional properties. This work evaluated wholegrain flours from bread wheat lines with different amylose/amylopectin ratios through in vitro starch digestion and large intestine fermentation. High-amylose flours presented a higher resistant starch content and lower starch hydrolysis index. Moreover, UHPLC-HRMS metabolomics was carried out to determine the profile of the resulting in vitro fermentates. The multivariate analysis highlighted distinctive profiles between the flours derived from the different lines compared to the wild type. Peptides, glycerophospholipids, polyphenols, and terpenoids were identified as the main markers of the discrimination. The high-amylose flour fermentates showed the richest bioactive profile, containing stilbenes, carotenoids, and saponins. Present findings pave the way toward applying high-amylose flours to design novel functional foods.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy; Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, Spain
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Romano G, Del Coco L, Milano F, Durante M, Palombieri S, Sestili F, Visioni A, Jilal A, Fanizzi FP, Laddomada B. Phytochemical Profiling and Untargeted Metabolite Fingerprinting of the MEDWHEALTH Wheat, Barley and Lentil Wholemeal Flours. Foods 2022; 11:foods11244070. [PMID: 36553812 PMCID: PMC9777840 DOI: 10.3390/foods11244070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
An important research target is improving the health benefits of traditional Mediterranean, durum wheat-based foods using innovative raw materials. In this study, we characterised wholemeal flours obtained from a traditional durum wheat cv. Svevo, two innovative durum wheat varieties (Svevo-High Amylose and Faridur), the naked barley cv. Chifaa and the elite lentil line 6002/ILWL118/1-1, evaluating them for targeted phytochemicals, untargeted metabolomics fingerprints and antioxidant capacity. To this aim, individual phenolic acids, flavonoids, tocochromanols and carotenoids were identified and quantified through HPLC-DAD, and the antioxidant capacities of both the extracts and whole meals were detected by ABTS assays. An untargeted metabolomics fingerprinting of the samples was conducted through NMR spectroscopy. Results showed that the innovative materials improved phytochemical profiles and antioxidant capacity compared to Svevo. In particular, Svevo-HA and Faridur had higher contents of ferulic and sinapic acids, β-tocotrienol and lutein. Moreover, Chifaa is a rich source of phenolic acids, β-tocopherols, lutein and zeaxanthin whereas lentil of flavonoids (i.e., catechin and procyanidin B2). The NMR profiles of Svevo-HA and Faridur showed a significant reduction of sugar content, malate and tryptophan compared to that of Svevo. Finally, substantial differences characterised the lentil profiles, especially for citrate, trigonelline and phenolic resonances of secondary metabolites, such as catechin-like compounds. Overall, these results support the potential of the above innovative materials to renew the health value of traditional Mediterranean durum wheat-based products.
Collapse
Affiliation(s)
- Giuseppe Romano
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Francesco Milano
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Andrea Visioni
- International Center for Agricultural Research in the Dry Areas (ICARDA), Biodiversity and Crop Improvement Program, Rabat P.O. Box 6299, Morocco
| | - Abderrazek Jilal
- National Institute for Agricultural Research Morocco (INRAM), Rabat P.O. Box 415, Morocco
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100 Lecce, Italy
- Correspondence: (F.P.F.); (B.L.); Tel.: +39-08-3229-9265 (F.P.F.); +39-08-3242-2613 (B.L.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy
- Correspondence: (F.P.F.); (B.L.); Tel.: +39-08-3229-9265 (F.P.F.); +39-08-3242-2613 (B.L.)
| |
Collapse
|
10
|
Xi Y, Ling Q, Zhou Y, Liu X, Qian Y. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:986628. [PMID: 36247610 PMCID: PMC9558894 DOI: 10.3389/fpls.2022.986628] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The harsh environment such as high temperature greatly limits the growth, development and production of crops worldwide. NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play key regulatory roles in abiotic stress responses of plants. However, the functional roles of NAC TFs in heat stress response of maize remain elusive. In our present study, we identified and isolated a stress-responsive NAC transcription factor gene in maize, designated as ZmNAC074 and orthologous with rice OsNTL3. Further studies revealed that ZmNAC074 may encode a membrane-bound transcription factor (MTF) of NAC family in maize, which is comprised of 517 amino acid residues with a transmembrane domain at the C-terminus. Moreover, ZmNAC074 was highly expressed and induced by various abiotic stresses in maize seedlings, especially in leaf tissues under heat stress. Through generating ZmNAC074 transgenic plants, phenotypic and physiological analyses further displayed that overexpression of ZmNAC074 in transgenic Arabidopsis confers enhanced heat stress tolerance significantly through modulating the accumulation of a variety of stress metabolites, including reactive oxygen species (ROS), antioxidants, malondialdehyde (MDA), proline, soluble protein, chlorophyll and carotenoid. Further, quantitative real-time PCR analysis showed that the expression levels of most ROS scavenging and HSR- and UPR-associated genes in transgenic Arabidopsis were significantly up-regulated under heat stress treatments, suggesting that ZmNAC074 may encode a positive regulator that activates the expression of ROS-scavenging genes and HSR- and UPR-associated genes to enhance plant thermotolerance under heat stress conditions. Overall, our present study suggests that ZmNAC074 may play a crucial role in conferring heat stress tolerance in plants, providing a key candidate regulatory gene for heat stress tolerance regulation and genetic improvement in maize as well as in other crops.
