1
|
Xu S, Zhang Y, Liang F, Jiang S, Niu S, Wang X, Zhou Y, Cui B, Yuan X. Metabolomic and transcriptomic analyses reveal the mechanism of polysaccharide and secondary metabolite biosynthesis in Bletilla striata tubers in response to shading. Int J Biol Macromol 2024; 279:135545. [PMID: 39270910 DOI: 10.1016/j.ijbiomac.2024.135545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Polysaccharides and various secondary metabolites are the major bioactive ingredients in Bletilla striata tubers and their biosynthesis and accumulation are influenced by light intensity. However, the mechanisms underlying shading effects remain largely unknown. In the present study, we used a combined analysis of the physiology, metabolome, and transcriptome to investigate the physiological activities and bioactive component accumulation of B. striata under different shading treatments (S0, S50, S70, and S90). The dry weight of shoots and tubers, net photosynthetic rate, and polysaccharide content were highest in S50 and lowest in S90. The content of precursors (sucrose, Glucose-6P, and Mannose-6P) for polysaccharide synthesis significantly increased in S50. However, the expression levels of genes involved in starch biosynthesis decreased in S50. Several structural genes involved in secondary metabolism, including cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS), and 1-Deoxy-D-xylulose-5-phosphate synthase (DXS), showed decreased expression in S50. However, the shading effect on the biosynthesis of secondary metabolites (phenylpropanoids, flavonoids, and terpenoids) was inconsistent. Our study provides the molecular mechanisms underlying the effects of shading on the biosynthesis of polysaccharides and secondary metabolites in B. striata and offers a theoretical basis for the artificial cultivation and industrial production of bioactive ingredients.
Collapse
Affiliation(s)
- Shenping Xu
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yan Zhang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Fang Liang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Suhua Jiang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Suyan Niu
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Ximeng Wang
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yiran Zhou
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Bo Cui
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Xiuyun Yuan
- Research Center of Bioengineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| |
Collapse
|
2
|
Hashemifar Z, Sanjarian F, Naghdi Badi H, Mehrafarin A. Varying levels of natural light intensity affect the phyto-biochemical compounds, antioxidant indices and genes involved in the monoterpene biosynthetic pathway of Origanum majorana L. BMC PLANT BIOLOGY 2024; 24:1018. [PMID: 39465361 PMCID: PMC11514805 DOI: 10.1186/s12870-024-05739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Light is a critical environmental factor in plants, encompassing two vital aspects: intensity and quality. To assess the influence of different light intensities on Origanum majorana L., pots containing the herb were subjected to four levels of light intensity: 20, 50, 70, and 100% natural light. After a 60-day treatment period, the plants were evaluated for metabolite production, including total sugar content, protein, dry weight, antioxidant indices, expression of monoterpenes biosynthesis genes, and essential oil compounds. The experimental design followed a randomized complete blocks format, and statistical analysis of variance was conducted. RESULTS The results indicated a correlation between increased light intensity and elevated total sugar and protein content, which contributed to improved plant dry weight. The highest levels of hydrogen peroxide and malondialdehyde (MDA) were observed under 100% light intensity. Catalase and superoxide dismutase enzymes exhibited increased activity, with a 4.23-fold and 2.14-fold increase, respectively, under full light. In contrast, peroxidase and polyphenol oxidase enzyme activities decreased by 3.29-fold and 3.24-fold, respectively. As light intensity increases, the expression level of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene increases. However, beyond a light intensity of 70%, the DXR gene expression level decreased. Furthermore, the expression levels of the cytochrome P450 genes CYP71D178 and CYP71D179 exhibited an increasing trend in response to elevated light intensity. Essential oil content increased from 0.02 to 0.5% until reaching 70% light intensity. However, with further increases in light intensity, the essential oil content decreased by 54 to 0.23%. CONCLUSIONS These findings emphasize the importance of balancing plant growth promotion and stress management under different light conditions. The research suggests that sweet marjoram plants thrive best in unshaded open spaces, resulting in maximum biomass. However, essential oil production decreases under the same conditions. For farmers in areas with an average light intensity of approximately 1700 µmol m-2s-1, it is recommended to cultivate sweet marjoram in shade-free fields to optimize biomass and essential oil production. Towards the end of the growth cycle, it is advisable to use shades that allow 70% of light to pass through. The specific duration of shade implementation can be further explored in future research.
Collapse
Affiliation(s)
- Zahra Hashemifar
- Department of Plant Bio-Products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316, Iran
| | - Forough Sanjarian
- Department of Plant Bio-Products, Institute of Agricultural Biotechnology (IAB), National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 1497716316, Iran.
| | - Hassanali Naghdi Badi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, 3319118651, Iran.
- Medicinal Plants Research Center, Shahed University, Tehran, 3319118651, Iran.
