1
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
2
|
Wang S, Zhang L, Zhang L, Yong K, Chen T, Cao L, Lu M. SlMDH3 Interacts with Autophagy Receptor Protein SlATI1 and Positively Regulates Tomato Heat Tolerance. Int J Mol Sci 2024; 25:7000. [PMID: 39000108 PMCID: PMC11241746 DOI: 10.3390/ijms25137000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Autophagy, a highly conserved protein degradation system, plays an important role in protecting cells from adverse environmental conditions. ATG8-INTERACTING PROTEIN1 (ATI1) acts as an autophagy receptor, but its functional mechanisms in plants' heat stress tolerance remain unclear. In this study, using LC-MS/MS, we identified malate dehydrogenase (SlMDH3) as a SlATI1-interacting protein. Further studies showed that heat stress induced the expression of SlMDH3 and SlMDH3 co-localized with SlATI1 under both 22 °C and 42 °C heat treatment conditions. Moreover, silencing of SlMDH3 increased the sensitivity of tomato to heat stress, as evidenced by exacerbated degradation of chlorophyll; accumulation of MDA, H2O2, and dead cells; increased relative conductivity; and inhibition of stress-related gene expression. Conversely, overexpression of SlMDH3 improved tomato's heat tolerance, leading to opposite effects on physiological indicators and gene expression compared to SlMDH3 silencing. Taken together, our study suggests that SlMDH3 interacts with SlATI1 and positively regulates tomato heat tolerance.
Collapse
Affiliation(s)
- Sitian Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Li Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Tao Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| | - Lijun Cao
- Department of Biology, Duke University, Durham, NC 27708, USA;
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (L.Z.); (L.Z.); (K.Y.); (T.C.)
| |
Collapse
|
3
|
Graci S, Cigliano RA, Barone A. Exploring the gene expression network involved in the heat stress response of a thermotolerant tomato genotype. BMC Genomics 2024; 25:509. [PMID: 38783170 PMCID: PMC11112777 DOI: 10.1186/s12864-024-10393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The increase in temperatures due to the current climate change dramatically affects crop cultivation, resulting in yield losses and altered fruit quality. Tomato is one of the most extensively grown and consumed horticultural products, and although it can withstand a wide range of climatic conditions, heat stress can affect plant growth and development specially on the reproductive stage, severely influencing the final yield. In the present work, the heat stress response mechanisms of one thermotolerant genotype (E42) were investigated by exploring its regulatory gene network. This was achieved through a promoter analysis based on the identification of the heat stress elements (HSEs) mapping in the promoters, combined with a gene co-expression network analysis aimed at identifying interactions among heat-related genes. RESULTS Results highlighted 82 genes presenting HSEs in the promoter and belonging to one of the 52 gene networks obtained by the GCN analysis; 61 of these also interact with heat shock factors (Hsfs). Finally, a list of 13 candidate genes including two Hsfs, nine heat shock proteins (Hsps) and two GDSL esterase/lipase (GELPs) were retrieved by focusing on those E42 genes exhibiting HSEs in the promoters, interacting with Hsfs and showing variants, compared to Heinz reference genome, with HIGH and/or MODERATE impact on the translated protein. Among these, the Gene Ontology annotation analysis evidenced that only LeHsp100 (Solyc02g088610) belongs to a network specifically involved in the response to heat stress. CONCLUSIONS As a whole, the combination of bioinformatic analyses carried out on genomic and trascriptomic data available for tomato, together with polymorphisms detected in HS-related genes of the thermotolerant E42 allowed to determine a subset of candidate genes involved in the HS response in tomato. This study provides a novel approach in the investigation of abiotic stress response mechanisms and further studies will be conducted to validate the role of the highlighted genes.