Collapse
|
11
|
Cimini A, Poliziani A, Antonelli G, Sestili F, Lafiandra D, Moresi M. Characterization of Fresh Pasta Made of Common and High-Amylose Wheat Flour Mixtures. Foods 2022; 11:foods11162510. [PMID: 36010510 PMCID: PMC9407497 DOI: 10.3390/foods11162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to assess the main biochemical, technological, and nutritional properties of a few samples of fresh pasta composed of commercial common wheat flour blended with increasing percentages, ranging from 0 to 100%, of high-amylose wheat flour. Although the technological parameters of such samples remained practically constant, fresh pasta samples including 50 to 100% of high-amylose wheat flour were classifiable as foods with a low in vitro glycemic index of about 43%. However, only fresh pasta made of 100% high-amylose wheat flour exhibited a resistant starch-to-total starch ratio greater than 14% and was therefore eligible to claim a physiological effect of improved glucose metabolism after a meal, as according to EU Regulation 432/2012.
Collapse
Affiliation(s)
- Alessio Cimini
- Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| | - Alessandro Poliziani
- Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| | - Gabriele Antonelli
- Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| | - Francesco Sestili
- Dipartimento di Scienze Agrarie e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| | - Domenico Lafiandra
- Dipartimento di Scienze Agrarie e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
| | - Mauro Moresi
- Dipartimento per l’Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. C. de Lellis, 01100 Viterbo, Italy
- Correspondence: ; Tel.: +39-0761-357497
| |
Collapse
|
12
|
Lafiandra D, Sestili F, Sissons M, Kiszonas A, Morris CF. Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods 2022; 11:foods11111532. [PMID: 35681282 PMCID: PMC9180912 DOI: 10.3390/foods11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Although durum wheat (Triticum durum L. ssp. durum Desf.) has traditionally been used to make a range of food products, its use has been restricted due to the absence of the D-genome glutenin proteins, the relatively low variability in starch composition, and its very hard grain texture. This review focuses on the manipulation of the starch and protein composition and modification of the hardness of durum wheat in order to improve its technological and nutritional value and expand its utilization for application to a wider number of end products. Starch is composed of amylopectin and amylose in a 3:1 ratio, and their manipulation has been explored for achieving starch with modified composition. In particular, silencing of the genes involved in amylose and amylopectin synthesis has made it possible to isolate durum wheat lines with amylose content varying from 2–3% up to 75%. This has created opportunities for new products with different properties and enhanced nutritional value. Durum-made bread has generally inferior quality to bread made from common wheat. Attempts to introduce the Glu-D1 subunits 1Dx5 + 1Dy10 and 1Dx2 + 1Dy12 produced stronger dough, but the former produced excessively strong, inelastic doughs, and loaf volume was either inferior or not affected. In contrast, the 1Dx2 + 1Dy12 sometimes improved bread loaf volume (LV) depending on the glutenin subunit background of the genotype receiving these genes. Further breeding and selection are needed to improve the dough extensibility to allow higher LV and better texture. The versatility of durum wheat has been greatly expanded with the creation of soft-textured durum via non-GMO introgression means. This soft durum mills like soft hexaploid wheat and has similar baking properties. The pasta quality is also not diminished by the soft-textured kernels. The Glu-D1 locus containing the subunits 1Dx2 + 1Dy12 has also been introgressed to create higher quality soft durum bread.
Collapse
Affiliation(s)
- Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (D.L.); (M.S.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mike Sissons
- NSW Department of Primary Industries, Tamworth 2340, Australia
- Correspondence: (D.L.); (M.S.)
| | - Alecia Kiszonas
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| | - Craig F. Morris
- United States Department of Agriculture, Agriculture Research Service, Western Wheat Quality Lab, Pullman, WA 99164, USA; (A.K.); (C.F.M.)
| |
Collapse
|