1
|
Abdelsalam A, Gharib FAEL, Boroujerdi A, Abouelhamd N, Ahmed EZ. Selenium nanoparticles enhance metabolic and nutritional profile in Phaseolus vulgaris: comparative metabolomic and pathway analysis with selenium selenate. BMC PLANT BIOLOGY 2025; 25:119. [PMID: 39871137 PMCID: PMC11773980 DOI: 10.1186/s12870-025-06097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Selenium is a beneficial element in agriculture, particularly for its potential to improve plant growth and stress tolerance at suitable concentrations. In this study, Phaseolus vulgaris was foliar-sprayed with selenium selenate (Se) or selenium nanoparticles (SeNP) at different concentrations during the vegetative stage; afterward, the seed yield was analyzed for metabolomics using 1H, J-resolved and HSQC NMR data, and NMR databases. A total of 47 metabolites were identified with sugars being the major chemical class. In the control sample, the most abundant sugar was stachyose (14.6 ± 0.8 mM). Among the identified alkaloids, the concentration of trigonelline was the highest (0.6 ± 0.08 mM). Chemometric and cluster analyses distinctly differentiated the control from the Se and SeNP-treated samples. Treatments with SeNP resulted in elevated concentrations of sugars, carboxylic acids, and sulfur-containing amino acids compared to control and Se treated samples. Conversely, betaine levels were higher in Se samples. The presence of Se and SeNP significantly decreased the levels of several aliphatic amino acids, e.g. alanine. The addition of 50 µM SeNP upregulated the levels of trigonelline and syringate by 2-fold and 1.75-fold, respectively, relative to the control. Pathway analysis indicated the most significantly altered pathways due to SeNP addition were arginine biosynthesis and nitrogen metabolism. The pathways influenced by Se addition were glyoxylate and dicarboxylate metabolism as well as glycine-serine and threonine metabolism. This study proved that SeNP are more efficient than Se in enhancing the metabolic profile of Phaseolus vulgaris which will have implications for agricultural practices, focusing on the sustainability and nutritional enhancement of crops.
Collapse
Affiliation(s)
- Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| | | | - Arezue Boroujerdi
- Chemistry Department, Claflin University, Orangeburg, SC, 29115, USA
| | - Nada Abouelhamd
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| |
Collapse
|
2
|
Hareem M, Mahmood S, Danish S, Iqbal RK, Alarfaj AA, Alharbi SA. Influence of indole acetic acid, arginine and mango fruit waste biochar on nutrients, chlorophyll contents and antioxidants of Fenugreek in salt affected soil. Sci Rep 2025; 15:167. [PMID: 39748038 PMCID: PMC11696118 DOI: 10.1038/s41598-024-84048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching. L-arginine, an amino acid, is crucial for plant defense mechanisms, forming proline, polyamines, and nitric oxide, which regulate biological activities and prevent oxidative damage. Mango fruit waste biochar enhances soil fertility and water retention, thereby enhancing fruit development and yield. This study investigates the effects of combining IAA and AN as amendments to fenugreek, with and without MFWB. Four treatments (control, 2mM IAA, 250 mg/L AN, and 250 mg/L AN + 2mM IAA) study were conducted in four replications using a completely randomized design. Results demonstrate that the 250 mg/L AN + 2mM IAA with MFWB treatment led to a significant rise in fenugreek plant length (30.26%), plant fresh weight (36.37%), and plant dry weight (15.78%) over the control under salinity stress. There was a notable increase in chlorophyll a (5.13%), chlorophyll b (14.06%), total chlorophyll (7.79%), and shoot N, P, K from the control under salinity stress also showing the potential of 250 mg/L AN + 2mM IAA with MFWB. In conclusion, applying 250 mg/L AN + 2mM IAA with MFWB is a strategy for alleviating salinity stress in fenugreeks.
Collapse
Affiliation(s)
- Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, Punjab, 60000, Pakistan
| | | | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Chen X, Wang K, Qin T, Bai Y, Li Q, Guo A, Liao B, Zhang J. An ideal leaf spraying strategy of brown sugar for edible medicinal plants of Viola inconspicua. NPJ Sci Food 2024; 8:99. [PMID: 39572563 PMCID: PMC11582318 DOI: 10.1038/s41538-024-00343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The typical edible medicinal plants of Viola inconspicua were compared with leaf-green, biomass, metabolomes, and bacterial communities, after leaf-spraying water (A), brown sugar water (B), brown sugar, urea, and KH2PO4 water (C), or KH2PO4 and urea water (D). The plants sprayed with C solution presented relatively normal leaf-green and the highest biomass. In contrast of A group, B, C, and D groups were found with 72, 94, and 104 leaf differently accumulated metabolites (DAMs) and 105, 88, and 92 root DAMs, respectively. Typically, relative abundances of amino acids were elevated in C and D groups, while those of leaf flavonoids were increased in B group. Noticeably, leaf DAMs of C group versus A group had strong correlations with one to more phylum- or/and genus-dominant bacteria of C group. Taken together, leaf-spraying brown sugar, urea, and KH2PO4 water are ideal for holding leaf-green and biomass in V. inconspicua plants.
