1
|
Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00859. [PMID: 39308938 PMCID: PMC11415593 DOI: 10.1016/j.btre.2024.e00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Plants have an impact on the economy because they are used in the food and medical industries. Plants are a source of macro- and micronutrients for the health of humans and animals; however, the rise in microbial diseases has put plant health and yield at risk. Because there are insufficient controls, microbial infections annually impact approximately 25 % of the world's plant crops. Alternative strategies, such as biocontrol, are required to fight these illnesses. This review discusses the potential uses of recently discovered microorganisms because they are safe, effective, and unlikely to cause drug resistance. They have no negative effects on soil microbiology or the environment because they are environmentally benign. Biological control enhances indigenous microbiomes by reducing bacterial wilt, brown blotch, fire blight, and crown gall. More research is required to make these biocontrol agents more stable, effective, and less toxic before they can be used in commercial settings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais Belo Horizonte, Brazil
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663, Kaiserslautern, Germany
| | - Bushra Ijaz
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Najeeba Parre Paker
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
2
|
De Coninck T, Desmet T, Van Damme EJM. Carbohydrate-active enzymes involved in rice cell wall metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6206-6227. [PMID: 38980746 DOI: 10.1093/jxb/erae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals. Recent advancements have contributed to a better understanding of the grass/cereal cell wall. This review brings together current knowledge of the organization and metabolism of the rice cell wall, and addresses gaps in the information regarding the cell wall and enzymes involved. Several cell wall fractions, including cellulose, mixed-linkage glucans, and glucuronoarabinoxylans, are well understood in rice and other grasses/grains. Conversely, there are still open questions and missing links in relation to xyloglucans, glucomannans, pectin, lignin, and arabinogalactan proteins. There is still a large and untapped potential to identify carbohydrate-active enzymes (CAZymes), to characterize their activity, and to elucidate their involvement in the metabolism of the mentioned cell wall fractions. This review highlights the involvement of carbohydrate-active enzymes in rice cell wall metabolism, providing an update of current understanding with the aim of demarcating research areas with potential for further investigations.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory for Biochemistry & Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Sidhu D, Vasundhara M, Dey P. Chemical characterization, pathway enrichments and bioactive potentials of catechin-producing endophytic fungi isolated from tea leaves. RSC Adv 2024; 14:33034-33047. [PMID: 39434990 PMCID: PMC11492194 DOI: 10.1039/d4ra05758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Endophytes acquire flavonoid biosynthetic genes from the host medicinal plants. Despite tea (Camellia sinensis (L.) Kuntze) being the major source of bioactive catechins, catechin-producing endophytic fungi have never been reported from the tea plant. Here, we report the isolation and characterization of catechin-producing endophytic fungi isolated from tea leaves, their chemical characterization, and associated bioactivities. Among the nine isolated endophytes, two (CSPL6 and CSPL5b) produced catechin (381.48 and 166.40 μg per mg extract) and epigallocatechin-o-gallate (EGCG; 484.41 and 281.99 μg per mg extract) as quantified by high-performance liquid chromatography (HPLC). The isolates were identified as Pseudopestalotiopsis camelliae-sinensis and Didymella sinensis based on molecular and morphological characterization. Untargeted metabolomics using gas-chromatography mass spectroscopy (GCMS) revealed the presence of several bioactive phytochemicals mostly belonging to tyrosols, pyridoxines, fatty acids, aminopyrimidine, and benzenetriol classes. Metabolic pathways pertaining to the biosynthesis of unsaturated fatty acids (UFAs), butanoate metabolism, and linoleic acid metabolism were highly enriched in both catechin-producing isolates. The isolates were able to differentially scavenge intracellular O2 and N2 free-radicals, but CSPL5b demonstrated relatively superior bioactivities compared to CSPL6. Both isolates stimulated the growth of various probiotic strains, indicating prebiotic effects that are otherwise known to be associated with catechins. Collectively, the current study demonstrated that fungal endophytes CSPL6 and CSPL5b, isolated from tea leaves, could be used as alternative sources of catechins, and hold promising potential in evidence-based therapeutics.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| |
Collapse
|
4
|
Tuerdibieke M, Tian X, An X, Feng Y, Liu W. Isolation and identification of endophytic fungi from Alhagi sparsifolia Shap. and their antibacterial activity. Heliyon 2024; 10:e39003. [PMID: 39430480 PMCID: PMC11490818 DOI: 10.1016/j.heliyon.2024.e39003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