Collapse
Affiliation(s)
- Salvatore Graci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | | | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy.
| |
Collapse
|
4
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
5
|
Bjerring Jensen N, Vrobel O, Akula Nageshbabu N, De Diego N, Tarkowski P, Ottosen CO, Zhou R. Stomatal effects and ABA metabolism mediate differential regulation of leaf and flower cooling in tomato cultivars exposed to heat and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2156-2175. [PMID: 38207009 DOI: 10.1093/jxb/erad498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Co-occurring heat and drought stresses challenge crop performance. Stomata open to promote evaporative cooling during heat stress, but close to retain water during drought stress, which resulted in complex stomatal regulation under combined heat and drought. We aimed to investigate stomatal regulation in leaves and flowers of perennial, indeterminate cultivars of tomatoes subjected to individual and combined heat and drought stress followed by a recovery period, measuring morphological, physiological, and biochemical factors involved in stomatal regulation. Under stress, stomata of leaves were predominantly affected by drought, with lower stomatal density and stomatal closing, resulting in significantly decreased photosynthesis and higher leaf temperature. Conversely, stomata in sepals seemed affected mainly by heat during stress. The differential patterns in stomatal regulation in leaves and flowers persisted into the recovery phase as contrasting patterns in stomatal density. We show that flower transpiration is regulated by temperature, but leaf transpiration is regulated by soil water availability during stress. Organ-specific patterns of stomatal development and abscisic acid metabolism mediated this phenomenon. Our results throw light on the dual role of stomata in heat and drought tolerance of vegetative and generative organs, and demonstrate the importance of considering flower surfaces in the phenotyping of stomatal reactions to stress.
Collapse
Affiliation(s)
- Nikolaj Bjerring Jensen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Nagashree Akula Nageshbabu
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Carl-Otto Ottosen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Rong Zhou
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Todaka D, Quynh DTN, Tanaka M, Utsumi Y, Utsumi C, Ezoe A, Takahashi S, Ishida J, Kusano M, Kobayashi M, Saito K, Nagano AJ, Nakano Y, Mitsuda N, Fujiwara S, Seki M. Application of ethanol alleviates heat damage to leaf growth and yield in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1325365. [PMID: 38439987 PMCID: PMC10909983 DOI: 10.3389/fpls.2024.1325365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Chemical priming has emerged as a promising area in agricultural research. Our previous studies have demonstrated that pretreatment with a low concentration of ethanol enhances abiotic stress tolerance in Arabidopsis and cassava. Here, we show that ethanol treatment induces heat stress tolerance in tomato (Solanum lycopersicon L.) plants. Seedlings of the tomato cultivar 'Micro-Tom' were pretreated with ethanol solution and then subjected to heat stress. The survival rates of the ethanol-pretreated plants were significantly higher than those of the water-treated control plants. Similarly, the fruit numbers of the ethanol-pretreated plants were greater than those of the water-treated ones. Transcriptome analysis identified sets of genes that were differentially expressed in shoots and roots of seedlings and in mature green fruits of ethanol-pretreated plants compared with those in water-treated plants. Gene ontology analysis using these genes showed that stress-related gene ontology terms were found in the set of ethanol-induced genes. Metabolome analysis revealed that the contents of a wide range of metabolites differed between water- and ethanol-treated samples. They included sugars such as trehalose, sucrose, glucose, and fructose. From our results, we speculate that ethanol-induced heat stress tolerance in tomato is mainly the result of increased expression of stress-related genes encoding late embryogenesis abundant (LEA) proteins, reactive oxygen species (ROS) elimination enzymes, and activated gluconeogenesis. Our results will be useful for establishing ethanol-based chemical priming technology to reduce heat stress damage in crops, especially in Solanaceae.
Collapse
Affiliation(s)
- Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Do Thi Nhu Quynh
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Agricultural Genetics Institute, Hanoi, Vietnam
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junko Ishida
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Miyako Kusano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Atsushi J. Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yoshimi Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| |
Collapse
|
7
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
8
|
Mizoi J, Todaka D, Imatomi T, Kidokoro S, Sakurai T, Kodaira KS, Takayama H, Shinozaki K, Yamaguchi-Shinozaki K. The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1269964. [PMID: 37868310 PMCID: PMC10585066 DOI: 10.3389/fpls.2023.1269964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars.