Collapse
Affiliation(s)
- Xuhan Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Kemei Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Ting Qin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Yachao Bai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Aimin Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Jun Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, 510006, Guangzhou, China.
| |
Collapse
|
4
|
Kang M, Bai X, Liu Y, Weng Y, Wang H, Ye Z. Driving Role of Zinc Oxide Nanoparticles with Different Sizes and Hydrophobicity in Metabolic Response and Eco-Corona Formation in Sprouts ( Vigna radiata). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9875-9886. [PMID: 38722770 DOI: 10.1021/acs.est.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/β-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
5
|
Ľuptáková E, Vigouroux A, Končitíková R, Kopečná M, Zalabák D, Novák O, Salcedo Sarmiento S, Ćavar Zeljković S, Kopečný DJ, von Schwartzenberg K, Strnad M, Spíchal L, De Diego N, Kopečný D, Moréra S. Plant nucleoside N-ribohydrolases: riboside binding and role in nitrogen storage mobilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1432-1452. [PMID: 38044809 DOI: 10.1111/tpj.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as β-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.
Collapse
Affiliation(s)
- Eva Ľuptáková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, F-91198, France
| | - Radka Končitíková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - David Zalabák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Sara Salcedo Sarmiento
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| | - David Jaroslav Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Klaus von Schwartzenberg
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Šlechtitelů 11, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, F-91198, France
| |
Collapse
|
6
|
Chen X, Hao R, Chen W, Jia H, Qin S, Wang Q, Zhang D, Han Z, Li Y. Effect of choline amino acid ionic liquids on maize seed germination and endogenous plant hormone levels. RSC Adv 2024; 14:382-389. [PMID: 38188979 PMCID: PMC10767900 DOI: 10.1039/d3ra07433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Prior research has established choline-based ionic liquids (ILs) as safe for various organisms. However, their impact on plants has been underexplored. To identify effective eco-friendly ILs, we synthesized seven choline amino acid ([Chl][AA]) ILs and analyzed their physiological influence on maize seed germination. In contrast to the traditionally used N-octyl pyridinium bromide IL, these seven [Chl][AA] ILs exhibited substantially lower toxicity. Moreover, within a broad treatment concentration range (10-100 mg L-1), these ILs notably enhanced maize germination indices and root and shoot growth. Specifically, treatment with 100 mg L-1 choline tryptophan resulted in a 21.2% increase in germination index compared to those of control maize. Compared to the control, the application of choline serine, choline aspartic acid, choline phenylalanine, and choline tryptophan at 100 mg L-1 led to respective increases of 23.9%, 21.5%, 22.5%, and 24.5% in maize shoot length. Analysis of endogenous hormones and free amino acid contents revealed elevated levels of growth-promoting plant hormones (gibberellic acid and zeatin) in maize shoot tips, as well as increased contents of major amino acids (glutamate, glycine, and arginine) following treatment with different [Chl][AA] ILs at 100 mg L-1. These findings indicate that [Chl][AA] holds promise for the development and application of novel low-toxicity ILs.