| | - Ali Mehrafarin
- Medicinal Plants Research Center, Shahed University, Tehran, 3319118651, Iran
| |
Collapse
|
3
|
Zhang T, Zhou L, Han Y, Feng W, Chen C, Wen J, Peng C, He Y. Effects of ensemble-forecasted key environmental factors on the distribution, active constituents, and transcription regulation in Ligusticum chuanxiong Hort. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39450681 DOI: 10.1002/jsfa.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Ligusticum chuanxiong Hort., with over 2000 years of medicinal use and cultivation history, is extensively used in clinical settings for treating heart disease, headache, dysmenorrhea, and amenorrhea. Constructing the geographic distribution pattern of L. chuanxiong and identifying the environmental factors limiting its range, as well as clarifying the effects of key environmental factors on the content of major active constituents and transcription regulation, could provide a scientific foundation for the conservation and effective management of this valuable medicinal resource. RESULTS The results reveal that the predominant environmental factors influencing the distribution were the minimum temperature of the coldest month (Bio6) and solar radiation (Srad), with cumulative account for 87.46% of the importance. Correlation analysis further reveals significant negative correlations between Bio6 and the content of major active constituents in L. chuanxiong, with Srad exhibiting a negative correlation with these constituents. The gene differential expression analysis indicated that the expression levels of some genes associated with growth and active constituent biosynthesis pathways, such as RPT2_13888, UVR8_16871, CLPB3_3155, and 4CLL5_116, varied significantly among locations influenced by differing key environmental factors. Consequently, alterations in the environment were found to influence the gene expression levels within these pathways, resulting in variations in the content of active constituents. CONCLUSIONS These findings contribute to an enhanced understanding of how environmental factors impact the distribution and quality of medicinal plants and offer a theoretical reference for the introduction, cultivation, quality improvement, resource utilization and management of L. chuanxiong. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Ying Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanqing Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
4
|
Eghbal E, Aliniaeifard S, Mehrjerdi MZ, Abdi S, Hassani SB, Rassaie T, Gruda NS. Growth, phytochemical, and phytohormonal responses of basil to different light durations and intensities under constant daily light integral. BMC PLANT BIOLOGY 2024; 24:935. [PMID: 39379825 PMCID: PMC11462769 DOI: 10.1186/s12870-024-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Horticulture in controlled environments has been increasingly used to tackle limitations on crop production. As a crucial environmental factor, light regulate plant growth and metabolism. In the present study, basil plants were subjected to different light durations and intensities considering constant daily light integral (DLI). The lighting environment included 200, 300, and 400 µmol m- 2 s- 1 intensities for 18, 12, and 9 h, respectively. DLI amounted to 12.96 mol m- 2 d- 1 among all light treatments (LI200 for 18 h, LI300 for 12 h, and LI400 for 9 h). Half of the plants under each light treatment were exposed to 30 µmol m- 2 s- 1 of far-red light. The results indicated the general negative impact of LI400/9 on the growth of basils. Exposure to far-red light hurt the growth of the shoot, while it enhanced stem and petiole elongation. This effect was due to higher gibberellin accumulation, which resulted in shade avoidance responses. Exposure to far-red light also reduced anthocyanin and flavonoid contents, as two important nutritional components. Soluble carbohydrates increased, while storage carbohydrates decreased by increasing lighting duration/decreasing light intensity or by far-red light inclusion. The lowest antioxidant activity was detected in LI400/9. In the LI200/18, the highest level of auxin and the lowest level of cytokinin were detected, while the LI300/12 exhibited the highest level of gibberellin hormone. Low light intensity and long photoperiod enhanced plant biomass and phytochemical production and are recommended for basil production in controlled environments.
Collapse
Affiliation(s)
- Elyas Eghbal
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran.
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran.
| | - Mahboobeh Zare Mehrjerdi
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Sahar Abdi
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Tina Rassaie
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Nazim S Gruda
- Department of Horticultural Science, INRES-Institute of Crop Science and Resource Conservation, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
5
|
Ahsan S, Injamum-Ul-Hoque M, Shaffique S, Ayoobi A, Rahman MA, Rahman MM, Choi HW. Illuminating Cannabis sativa L.: The Power of Light in Enhancing C. sativa Growth and Secondary Metabolite Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2774. [PMID: 39409645 PMCID: PMC11479007 DOI: 10.3390/plants13192774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters-quality, intensity, composition, and photoperiod-exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa's metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light's influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use.
Collapse
Affiliation(s)
- S.M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Akhtar Ayoobi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | | | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hyong Woo Choi
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
6
|
Hatami A. Phytochemical profiling and antibacterial activities of Ziziphora tenuior root extracts: a molecular docking against VanA of vancomycin-resistant enterococci. 3 Biotech 2024; 14:217. [PMID: 39220828 PMCID: PMC11362404 DOI: 10.1007/s13205-024-04056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Medicinal plants, renowned for their antibacterial phytocompounds and secondary metabolites, hold significant promise in addressing antibiotic-resistant bacterial strains. This study aimed to conduct phytochemical profiling of the methanolic and dichloromethane extracts of Ziziphora tenuior root using the GC-MS technique. These extracts' antioxidant potential was assessed via DPPH assay and their antibacterial activity was evaluated against S. aureus, E. coli, and VRE bacterial strains. Furthermore, the drug-ligand interactions between the extracts' biocompounds and d-alanyl-d-lactate ligase (VanA) protein of vancomycin-resistant enterococci strains (VRE) were analyzed using molecular docking. Based on the results, 74% of methanolic extract consisted of (3methyl, 24S)-stigmast-5-en-3-ol (which is a β-sitosterol), followed by Tetrasiloxane, decamethyl (15.5%), and 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one (10.5%). Also, the only predominant compound identified in the dichloromethane extract was Benzo[h]quinoline, 2,4-dimethyl-. Both extracts showed antioxidant activity, while the antioxidant activity of the methanolic extract (IC50 = 95.33 μg/ml) was significantly higher than that of the dichloromethane extract (IC50 = 934.23 μg/ml). Also, both extracts displayed substantial antibacterial efficacy against the tested pathogens, particularly against VRE. Moreover, the in silico analysis revealed that (3methyl, 24S)-stigmast-5-en-3-ol and Benzo[h]quinoline,2,4-dimethyl- exhibited notable interactions with VanA through docking energy values of - 9.0 and - 9.1 kcal/mol, respectively. Furthermore, these compounds formed 2 and 1 hydrogen bonds with VanA, respectively, highlighting their potential as effective interactants. These findings provide valuable visions into the therapeutic potentials of these plant-derived biocompounds in combating antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