Collapse
Affiliation(s)
- Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Todaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Imatomi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kidokoro
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Nankoku, Japan
| | - Ken-Suke Kodaira
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Zhang X, Li J, Li M, Zhang S, Song S, Wang W, Wang S, Chang J, Xia Z, Zhang S, Jia H. NtHSP70-8b positively regulates heat tolerance and seed size in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107901. [PMID: 37494824 DOI: 10.1016/j.plaphy.2023.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Heat stress considerably restricts the geographical distribution of crops and affects their growth, development, and productivity. HSP70 plays a critical regulatory role in plant growth response to heat stress. However, the mechanisms of this regulatory remain poorly understood. Here, an HSP70 gene, NtHSP70-8b, which is involved in the heat stress response of tobacco, was cloned and identified. The expression of NtHSP70-8b was induced by exogenous abscisic acid (ABA) treatment and abiotic stress, including heat, drought, and salt. Notably, high NtHSP70-8b expression occurred under heat stress conditions, which was consistent with the β-glucuronidase histochemical analysis. Moreover, NtHSP70-8b overexpression markedly enhanced heat stress tolerance by changing the stomatal conductance and antioxidant capacity in tobacco leaves. qRT-PCR showed that the expression levels of ABA synthesis and response genes (NtNCED3 and NtAREB), stress defence genes (NtERD10C and NtLEA5), and other HSP genes (NtHSP90 and NtHSP26a) in NtHSP70-8b-overexpressing tobacco were high under heat stress. The interaction of NtHSP70-8b with NtHSP26a was further confirmed by a luciferase complementation imaging assay. In contrast, NtHSP70-8b knockout mutants showed significantly reduced antioxidant capacity compared to the wild type (WT) under heat stress conditions, suggesting that NtHSP70-8b acts as a positive regulator of heat stress in tobacco. Moreover, NtHSP70-8b overexpression increased the 1000-seed weight. Taken together, NtHSP70-8b is involved in the heat stress response, and NtHSP70-8b overexpression contributed to enhanced tolerance to heat stress, which is thus an essential gene with potential application value for developing heat stress-tolerant crops.
Collapse
Affiliation(s)
- Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Juxu Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Man Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuaitao Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Song
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weimin Wang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, China
| | - Shuai Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianbo Chang
- Sanmenxia Branch of Henan Provincial Tobacco Corporation, Sanmenxia, 472000, China
| | - Zongliang Xia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Songtao Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Hongfang Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Sun Y, Jia X, Chen D, Fu Q, Chen J, Yang W, Yang H, Xu X. Genome-Wide Identification and Expression Analysis of Cysteine-Rich Polycomb-like Protein (CPP) Gene Family in Tomato. Int J Mol Sci 2023; 24:ijms24065762. [PMID: 36982833 PMCID: PMC10058331 DOI: 10.3390/ijms24065762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The cysteine-rich polycomb-like protein (CPP) gene family is a class of transcription factors containing conserved cysteine-rich CRC structural domains that is involved in the regulation of plant growth and stress tolerance to adversity. Relative to other gene families, the CPP gene family has not received sufficient attention. In this study, six SlCPPs were identified for the first time using the most recent genome-wide identification data of tomato. Subsequently, a phylogenetic analysis classified SlCPPs into four subfamilies. The analysis of cis-acting elements in the promoter indicates that SlCPPs are involved in plant growth and development and also stress response. We present for the first time the prediction of the tertiary structure of these SlCPPs proteins using the AlphaFold2 artificial intelligence system developed by the DeepMind team. Transcriptome data analysis showed that SlCPPs were differentially expressed in different tissues. Gene expression profiling showed that all SlCPPs except SlCPP5 were up-regulated under drought stress; SlCPP2, SlCPP3 and SlCPP4 were up-regulated under cold stress; SlCPP2 and SlCPP5 were up-regulated under salt stress; all SlCPPs were up-regulated under inoculation with Cladosporium fulvum; and SlCPP1, SlCPP3, and SlCPP4 were up-regulated under inoculation with Stemphylium lycopersici. We performed a virus-induced gene silencing experiment on SlCPP3, and the results indicated that SlCPP3 was involved in the response to drought stress. Finally, we predicted the interaction network of the key gene SlCPP3, and there was an interaction relationship between SlCPP3 and 10 genes, such as RBR1 and MSI1. The positive outcome showed that SlCPPs responded to environmental stress. This study provides a theoretical and empirical basis for the response mechanisms of tomato in abiotic stresses.