Collapse
Affiliation(s)
- Xiaohong Chen
- College of Life Sciences, Northwest A&F University Yangling Shaanxi 712100 China +86 29 87082845
| | - Rui Hao
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| | - Wenquan Chen
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| | - Huimin Jia
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| | - Shufang Qin
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| | - Qi Wang
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| | - Dingxiang Zhang
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| | - Zhaoxue Han
- College of Life Sciences, Northwest A&F University Yangling Shaanxi 712100 China +86 29 87082845
| | - Yajun Li
- College of Agronomy, Northwest A&F University Yangling Shaanxi 712100 China
| |
Collapse
|
7
|
Li L, Hu Z, Tan G, Fan J, Chen Y, Xiao Y, Wu S, Zhi Q, Liu T, Yin H, Tang Q. Enhancing plant growth in biofertilizer-amended soil through nitrogen-transforming microbial communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1259853. [PMID: 38034579 PMCID: PMC10683058 DOI: 10.3389/fpls.2023.1259853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Biofertilizers have immense potential for enhancing agricultural productivity. However, there is still a need for clarification regarding the specific mechanisms through which these biofertilizers improve soil properties and stimulate plant growth. In this research, a bacterial agent was utilized to enhance plant growth and investigate the microbial modulation mechanism of soil nutrient turnover using metagenomic technology. The results demonstrated a significant increase in soil fast-acting nitrogen (by 46.7%) and fast-acting phosphorus (by 88.6%) upon application of the bacterial agent. This finding suggests that stimulated soil microbes contribute to enhanced nutrient transformation, ultimately leading to improved plant growth. Furthermore, the application of the bacterial agent had a notable impact on the accumulation of key genes involved in nitrogen cycling. Notably, it enhanced nitrification genes (amo, hao, and nar), while denitrification genes (nir and nor) showed a slight decrease. This indicates that ammonium oxidation may be the primary pathway for increasing fast-acting nitrogen in soils. Additionally, the bacterial agent influenced the composition and functional structure of the soil microbial community. Moreover, the metagenome-assembled genomes (MAGs) obtained from the soil microbial communities exhibited complementary metabolic processes, suggesting mutual nutrient exchange. These MAGs contained widely distributed and highly abundant genes encoding plant growth promotion (PGP) traits. These findings emphasize how soil microbial communities can enhance vegetation growth by increasing nutrient availability and regulating plant hormone production. This effect can be further enhanced by introducing inoculated microbial agents. In conclusion, this study provides novel insights into the mechanisms underlying the beneficial effects of biofertilizers on soil properties and plant growth. The significant increase in nutrient availability, modulation of key genes involved in nitrogen cycling, and the presence of MAGs encoding PGP traits highlight the potential of biofertilizers to improve agricultural practices. These findings have important implications for enhancing agricultural sustainability and productivity, with positive societal and environmental impacts.
Collapse
Affiliation(s)
- Liangzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Yiqiang Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Shaolong Wu
- Hunan Tobacco Research Institute, Changsha, China
| | - Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Tianbo Liu
- Hunan Tobacco Research Institute, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qianjun Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
Li C, Feng Y, Tian P, Yu X. Mathematical Estimation of Endogenous Proline as a Bioindicator to Regulate the Stress of Trivalent Chromium on Rice Plants Grown in Different Nitrogenous Conditions. TOXICS 2023; 11:803. [PMID: 37888654 PMCID: PMC10611392 DOI: 10.3390/toxics11100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The accumulation of proline impacts the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, its concentration in plants is associated with the metabolism of N. Therefore, the effects of exogenous organic [glutamate (Glu)/arginine (Arg)] and inorganic [nitrate (NO3-)/ammonium (NH4+)] N on the accumulation of proline (Pro) in rice plants under trivalent chromium [Cr(III)] stress were studied through using the mass balance matrix model (MBMM). Application of 'NH4+' showed the largest contribution to the Pro content in rice shoots under different concentrations of Cr(III), followed by 'NO3-', 'Arg', and 'Glu' applications. On the other hand, 'Arg' application displayed the largest contribution to the Pro content in roots under Cr(III) stress, followed by 'NH4+', 'Glu', and 'NO3-' applications. The combined application of 'NH4++Arg' showed the greatest contribution to the Pro content in both roots and shoots of Cr(III)-treated rice seedlings, while the application of 'NO3-+Glu' showed the least contribution to the Pro content in rice seedlings. The current study indicated that the endogenous level of Pro in rice seedlings is quite sensitive to Cr(III) stress under different N sources, and the mathematical modeling showed a reliable result while estimating the relationship between Pro content and N source application.
Collapse
Affiliation(s)
| | | | | | - Xiaozhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China (Y.F.)
| |
Collapse
|
9
|
Walsh CA, Bräutigam A, Roberts MR, Lundgren MR. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:707-722. [PMID: 36437625 PMCID: PMC9899418 DOI: 10.1093/jxb/erac465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The C2 carbon-concentrating mechanism increases net CO2 assimilation by shuttling photorespiratory CO2 in the form of glycine from mesophyll to bundle sheath cells, where CO2 concentrates and can be re-assimilated. This glycine shuttle also releases NH3 and serine into the bundle sheath, and modelling studies suggest that this influx of NH3 may cause a nitrogen imbalance between the two cell types that selects for the C4 carbon-concentrating mechanism. Here we provide an alternative hypothesis outlining mechanisms by which bundle sheath NH3 and serine play vital roles to not only influence the status of C2 plants along the C3 to C4 evolutionary trajectory, but to also convey stress tolerance to these unique plants. Our hypothesis explains how an optimized bundle sheath nitrogen hub interacts with sulfur and carbon metabolism to mitigate the effects of high photorespiratory conditions. While C2 photosynthesis is typically cited for its intermediary role in C4 photosynthesis evolution, our alternative hypothesis provides a mechanism to explain why some C2 lineages have not made this transition. We propose that stress resilience, coupled with open flux tricarboxylic acid and photorespiration pathways, conveys an advantage to C2 plants in fluctuating environments.