You HJ, Jo H, Kim JM, Kang ST, Luong NH, Kim YH, Lee S. Exploration and genetic analyses of canopy leaf pigmentation changes in soybean (Glycine max L.): unveiling a novel phenotype. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:202. [PMID: 39134894 PMCID: PMC11319514 DOI: 10.1007/s00122-024-04693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Pigmentation changes in canopy leaves were first reported, and subsequent genetic analyses identified a major QTL associated with levels of pigmentation changes, suggesting Glyma.06G202300 as a candidate gene. An unexpected reddish-purple pigmentation in upper canopy leaves was discovered during the late reproductive stages in soybean (Glycine max L.) genotypes. Two sensitive genotypes, 'Uram' and PI 96983, exhibited anomalous canopy leaf pigmentation changes (CLPC), while 'Daepung' did not. The objectives of this study were to: (i) characterize the physiological features of pigmented canopy leaves compared with non-pigmented leaves, (ii) evaluate phenotypic variation in a combined recombinant inbred line (RIL) population (N = 169 RILs) under field conditions, and (iii) genetically identify quantitative trait loci (QTL) for CLPC via joint population linkage analysis. Comparison between pigmented and normal leaves revealed different Fv/Fm of photosystem II, hyperspectral reflectance, and cellular properties, suggesting the pigmentation changes occur in response to an undefined abiotic stress. A highly significant QTL was identified on chromosome 6, explaining ~ 62.8% of phenotypic variance. Based on the QTL result, Glyma.06G202300 encoding flavonoid 3'-hydroxylase (F3'H) was identified as a candidate gene. In both Uram and PI 96983, a 1-bp deletion was confirmed in the third exon of Glyma.06G202300 that results in a premature stop codon in both Uram and PI 96983 and a truncated F3'H protein lacking important domains. Additionally, gene expression analyses uncovered significant differences between pigmented and non-pigmented leaves. This is the first report of a novel symptom and an associated major QTL. These results will provide soybean geneticists and breeders with valuable knowledge regarding physiological changes that may affect soybean production. Further studies are required to elucidate the causal environmental stress and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun Jo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Ngoc Ha Luong
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Yeong-Ho Kim
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
8
|
Hatami A. Phytochemical characterisation of dichloromethane and methanolic extracts of the Ziziphora tenuior leaves and evaluation of their antioxidant and antibacterial activities. Nat Prod Res 2024:1-8. [PMID: 39086216 DOI: 10.1080/14786419.2024.2386127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Medicinal plants, known for their antibacterial phytocompounds and secondary metabolites, offer promising potential in combating antibiotic-resistant bacteria. This study aimed to perform a phytochemical analysis of the methanol and dichloromethane extracts obtained from Ziziphora tenuior leaves using GC-MS. Furthermore, the antioxidant activity of the extracts was evaluated through the DPPH assay. And, their antibacterial activity was assessed against S. aureus, E. coli, methicillin-resistant S. aureus, and vancomycin-resistant enterococcus (VRE) bacterial strains. Based on the results 90-92% of these extracts consisted of phytocompounds with pharmaceutical properties. Of these, 5-methyl- 2-(1-methylethylidele), Cyclohexanone (Pulegone; C10H16O) comprised the highest percentage of the extracts, constituting 62% of methanolic extract and 81% of dichloromethane extract. Also, both methanolic and dichloromethane extracts showed potent antioxidant activity with IC50 of 277.6 µg/ml and 49.6 µg/ml, respectively. Moreover, these extracts demonstrated considerable antibacterial activity against the tested pathogens, especially against S. aureus and VRE.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Medicinal Chemistry, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Hasanuzzaman M. Variations in photoperiods and their impact on yield, photosynthesis and secondary metabolite production in basil microgreens. BMC PLANT BIOLOGY 2024; 24:712. [PMID: 39060976 PMCID: PMC11282849 DOI: 10.1186/s12870-024-05448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 μmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Dai M, Tan X, Ye Z, Chen X, Zhang Y, Ruan Y, Ma B, Kong D. Analysis of lettuce transcriptome reveals the mechanism of different light/dark cycle in promoting the growth and quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1394434. [PMID: 39045594 PMCID: PMC11263018 DOI: 10.3389/fpls.2024.1394434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Light/dark (L/D) cycle plays a crucial role in controlling the production and quality of vegetables. However, the mechanism of L/D cycle on vegetable growth and quality is scarce studied. To investigate the impact of L/D cycle on lettuce growth and quality, we designed three diel scenarios, including 16 hours of light and 8 hours of darkness (L16/D8), 12 hours of light and 6 hours of darkness (L12/D6), and 8 hours of light and 4 hours of darkness (L8/D4). By phenotypic analysis, we found that lettuce grew taller under the L8/D4 scenario than under L16/D8 light cycle scenarios. The physiological indexes showed that the lettuce leaves grown in the L8/D4 scenario exhibited greater enhancements in the levels of soluble protein, soluble sugar, and carotenoid content compared to the other scenarios. By comparing the expression levels under different diel scenarios (L16/D8 vs L12/D6, L16/D8 vs L8/D4, and L12/D6 vs L8/D4), we identified 7,209 differentially expressed genes (DEGs). Additionally, 3 gene modules that were closely related to L/D cycle of lettuce were selected by WGCNA analysis. The eigengenes of three gene modules were enriched in plant hormone signal transduction, sphingolipid metabolism, and nucleocytoplasmic transport pathways. Through network analysis, we identified six hub genes (CIP1, SCL34, ROPGEF1, ACD6, CcmB, and Rps4) in the three gene modules, which were dominant in plant circadian rhythms and greatly affected lettuce growth. qRT-PCR analysis confirmed the diurnal response patterns of the 6 hub genes in different treatments were significant. This study intensively enhanced our comprehension of the L/D cycle in the growth morphology, nutritional quality, and metabolic pathways of lettuce.
Collapse
Affiliation(s)
- Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuting Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yi Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou, China
| | - Yunjie Ruan
- lnstitute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Academy of Rural Development, Zhejiang University, Hangzhou, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Fu H, Wang Y, Mi F, Wang L, Yang Y, Wang F, Yue Z, He Y. Transcriptome and metabolome analysis reveals mechanism of light intensity modulating iridoid biosynthesis in Gentiana macrophylla Pall. BMC PLANT BIOLOGY 2024; 24:526. [PMID: 38858643 PMCID: PMC11165902 DOI: 10.1186/s12870-024-05217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Light intensity is a key factor affecting the synthesis of secondary metabolites in plants. However, the response mechanisms of metabolites and genes in Gentiana macrophylla under different light intensities have not been determined. In the present study, G. macrophylla seedlings were treated with LED light intensities of 15 µmol/m2/s (low light, LL), 90 µmol/m2/s (medium light, ML), and 200 µmol/m2/s (high light, HL), and leaves were collected on the 5th day for further investigation. A total of 2162 metabolites were detected, in which, the most abundant metabolites were identified as flavonoids, carbohydrates, terpenoids and amino acids. A total of 3313 and 613 differentially expressed genes (DEGs) were identified in the LL and HL groups compared with the ML group, respectively, mainly enriched in KEGG pathways such as carotenoid biosynthesis, carbon metabolism, glycolysis/gluconeogenesis, amino acids biosynthesis, plant MAPK pathway and plant hormone signaling. Besides, the transcription factors of GmMYB5 and GmbHLH20 were determined to be significantly correlated with loganic acid biosynthesis; the expression of photosystem-related enzyme genes was altered under different light intensities, regulating the expression of enzyme genes involved in the carotenoid, chlorophyll, glycolysis and amino acids pathway, then affecting their metabolic biosynthesis. As a result, low light inhibited photosynthesis, delayed glycolysis, thus, increased certain amino acids and decreased loganic acid production, while high light got an opposite trend. Our research contributed significantly to understand the molecular mechanism of light intensity in controlling metabolic accumulation in G. macrophylla.
Collapse
Affiliation(s)
- Huanhuan Fu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Yaomin Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Fakai Mi
- College of Life Science, Qinghai Normal University, Xining, 810016, P.R. China
| | - Li Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Ye Yang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Fang Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Zhenggang Yue
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China.