Collapse
Affiliation(s)
- Yaoguang Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyi Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Dexia Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Qingjun Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jinxiu Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Tokić M, Leljak Levanić D, Ludwig-Müller J, Bauer N. Growth and Molecular Responses of Tomato to Prolonged and Short-Term Heat Exposure. Int J Mol Sci 2023; 24:ijms24054456. [PMID: 36901887 PMCID: PMC10002527 DOI: 10.3390/ijms24054456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Tomatoes are one of the most important vegetables for human consumption. In the Mediterranean's semi-arid and arid regions, where tomatoes are grown in the field, global average surface temperatures are predicted to increase. We investigated tomato seed germination at elevated temperatures and the impact of two different heat regimes on seedlings and adult plants. Selected exposures to 37 °C and heat waves at 45 °C mirrored frequent summer conditions in areas with a continental climate. Exposure to 37 °C or 45 °C differently affected seedlings' root development. Both heat stresses inhibited primary root length, while lateral root number was significantly suppressed only after exposure to 37 °C. Heat stress treatments induced significant accumulation of indole-3-acetic acid (IAA) and reduced abscisic acid (ABA) levels in seedlings. As opposed to the heat wave treatment, exposure to 37 °C increased the accumulation of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which may have been involved in the root architecture modification of seedlings. Generally, more drastic phenotypic changes (chlorosis and wilting of leaves and bending of stems) were found in both seedlings and adult plants after the heat wave-like treatment. This was also reflected by proline, malondialdehyde and heat shock protein HSP90 accumulation. The gene expression of heat stress-related transcription factors was perturbed and DREB1 was shown to be the most consistent heat stress marker.
Collapse
Affiliation(s)
- Mirta Tokić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Dunja Leljak Levanić
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606263
| |
Collapse
|
12
|
Fernández-Crespo E, Liu-Xu L, Albert-Sidro C, Scalschi L, Llorens E, González-Hernández AI, Crespo O, Gonzalez-Bosch C, Camañes G, García-Agustín P, Vicedo B. Exploiting Tomato Genotypes to Understand Heat Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3170. [PMID: 36432899 PMCID: PMC9696584 DOI: 10.3390/plants11223170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Increased temperatures caused by climate change constitute a significant threat to agriculture and food security. The selection of improved crop varieties with greater tolerance to heat stress is crucial for the future of agriculture. To overcome this challenge, four traditional tomato varieties from the Mediterranean basin and two commercial genotypes were selected to characterize their responses at high temperatures. The screening of phenotypes under heat shock conditions allowed to classify the tomato genotypes as: heat-sensitive: TH-30, ADX2; intermediate: ISR-10 and Ailsa Craig; heat-tolerant: MM and MO-10. These results reveal the intra-genetical variation of heat stress responses, which can be exploited as promising sources of tolerance to climate change conditions. Two different thermotolerance strategies were observed. The MO-10 plants tolerance was based on the control of the leaf cooling mechanism and the rapid RBOHB activation and ABA signaling pathways. The variety MM displayed a different strategy based on the activation of HSP70 and 90, as well as accumulation of phenolic compounds correlated with early induction of PAL expression. The importance of secondary metabolism in the recovery phase has been also revealed. Understanding the molecular events allowing plants to overcome heat stress constitutes a promising approach for selecting climate resilient tomato varieties.
Collapse
Affiliation(s)
- Emma Fernández-Crespo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Luisa Liu-Xu
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Carlos Albert-Sidro
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Oscar Crespo
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, 46980 Valencia, Spain
| | - Carmen Gonzalez-Bosch
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, 46980 Valencia, Spain
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Begonya Vicedo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
13
|
Cui X, Liu S, Zhang L, Guo X, Li T, Zhang X, Wang Q, Zeng W, Huang J, Duan Q, Cao Y. Endophytic extract Zhinengcong alleviates heat stress-induced reproductive defect in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:977881. [PMID: 36092397 PMCID: PMC9454194 DOI: 10.3389/fpls.2022.977881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
High temperature negatively affects reproductive process significantly, leading to tremendous losses in crop quality and yield. Zhinengcong (ZNC), a crude extract from the endophytic fungus Paecilomyces variotii, has been shown to improve plant growth and resistance to biotic and abiotic stresses. We show here that ZNC can also alleviate heat stress-induced reproductive defects in Solanum lycopersicum, such as short-term heat-induced inhibition on pollen viability, germination and tube growth, and long-term heat stress-induced pollen developmental defects. We further demonstrated that ZNC alleviates heat stress by downregulating the expressions of ROS production-related genes, RBOHs, and upregulating antioxidant related genes and the activities of the corresponding enzymes, thus preventing the over accumulation of heat-induced reactive oxygen species (ROS) in anther, pollen grain and pollen tube. Furthermore, spraying application of ZNC onto tomato plants under long-term heat stress promotes fruit and seed bearing in the field. In summary, plant endophytic fungus extract ZNC promotes the reproductive process and yield of tomato plants under heat stress and presents excellent potential in agricultural applications.