Collapse
Affiliation(s)
- Catherine A Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universität str. 27, D-33615 Bielefeld, Germany
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
10
|
Yang L, Wu Q, Liang H, Yin L, Shen P. Integrated analyses of transcriptome and metabolome provides new insights into the primary and secondary metabolism in response to nitrogen deficiency and soil compaction stress in peanut roots. FRONTIERS IN PLANT SCIENCE 2022; 13:948742. [PMID: 36247623 PMCID: PMC9554563 DOI: 10.3389/fpls.2022.948742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important oil crop globally because of its high edible and economic value. However, its yield and quality are often restricted by certain soil factors, especially nitrogen (N) deficiency, and soil compaction. To explore the molecular mechanisms and metabolic basis behind the peanut response to N deficiency and soil compaction stresses, transcriptome and metabolome analyses of peanut root were carried out. The results showed that N deficiency and soil compaction stresses clearly impaired the growth and development of peanut's aboveground and underground parts, as well as its root nodulation. A total of 18645 differentially expressed genes (DEGs) and 875 known differentially accumulated metabolites (DAMs) were identified in peanut root under differing soil compaction and N conditions. The transcriptome analysis revealed that DEGs related to N deficiency were mainly enriched in "amino acid metabolism", "starch and sucrose metabolism", and "TCA cycle" pathways, while DEGs related to soil compaction were mainly enriched in "oxidoreductase activity", "lipids metabolism", and "isoflavonoid biosynthesis" pathways. The metabolome analysis also showed significant differences in the accumulation of metabolisms in these pathways under different stress conditions. Then the involvement of genes and metabolites in pathways of "amino acid metabolism", "TCA cycle", "lipids metabolism", and "isoflavonoid biosynthesis" under different soil compaction and N deficiency stresses were well discussed. This integrated transcriptome and metabolome analysis study enhances our mechanistic knowledge of how peanut plants respond to N deficiency and soil compaction stresses. Moreover, it provides new leads to further investigate candidate functional genes and metabolic pathways for use in improving the adaptability of peanut to abiotic stress and accelerating its breeding process of new stress-resistant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Pu Shen
- Chinese National Peanut Engineering Research Center, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
11
|
Zhu C, Luo H, Luo L, Wang K, Liao Y, Zhang S, Huang S, Guo X, Zhang L. Nitrogen and Biochar Addition Affected Plant Traits and Nitrous Oxide Emission From Cinnamomum camphora. FRONTIERS IN PLANT SCIENCE 2022; 13:905537. [PMID: 35620695 PMCID: PMC9127667 DOI: 10.3389/fpls.2022.905537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric nitrous oxide (N2O) increase contributes substantially to global climate change due to its large global warming potential. Soil N2O emissions have been widely studied, but plants have so far been ignored, even though they are known as an important source of N2O. The specific objectives of this study are to (1) reveal the effects of nitrogen and biochar addition on plant functional traits and N2O emission of Cinnamomum camphora seedlings; (2) find out the possible leaf traits affecting plant N2O emissions. The effects of nitrogen and biochar on plant functional traits and N2O emissions from plants using C. camphora seedlings were investigated. Plant N2O emissions, growth, each organ biomass, each organ nutrient allocation, gas exchange parameters, and chlorophyll fluorescence parameters of C. camphora seedlings were measured. Further investigation of the relationships between plant N2O emission and leaf traits was performed by simple linear regression analysis, principal component analysis (PCA), and structural equation model (SEM). It was found that nitrogen addition profoundly increased cumulative plant N2O emissions (+109.25%), which contributed substantially to the atmosphere's N2O budget in forest ecosystems. Plant N2O emissions had a strong correlation to leaf traits (leaf TN, P n , G s , C i , Tr, WUE L , α, ETR max, I k , Fv/Fm, Y(II), and SPAD). Structural equation modelling revealed that leaf TN, leaf TP, P n , C i , Tr, WUE L , α, ETR max, and I k were key traits regulating the effects of plants on N2O emissions. These results provide a direction for understanding the mechanism of N2O emission from plants and provide a theoretical basis for formulating corresponding emission reduction schemes.
Collapse
Affiliation(s)
- Congfei Zhu
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Handong Luo
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Geological Environment Monitoring Station, Meizhou Natural Resources Bureau, Meizhou, China
| | - Laicong Luo
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Kunying Wang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yi Liao
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Shun Zhang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Shenshen Huang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaomin Guo
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Ling Zhang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|