- College of Life Science, Qinghai Normal University, Xining, 810016, P.R. China.
| | - Yihan He
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China.
| |
Collapse
|
12
|
Yu J, Yang Y, Luo L, Feng F, Saeed S, Luo J, Fang C, Zhou J, Li K. Photoperiod-Dependent Nutrient Accumulation in Rice Cultivated in Plant Factories: A Comparative Metabolomic Analysis. Foods 2024; 13:1544. [PMID: 38790844 PMCID: PMC11121446 DOI: 10.3390/foods13101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Plant factories offer a promising solution to some of the challenges facing traditional agriculture, allowing for year-round rapid production of plant-derived foods. However, the effects of conditions in plant factories on metabolic nutrients remain to be explored. In this study, we used three rice accessions (KongYu131, HuangHuaZhan, and Kam Sweet Rice) as objectives, which were planted in a plant factory with strict photoperiods that are long-day (12 h light/12 h dark) or short-day (8 h light/16 h dark). A total of 438 metabolites were detected in the harvested rice grains. The difference in photoperiod leads to a different accumulation of metabolites in rice grains. Most metabolites accumulated significantly higher levels under the short-day condition than the long-day condition. Differentially accumulated metabolites were enriched in the amino acids and vitamin B6 pathway. Asparagine, pyridoxamine, and pyridoxine are key metabolites that accumulate at higher levels in rice grains harvested from the short-day photoperiod. This study reveals the photoperiod-dependent metabolomic differences in rice cultivated in plant factories, especially the metabolic profiling of taste- and nutrition-related compounds.
Collapse
Affiliation(s)
- Jingyao Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| | - Yu Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| | - Lanjun Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| | - Fang Feng
- Wuhan Greenfafa Institute of Novel Genechip R&D Co., Ltd., Wuhan 430070, China;
| | - Sana Saeed
- Department of Plant Breeding & Genetics, University of Sargodha, Sargodha 40100, Pakistan;
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
| | - Chuanying Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
| | - Junjie Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Life and Health Sciences, Hainan University, Haikou 570288, China
| | - Kang Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| |
Collapse
|
13
|
Contreras-Avilés W, Heuvelink E, Marcelis LFM, Kappers IF. Ménage à trois: light, terpenoids, and quality of plants. TRENDS IN PLANT SCIENCE 2024; 29:572-588. [PMID: 38494370 DOI: 10.1016/j.tplants.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.
Collapse
Affiliation(s)
- Willy Contreras-Avilés
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands; Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Iris F Kappers
- Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Li M, Zhang Y, Yang Y, Wang T, Wu C, Zhang X. Prediction of Historical, Current, and Future Configuration of Tibetan Medicinal Herb Gymnadenia orchidis Based on the Optimized MaxEnt in the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2024; 13:645. [PMID: 38475491 DOI: 10.3390/plants13050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Climate change plays a pivotal role in shaping the shifting patterns of plant distribution, and gaining insights into how medicinal plants in the plateau region adapt to climate change will be instrumental in safeguarding the rich biodiversity of the highlands. Gymnosia orchidis Lindl. (G. orchidis) is a valuable Tibetan medicinal resource with significant medicinal, ecological, and economic value. However, the growth of G. orchidis is severely constrained by stringent natural conditions, leading to a drastic decline in its resources. Therefore, it is crucial to study the suitable habitat areas of G. orchidis to facilitate future artificial cultivation and maintain ecological balance. In this study, we investigated the suitable zones of G. orchidis based on 79 occurrence points in the Qinghai-Tibet Plateau (QTP) and 23 major environmental variables, including climate, topography, and soil type. We employed the Maximum Entropy model (MaxEnt) to simulate and predict the spatial distribution and configuration changes in G. orchidis during different time periods, including the last interglacial (LIG), the Last Glacial Maximum (LGM), the Mid-Holocene (MH), the present, and future scenarios (2041-2060 and 2061-2080) under three different climate scenarios (SSP126, SSP370, and SSP585). Our results indicated that annual precipitation (Bio12, 613-2466 mm) and mean temperature of the coldest quarter (Bio11, -5.8-8.5 °C) were the primary factors influencing the suitable habitat of G. orchidis, with a cumulative contribution of 78.5%. The precipitation and temperature during the driest season had the most significant overall impact. Under current climate conditions, the suitable areas of G. orchidis covered approximately 63.72 × 104/km2, encompassing Yunnan, Gansu, Sichuan, and parts of Xizang provinces, with the highest suitability observed in the Hengduan, Yunlin, and Himalayan mountain regions. In the past, the suitable area of G. orchidis experienced significant changes during the Mid-Holocene, including variations in the total area and centroid migration direction. In future scenarios, the suitable habitat of G. orchidis is projected to expand significantly under SSP370 (30.33-46.19%), followed by SSP585 (1.41-22.3%), while contraction is expected under SSP126. Moreover, the centroids of suitable areas exhibited multidirectional movement, with the most extensive displacement observed under SSP585 (100.38 km2). This study provides a theoretical foundation for the conservation of biodiversity and endangered medicinal plants in the QTP.
Collapse
Affiliation(s)
- Ming Li
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Yi Zhang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Yongsheng Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota and Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Tongxin Wang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiujuan Zhang
- College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
15
|
Zhang Q, Xue R, Mei X, Su L, Zhang W, Li Y, Xu J, Mao J, Mao C, Lu T. A study of volatiles of young citrus fruits from four areas based on GC-MS and flash GC e-nose combined with multivariate algorithms. Food Res Int 2024; 177:113874. [PMID: 38225115 DOI: 10.1016/j.foodres.2023.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
The present study has successfully established a scientific and precise approach for distinguishing the geographical origins of young citrus fruits (Qingpi) from four primary production regions in China, using gas chromatography-mass spectrometry (GC-MS) and flash gas chromatography electronic nose (flash GC e-nose) to analyze the volatile composition and odor characteristics. Through the application of chemometric analysis, a clear differentiation among Qingpi samples was established using GC-MS. Additionally, the application of flash GC e-nose facilitated the extraction of flavor information, which enabled the discrimination of geographical origins. Several flavor components were identified as significant factors for origin certification. Furthermore, two pattern recognition algorithms were employed to achieve high accuracy in regional identification. The results of this investigation demonstrate that the amalgamation of multivariate chemometrics and algorithms can proficiently discern the sources of those young citrus fruits. The findings of this research can provide a reference for the assessment of quality control in food and other agricultural commodities in the times ahead.