Collapse
Affiliation(s)
- Xiaoshuang Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shangjia Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lina Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xinping Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiaoyu Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
| | - Weiqing Zeng
- Trait Discovery, Corteva Agriscience, Johnston, IA, United States
| | - Jiabao Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Yunyun Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
14
|
Zenda T, Wang N, Dong A, Zhou Y, Duan H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int J Mol Sci 2022; 23:6929. [PMID: 35805930 PMCID: PMC9266455 DOI: 10.3390/ijms23136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Reproductive-stage heat stress (RSHS) poses a major constraint to cereal crop production by damaging main plant reproductive structures and hampering reproductive processes, including pollen and stigma viability, pollination, fertilization, grain setting and grain filling. Despite this well-recognized fact, research on crop heat stress (HS) is relatively recent compared to other abiotic stresses, such as drought and salinity, and in particular, RSHS studies in cereals are considerably few in comparison with seedling-stage and vegetative-stage-centered studies. Meanwhile, climate change-exacerbated HS, independently or synergistically with drought, will have huge implications on crop performance and future global food security. Fortunately, due to their sedentary nature, crop plants have evolved complex and diverse transient and long-term mechanisms to perceive, transduce, respond and adapt to HS at the molecular, cell, physiological and whole plant levels. Therefore, uncovering the molecular and physiological mechanisms governing plant response and tolerance to RSHS facilitates the designing of effective strategies to improve HS tolerance in cereal crops. In this review, we update our understanding of several aspects of RSHS in cereals, particularly impacts on physiological processes and yield; HS signal perception and transduction; and transcriptional regulation by heat shock factors and heat stress-responsive genes. We also discuss the epigenetic, post-translational modification and HS memory mechanisms modulating plant HS tolerance. Moreover, we offer a critical set of strategies (encompassing genomics and plant breeding, transgenesis, omics and agronomy) that could accelerate the development of RSHS-resilient cereal crop cultivars. We underline that a judicious combination of all of these strategies offers the best foot forward in RSHS tolerance improvement in cereals. Further, we highlight critical shortcomings to RSHS tolerance investigations in cereals and propositions for their circumvention, as well as some knowledge gaps, which should guide future research priorities. Overall, our review furthers our understanding of HS tolerance in plants and supports the rational designing of RSHS-tolerant cereal crop cultivars for the warming climate.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Yuzhi Zhou
- Library Department, Hebei Agricultural University, Baoding 071001, China;
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China; (T.Z.); (N.W.); (A.D.)
- Department of Crop Genetics and Breeding, College o Agronomy, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
15
|
Farinon B, Picarella ME, Mazzucato A. Dynamics of Fertility-Related Traits in Tomato Landraces under Mild and Severe Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:881. [PMID: 35406862 PMCID: PMC9002612 DOI: 10.3390/plants11070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Studies on the reproductive dynamics under heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been evaluated for their response to heat stress. Here, we addressed the study to a panel of selected landraces representing traditional genotypes that usually show high adaptation to local environments. In two experiments, spaced by 12 years, we set-up an identical experimental design with plants transplanted at two different dates to expose the second field to thermic stress with natural fluctuations. Such a strategy resulted in both a mild and severe stress in the two years. The landraces showed wide variation for both vegetative and reproductive traits; all traits were affected by heat, mostly with a significant Genotype*Environment interaction. A high broad-sense heritability was estimated for plant height, stigma position, pollen viability, and fruit weight. Low heritability estimates were found for the number of flowers, fruit set, and yield. Despite the interaction, traits recorded under control and heat conditions were positively correlated. Multivariate analysis located the genotypes in a topography that was stable under all conditions, except under the harshest temperatures. The study revealed that landraces present a wide variability for the response of reproductive traits to thermic challenges and that such a variation could be useful to dissect the traits with higher heritability and identify quantitative trait loci for breeding more resilient varieties.
Collapse
|