Collapse
Affiliation(s)
- Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinguo Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Bai Z, Tang J, Li Y, Li Z, Gu S, Deng L, Zhang Y. Integrated Metabolomics Approach Reveals the Dynamic Variations of Metabolites and Bioactivities in Paeonia ostii 'Feng Dan' Leaves during Development. Int J Mol Sci 2024; 25:1059. [PMID: 38256133 PMCID: PMC10816844 DOI: 10.3390/ijms25021059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Paeonia ostii 'Feng Dan' is widely cultivated in China for its ornamental, medicinal, and edible properties. The whole plant of tree peony is rich in bioactive substances, while the comprehensive understanding of metabolites in the leaves is limited. In this study, an untargeted metabolomics strategy based on UPLC-ESI-TOF-MS was conducted to analyze the dynamic variations of bioactive metabolites in P. ostii 'Feng Dan' leaves during development. A total of 321 metabolites were rapidly annotated based on the GNPS platform, in-house database, and publications. To accurately quantify the selected metabolites, a targeted method of HPLC-ESI-QQQ-MS was used. Albiflorin, paeoniflorin, pentagalloylglucose, luteolin 7-glucoside, and benzoylpaeoniflorin were recognized as the dominant bioactive compounds with significant content variations during leaf development. Metabolite variations during the development of P. ostii 'Feng Dan' leaves are greatly attributed to the variations in antioxidant activities. Among all tested bacteria, the leaf extract exhibited exceptional inhibitory effects against Streptococcus hemolytis-β. This research firstly provides new insights into tree peony leaves during development. The stages of S1-S2 may be the most promising harvesting time for potential use in food or pharmaceutical purposes.
Collapse
Affiliation(s)
- Zhangzhen Bai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Junman Tang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Yajie Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Zhuoning Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Siyi Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.B.); (J.T.); (Y.L.); (Z.L.); (S.G.)
| |
Collapse
|
17
|
Li Y, Yang Y, Li P, Sheng M, Li L, Ma X, Du Z, Tang K, Hao X, Kai G. AaABI5 transcription factor mediates light and abscisic acid signaling to promote anti-malarial drug artemisinin biosynthesis in Artemisia annua. Int J Biol Macromol 2023; 253:127345. [PMID: 37820909 DOI: 10.1016/j.ijbiomac.2023.127345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Artemisia annua, a member of the Asteraceae family, remains the primary source of artemisinin. However, the artemisinin content in the existing varieties of this plant is very low. In this study, we found that the environmental factors light and phytohormone abscisic acid (ABA) could synergistically promote the expression of artemisinin biosynthetic genes. Notably, the increased expression levels of those genes regulated by ABA depended on light. Gene expression analysis found that AaABI5, a transcription factor belonging to the basic leucine zipper (bZIP) family, was inducible by the light and ABA treatment. Analysis of AaABI5-overexpressing and -suppressing lines suggested that AaABI5 could enhance artemisinin biosynthesis and activate the expression of four core biosynthetic genes. In addition, the key regulator of light-induced artemisinin biosynthesis, AaHY5, could bind to the promoter of AaABI5 and activate its expression. In conclusion, our results demonstrated that AaABI5 acts as an important molecular junction for the synergistic promotion of artemisinin biosynthesis by light and ABA signals, which provides a candidate gene for developing new germplasms of high-quality A. annua.
Collapse
Affiliation(s)
- Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pengyang Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Miaomiao Sheng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Joint International Research Laboratory of Metabolic & Developmental Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhiyan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, United States
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Joint International Research Laboratory of Metabolic & Developmental Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
18
|
Pan L, Yang N, Sui Y, Li Y, Zhao W, Zhang L, Mu L, Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023; 13:1193. [PMID: 38132875 PMCID: PMC10745449 DOI: 10.3390/metabo13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.
Collapse
Affiliation(s)
- Liben Pan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
| | - Nan Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yushu Sui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Wen Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua 134002, China;
| | - Liqiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
19
|
Goswami A, Mitra A. Light spectra manipulation stimulates growth, specialized metabolites and nutritional quality in Anethum graveolens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112812. [PMID: 37972447 DOI: 10.1016/j.jphotobiol.2023.112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Light-Emitting Diodes (LED) play a major role in manipulating light spectra that helps in regulating the growth and specialized metabolite synthesis relevant to the plant defence system. In this study, we assessed photosynthetic performance, phytonutrients, and anatomical variations of an aromatic herb Anethum graveolens (also known as dill), grown under various combinations of LED lights viz. red (100R:0B), red:blue (50R:50B); blue (0R:100B) and warm white (WW, served as control). Exposure to 0R:100B LED lights led to the tallest stem height, whereas, the number of leaves were highest under 50R:50B LED lights. The photosynthetic performance was observed to be highest under 50R:50B LED lights. HPLC analysis revealed chlorogenic acid and rosmarinic acid as the major phenolic compounds accumulated under different spectral irradiations. The highest chlorogenic acid content was observed in 50R:50B LED treated dill plants, while 100R:0B light showed the highest accumulation of rosmarinic acid. Dill plants grown under 50R:50B light displayed a relatively higher content of volatile compounds including, myristicin (phenylpropene), psi-limonene, and α-phellandrene (monoterpenoids). Expression analyses of candidate genes of phenylpropanoid and monoterpenoid biosynthetic pathways showed good correlations with the enhanced phenolic compounds and monoterpenes detected under appropriate light treatments. Further, the stem anatomy revealed higher vascularization under the influence of 0R:100B LED lights, whereas, intense histochemical localization of specialized metabolites could be correlated with enhanced accumulation of phenolic compounds and terpenoids observed in this study. Taken together, these studies suggest that proper combinations of blue and red spectra of light could play important role to augment the growth and phytochemical characteristics of dill, thus improving its value addition in the food industry.
Collapse
Affiliation(s)
- Ambika Goswami
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| |
Collapse
|
20
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
21
|
Vera-Urbina JC, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Pedreño MA, Morante-Carriel J, Bru-Martínez R. Factors Affecting the Bioproduction of Resveratrol by Grapevine Cell Cultures under Elicitation. Biomolecules 2023; 13:1529. [PMID: 37892211 PMCID: PMC10605596 DOI: 10.3390/biom13101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Here we present a study of the characterization and optimization of the production of trans-Resveratrol (t-R) in grape (Vitis vinifera cv. Gamay) cell cultures elicited with methyl jasmonate (MeJA) and dimethyl-β-cyclodextrin (DIMEB). The aim of this study was to determine the influence of a number of factors of the grapevine cell culture on t-R production level in 250 mL shaken flasks that would enable the better control of this bioproduction system when it is upscaled to a 2 L stirred bioreactor. The factors included the optimal growth phase for elicitation, the concentration of elicitors and of biomass, the order of addition of elicitors, and the illumination regime and ageing of cells. We found out that the optimal biomass density for the production of t-R was 19% (w/v) with an optimal ratio of 0.5 g DIMEB/g biomass. The most productive concentrations of the elicitors tested were 50 mM DIMEB and 100 µM MeJA, reaching maximum values of 4.18 mg·mL-1 and 16.3 mg·g biomass-1 of t-R concentration and specific production, respectively. We found that the order of elicitor addition matters since, as compared with the simultaneous addition of both elicitors, the addition of MeJA 48 h before DIMEB results in ca. 40% less t-R production, whilst there is no significant difference when MeJA is added 48 h after DIMEB. Upon upscaling, the better conditions tested for t-R production were aeration at 1.7 vol/vol/min without agitation, 24 °C, and 30 g·L-1 sucrose, achieving production rates similar to those obtained in shaken flasks.
Collapse
Affiliation(s)
- Juan Carlos Vera-Urbina
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - Susana Sellés-Marchart
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - Ascensión Martínez-Márquez
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - María José Martínez-Esteso
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Jaime Morante-Carriel
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
- Department of Plant Biotechnology, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Quevedo 120503, Ecuador
| | - Roque Bru-Martínez
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO, 03010 Alicante, Spain
| |
Collapse
|
22
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
23
|
Ma N, Yin D, Liu Y, Gao Z, Cao Y, Chen T, Huang Z, Jia Q, Wang D. Succession of endophytic fungi and rhizosphere soil fungi and their correlation with secondary metabolites in Fagopyrum dibotrys. Front Microbiol 2023; 14:1220431. [PMID: 37601353 PMCID: PMC10434241 DOI: 10.3389/fmicb.2023.1220431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Golden buckwheat (Fagopyrum dibotrys, also known as F. acutatum) is a traditional edible herbal medicinal plant with a large number of secondary metabolites and is considered to be a source of therapeutic compounds. Different ecological environments have a significant impact on their compound content and medicinal effects. However, little is known about the interactions between soil physicochemical properties, the rhizosphere, endophytic fungal communities, and secondary metabolites in F. dibotrys. In this study, the rhizosphere soil and endophytic fungal communities of F. dibotrys in five different ecological regions in China were identified based on high-throughput sequencing methods. The correlations between soil physicochemical properties, active components (total saponins, total flavonoids, proanthocyanidin, and epicatechin), and endophytic and rhizosphere soil fungi of F. dibotrys were analyzed. The results showed that soil pH, soil N, OM, and P were significantly correlated with the active components of F. dibotrys. Among them, epicatechin, proanthocyanidin, and total saponins were significantly positively correlated with soil pH, while proanthocyanidin content was significantly positively correlated with STN, SAN, and OM in soil, and total flavone content was significantly positively correlated with P in soil. In soil microbes, Mortierella, Trechispora, Exophiala, Ascomycota_unclassified, Auricularia, Plectosphaerella, Mycena, Fungi_unclassified, Agaricomycetes_unclassified, Coprinellus, and Pseudaleuria were significantly related to key secondary metabolites of F. dibotrys. Diaporthe and Meripilaceae_unclassified were significantly related to key secondary metabolites in the rhizome. This study presents a new opportunity to deeply understand soil-plant-fungal symbioses and secondary metabolites in F. dibotrys, as well as provides a scientific basis for using biological fertilization strategies to improve the quality of F. dibotrys.
Collapse
Affiliation(s)
- Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyi Huang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Vereshchagin M, Kreslavski V, Ivanov Y, Ivanova A, Kumachova T, Ryabchenko A, Kosobryukhov A, Kuznetsov V, Pashkovskiy P. Investigating the Physiological and Molecular Responses of Solanum lycopersicum hp Mutants to Light of Different Quality for Biotechnological Applications. Int J Mol Sci 2023; 24:10149. [PMID: 37373297 DOI: 10.3390/ijms241210149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The effect of the light of different spectral compositions, white fluorescent light (WFL), red light (RL, 660 nm), blue light (BL, 450 nm), green light (GL, 525 nm), and white LED light (WL, 450 + 580 nm), on the physiological parameters of Solanum lycopersicum 3005 hp-2 (defective for a DET1 gene) and 4012 hp-1w; 3538 hp-1; 0279 hp-1.2 (defective for a DDB1a gene) photomorphogenetic mutants was studied. The parameters of the primary photochemical processes of photosynthesis, photosynthetic and transpiration rates, the antioxidant capacity of low-molecular weight antioxidants, the content of the total phenolic compounds, including flavonoids, and the expression of the genes involved in light signaling and biosynthesis of secondary metabolites were determined. Under BL, the 3005 hp-2 mutant showed the highest nonenzymatic antioxidant activity, which occurred to a greater extent due to the increase in flavonoid content. At the same time, under BL, the number of secretory trichomes on the surface of the leaves of all mutants increased equally. This suggests the accumulation of flavonoids inside leaf cells rather than in trichomes on the leaf surface. The data obtained indicate the possibility of using the hp-2 mutant for biotechnology to increase its nutritional value by enhancing the content of flavonoids and other antioxidants by modulating the spectral composition of light.
Collapse
Affiliation(s)
- Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Yury Ivanov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Alexandra Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Tamara Kumachova
- Department of Plant Physiology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street 49, Moscow 127550, Russia
| | - Andrey Ryabchenko
- Tsitsin Main Botanical Garden, Russian Academy of Sciences, Botanicheskaya Street 4, Moscow 127276, Russia
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| |
Collapse
|
25
|
Phenolic Acids and Amaryllidaceae Alkaloids Profiles in Leucojum aestivum L. In Vitro Plants Grown under Different Light Conditions. Molecules 2023; 28:molecules28041525. [PMID: 36838512 PMCID: PMC9958804 DOI: 10.3390/molecules28041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Light-emitting diodes (LEDs) have emerged as efficient light sources for promoting in vitro plant growth and primary and secondary metabolite biosynthesis. This study investigated the effects of blue, red, and white-red LED lights on plant biomass growth, photosynthetic pigments, soluble sugars, phenolic compounds, the production of Amaryllidaceae alkaloids, and the activities of antioxidant enzymes in Leucojum aestivum L. cultures. A white fluorescent light was used as a control. The plants that were grown under white-red and red light showed the highest fresh biomass increments. The blue light stimulated chlorophyll a, carotenoid, and flavonoid production. The white-red and blue lights were favourable for phenolic acid biosynthesis. Chlorogenic, p-hydroxybenzoic, caffeic, syringic, p-coumaric, ferulic, sinapic, and benzoic acids were identified in plant materials, with ferulic acid dominating. The blue light had a significant beneficial effect both on galanthamine (4.67 µg/g of dry weight (DW)) and lycorine (115 µg/g DW) biosynthesis. Red light treatment increased catalase and superoxide dismutase activities, and high catalase activity was also observed in plants treated with white-red and blue light. This is the first report to provide evidence of the effects of LED light on the biosynthesis of phenolic acid and Amaryllidaceae alkaloids in L. aestivum cultures, which is of pharmacological importance and can propose new strategies for their production.
Collapse
|
26
|
Zhang W, Zeng Y, Jiao M, Ye C, Li Y, Liu C, Wang J. Integration of high-throughput omics technologies in medicinal plant research: The new era of natural drug discovery. FRONTIERS IN PLANT SCIENCE 2023; 14:1073848. [PMID: 36743502 PMCID: PMC9891177 DOI: 10.3389/fpls.2023.1073848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants are natural sources to unravel novel bioactive compounds to satisfy human pharmacological potentials. The world's demand for herbal medicines is increasing year by year; however, large-scale production of medicinal plants and their derivatives is still limited. The rapid development of modern technology has stimulated multi-omics research in medicinal plants, leading to a series of breakthroughs on key genes, metabolites, enzymes involved in biosynthesis and regulation of active compounds. Here, we summarize the latest research progress on the molecular intricacy of medicinal plants, including the comparison of genomics to demonstrate variation and evolution among species, the application of transcriptomics, proteomics and metabolomics to explore dynamic changes of molecular compounds, and the utilization of potential resources for natural drug discovery. These multi-omics research provide the theoretical basis for environmental adaptation of medicinal plants and allow us to understand the chemical diversity and composition of bioactive compounds. Many medicinal herbs' phytochemical constituents and their potential health benefits are not fully explored. Given their large diversity and global distribution as well as the impacts of growth duration and environmental factors on bioactive phytochemicals in medicinal plants, it is crucial to emphasize the research needs of using multi-omics technologies to address basic and applied problems in medicinal plants to aid in developing new and improved medicinal plant resources and discovering novel medicinal ingredients.
Collapse
Affiliation(s)
- Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Yuan Zeng
- School of Plant and Environmental Sciences, Virginia Tech, VA, Blacksburg, United States
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, VA, Blackstone, United States
| | - Meng Jiao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanrong Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| |
Collapse
|
27
|
Ani NI, Okolo KO, Offiah RO. Evaluation of antibacterial, antioxidant, and anti-inflammatory properties of GC/MS characterized methanol leaf extract of Terminalia superba (Combretaceae, Engl. & Diels). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-022-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Terminalia superba is a well-known medicinal plant used in folk medicine for the management of various diseases and swelling. Validation of its efficacy in standardized scientific models is lacking. This gap needs to be filled as a way of enhancing modern drug discovery. The aim is to evaluate the antibacterial, antioxidant, and anti-inflammatory properties of T. superba in known and established models. Also, to establish and possibly correlate the established activity with the phytochemicals identified using GC/MS and qualitative methods.
Results
The result showed a dose-dependent percentage inhibition of DPPH, HO•, and Fe3+ reducing activity. The antibacterial activity showed dose-dependent significant (p < 0.05) inhibition against all the organisms used. The anti-inflammatory activity of METS was confirmed in the carrageenan model with significant (p < 0.05) inhibition of paw volume when compared to control while significantly decreasing (p < 0.05) weight of xylene-induced ear. For instance, after 6 h, there was a reduction of 42%, 33%, and 22% for diclofenac, 200 mg, and 100 mg, respectively, as against 4% in control. The significant (p < 0.05) increase in MDA was attenuated by the treatment with METS dose dependently. Phytochemical assay and GC/MS characterization showed that alkaloids, saponins, phenols, quinone, tannins, coumarins, proteins, flavonoids, and amino acids were dominant with fatty acids accounting for 53%. Others are esters (23%), organic compounds (12%), alkanes (9%), and carboxylic acids (3%).
Conclusions
T. superba possesses antioxidant, antibacterial, and anti-inflammatory properties which are believed to arise from the secondary metabolites observed in the GC–MS characterization.
Graphical Abstract
Collapse
|
28
|
Metabolome analysis, nutrient and antioxidant potential of aerial and underground parts ofAjuga parviflora Benth. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Li T, Li B, Liao C, Zhang H, Wang L, Fu T, Xue S, Sun T, Xu X, Fan X, Li L, Liu G, Yang F, Ma X. Transcriptome analysis provides insights into light condition effect on paclitaxel biosynthesis in yew saplings. BMC PLANT BIOLOGY 2022; 22:577. [PMID: 36503377 PMCID: PMC9743728 DOI: 10.1186/s12870-022-03958-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Taxus is a rare gymnosperm plant that is the sole producer of the anticancer drug paclitaxel. The growth and development of Taxus is affected by environmental factors such as light. However, little is known about how light conditions affect growth and metabolic processes, especially paclitaxel biosynthesis. RESULTS In this study, we applied three different light conditions to Taxus chinensis young saplings and investigated the physiological response and gene expression. Our observations showed that exposure to high light led to oxidative stress, caused photoinhibition, and damaged the photosynthetic systems in T. chinensis. The paclitaxel content in T. chinensis leaves was significantly decreased after the light intensity increased. Transcriptomic analysis revealed that numerous genes involved in paclitaxel biosynthesis and phenylpropanoid metabolic pathways were downregulated under high light. We also analyzed the expression of JA signaling genes, bHLH, MYB, AP2/ERF transcription factors, and the CYP450 families that are potentially related to paclitaxel biosynthesis. We found that several CYP450s, MYB and AP2/ERF genes were induced by high light. These genes may play an important role in tolerance to excessive light or heat stress in T. chinensis. CONCLUSIONS Our study elucidates the molecular mechanism of the effects of light conditions on the growth and development of T. chinensis and paclitaxel biosynthesis, thus facilitating the artificial regeneration of Taxus and enhancing paclitaxel production.
Collapse
Affiliation(s)
- Taotao Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Chunli Liao
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Huamin Zhang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Lianzhe Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Taotao Fu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Shouyu Xue
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Tao Sun
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Xiaolan Xu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Xin Fan
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Le Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Genglin Liu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Fengling Yang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467036 Henan China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
30
|
Kuttithodi AM, Nikhitha D, Jacob J, Narayanankutty A, Mathews M, Olatunji OJ, Rajagopal R, Alfarhan A, Barcelo D. Antioxidant, Antimicrobial, Cytotoxicity, and Larvicidal Activities of Selected Synthetic Bis-Chalcones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238209. [PMID: 36500302 PMCID: PMC9740027 DOI: 10.3390/molecules27238209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Plants are known to have numerous phytochemicals and other secondary metabolites with numerous pharmacological and biological properties. Among the various compounds, polyphenols, flavonoids, anthocyanins, alkaloids, and terpenoids are the predominant ones that have been explored for their biological potential. Among these, chalcones and bis-chalcones are less explored for their biological potential under in vitro experiments, cell culture models, and animal studies. In the present study, we evaluated six synthetic bis-chalcones that were different in terms of their aromatic cores, functional group substitution, and position of substitutions. The results indicated a strong antioxidant property in terms of DPPH and ABTS radical-scavenging potentials and ferric-reducing properties. In addition, compounds 1, 2, and 4 exhibited strong antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enteritidis. The disc diffusion assay values were indicative of the antibacterial properties of these compounds. Overall, the study indicated the antioxidant and antimicrobial properties of the compounds. Our preliminary studies point to the potential of this class of compounds for further in vivo investigation.
Collapse
Affiliation(s)
- Aswathi Moothakoottil Kuttithodi
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Divakaran Nikhitha
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Jisha Jacob
- Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 680 555, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
- Correspondence: (A.N.); (O.J.O.)
| | - Manoj Mathews
- PG and Research Department of Chemistry, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Correspondence: (A.N.); (O.J.O.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damia Barcelo
- Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
31
|
Yang J, Huang Y, Jiang X, Chen H, Liu M, Wang R. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Xie G, Zou X, Liang Z, Wu D, He J, Xie K, Jin H, Wang H, Shen Q. Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity. FRONTIERS IN PLANT SCIENCE 2022; 13:976449. [PMID: 36212297 PMCID: PMC9540795 DOI: 10.3389/fpls.2022.976449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The perilla anthocyanins have important medicinal and ornamental value, and their contents are significantly affected by light intensity. In view of their molecular mechanisms were not well understood, we integrated the metabolomic and transcriptomic analyses of the light-sensitive perilla variety under different light intensity. The perilla leave color were obviously affected under different treatments. Totally 140 flavonoid metabolites and 2461 genes showed steady change, among which 60 flavonoid metabolites were increased accumulation and 983 genes were upregulated expression under elevated light intensity treatment. Light treatment prominently affected the expression of genes involved in the main anthocyanin metabolites accumulation in perilla leaves. Using WGCNA analysis, we identified 4 key genes in anthocyanin biosynthesis pathway (CHI, DFR, and ANS) and 147 transcription factors (MYB, bHLH, bZIP, ERF, and NAC) involved in malonylshisonin biosynthesis. Among them, 6 MYBs and 4 bZIPs were predicted to play important roles in light regulation of malonylshisonin biosynthesis based on phylogenetic construction, correlation analysis, cis-acting element identification and qPCR verification. The identified key genes and regulatory factors will help us to understand the potential mechanism of photo-regulated anthocyanin accumulation in perilla.
Collapse
|
33
|
Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought. Int J Mol Sci 2022; 23:ijms23158441. [PMID: 35955577 PMCID: PMC9368996 DOI: 10.3390/ijms23158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low light and drought often limit the growth and performance of Masson pines (Pinus massoniana) in the subtropical forest ecosystem of China. We speculated that stress-induced defensive secondary metabolites, such as flavonoids and terpenoids, might influence the growth of Masson pines, considering the existence of tradeoffs between growth and defense. However, the mechanisms of Masson pines responsive to low light and drought at the levels of these two metabolites remain unclear. In the present work, the compositions of flavonoids and terpenoids, as well as their biosynthetic pathways, were revealed through metabolome and transcriptome analyses, respectively, coupled with a study on carbon allocation using a 13CO2-pulse-labeling experiment in two-year-old seedlings under low light (LL), drought (DR), and their combined stress (DL) compared to a control (CK). A total of 35 flavonoids and derivatives (LL vs. CK: 18; DR vs. CK: 20; and DL vs. CK: 18), as well as 29 terpenoids and derivatives (LL vs. CK: 23; DR vs. CK: 13; and DL vs. CK: 7), were differentially identified in the leaves. Surprisingly, most of them were decreased under all three stress regimes. At the transcriptomic level, most or all of the detected DEGs (differentially expressed genes) involved in the biosynthetic pathways of flavonoids and terpenoids were downregulated in phloem and xylem under stress treatments. This indicated that stress treatments limited the production of flavonoids and terpenoids. The reduction in the 13C allocation to stems might suggest that it is necessary for maintaining the growth of Masson pine seedlings at the whole-plant level by attenuating energetic resources to the biosynthetic pathways of flavonoids and terpenoids when facing the occurrence of adverse environments. Our results provide new insight into understanding the acclimation strategy of Masson pines or other conifers in adverse environments.
Collapse
|
34
|
Effects of Laser Irradiation at 488, 514, 532, 552, 660, and 785 nm on the Aqueous Extracts of Plantago lanceolata L.: A Comparison on Chemical Content, Antioxidant Activity and Caco-2 Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, six laser radiation (488 nm/40 mW, 514 nm/15 mW, 532 nm/20 mW, 552 nm/15 mW, 660 nm/ 75 mW, and at 785 nm/70 mW) were tested on the aqueous extracts of leaves of Plantago lanceolata L. to compare extraction efficacy and antioxidant and cell viability effects in vitro. Briefly, in comparison with the control extract, laser extracts at 488, 514, 532, and 552 nm revealed small acquisitions of total extractible compounds in samples (up to 6.52%; laser extracts at 488 and 532 nm also revealed minerals and micro-elements increases (up to 6.49%); the most prominent results were obtained upon Fe (up to 38%, 488 nm), Cr (up to 307%, 660 nm), and Zn (up to 465%, 532 nm). Laser extracts at 488, 514, 552, and 785 nm proved more intense antioxidant capacity than the control sample, while laser extract at 660 nm indicated clear pro-oxidant effects. Caco-2 cells study indicated stimulatory activity for the extracts at 488 nm, no effects at 532 nm, and the decrease of the cell viability in the case of extracts at 660 nm respectively. Further studies are necessary to understand the pro-oxidant effects observed in the case of extracts exposed to laser radiation at 660 nm.
Collapse
|
35
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|