In order to explore the endophytic resources of Alhagi sparsifolia Shap. and identified novel antibacterial substances. Thirty endophytic fungal strains were isolated from the stems and roots of A. sparsifolia Shap. Morphological and molecular biology methods were used to identify ten strains of fungi, including four strains of Aspergillus niger, three strains of Alternaria alternata, two strains of Aspergillus flavus, and one strain of Fusarium incarnatum. All these strains were isolated from A. sparsifolia Shap. for the first time, and of these Aspergillus was the dominant genus. Antibacterial activity of the ten strains against Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa were evaluated using the disc diffusion method. The results demonstrated that the metabolites from all the strains had inhibitory effects on at least one indicator bacterium. Notably, the endophytic fungi AFJ3 and AFG6 demonstrated strong broad-spectrum antibacterial activity, particularly against E. coli, with inhibition zones measuring 32.0 ± 0.3 and 31.3 ± 0.3 mm, respectively. The three endophytic fungi (AFG1, AFG2, and AFG3) isolated from the roots demonstrated significant antibacterial activity against P. aeruginosa forming an inhibition zone of diameter 31.3 ± 0.1, 25.6 ± 0.2, and 25.6 ± 0.2 mm, respectively. However, the strains of endophytic fungi demonstrated no significant inhibitory effects on C. albicans. Ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry/mass spectrometry (UPLC-QTOF-MS/MS) analysis depicted that the ethyl acetate phase of AFJ3 and AFG6 fermentation broth predominantly contained organic acids, phenolic acids, flavonoids, and fatty acids. These secondary metabolites often exhibited good antibacterial activity. This study broadens our understanding of endophytic fungi in A. sparsifolia Shap. The antibacterial activity of some strains of endophytic fungi was significant, making it worthy of further research on their active material.
Collapse
Affiliation(s)
- Mayila Tuerdibieke
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Yili Normal University, Yining, 835000, China
| | - Xue Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Yili Normal University, Yining, 835000, China
| | - Xuerui An
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Yili Normal University, Yining, 835000, China
| | - Yaping Feng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Yili Normal University, Yining, 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Yili Normal University, Yining, 835000, China
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China
| |
Collapse
|
5
|
Oliveira MCO, Alves A, Fidalgo C, de Freitas JGR, Pinheiro de Carvalho MAA. Variations in the structure and function of the soil fungal communities in the traditional cropping systems from Madeira Island. Front Microbiol 2024; 15:1426957. [PMID: 39411432 PMCID: PMC11473422 DOI: 10.3389/fmicb.2024.1426957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Agricultural soils are responsible for ecological functions and services that include primary production of food, fiber and fuel, nutrient cycling, carbon cycling and storage, water infiltration and purification, among others. Fungi are important drivers of most of those ecosystem services. Given the importance of fungi in agricultural soils, in this study, we aimed to characterize and analyse the changes of the soil fungal communities of three cropping systems from Madeira Island, where family farming is predominant, and investigate the response of fungi and its functional groups to soil physicochemical properties. To achieve that, we sequenced amplicons targeting the internal transcribed spacer 1 (ITS1) of the rRNA region, to analyse soil samples from 18 agrosystems: 6 vineyards (V), 6 banana plantations (B) and 6 vegetable plantations (H). Our results showed that alpha diversity indices of fungal communities are similar in the three cropping systems, but fungal composition and functional aspects varied among them, with more pronounced differences in B. Ascomycota, Basidiomycota, and Mortierellomycota were the main phyla found in the three cropping systems. Agaricomycetes and Sordariomycetes are the predominant classes in B, representing 23.8 and 22.4%, respectively, while Sordariomycetes (27.9%) followed by Eurotiomycetes (12.3%) were the predominant classes in V and Sordariomycetes (39.2%) followed by Tremellomycetes (8.9%) in the H. Saprotrophs are the fungal group showing higher relative abundance in the three cropping systems, followed by plant pathogens. Regarding symbionts, endophytes were highly observed in B, while mycorrhizal fungi was predominant in V and H. The structure of fungal communities was mainly correlated with soil content of P, K, N, Fe, and Cu. In addition, we identified bioindicators for each cropping system, which means that cultivated crops are also drivers of functional groups and the composition of communities. Overall, the three cropping systems favored diversity and growth of taxa that play important roles in soil, which highlights the importance of conservative management practices to maintain a healthy and resilient agrosystem.
Collapse
Affiliation(s)
- Maria Cristina O. Oliveira
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- ARDITI, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Caminho da Penteada, Funchal, Portugal
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Artur Alves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Cátia Fidalgo
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - José G. R. de Freitas
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
| | - Miguel A. A. Pinheiro de Carvalho
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
6
|
Wang Y, Chen P, Lin Q, Zuo L, Li L. Endophytic bacteria with allelopathic potential regulate gene expression and metabolite production in host Casuarina equisetifolia. FRONTIERS IN PLANT SCIENCE 2024; 15:1435440. [PMID: 39359630 PMCID: PMC11445032 DOI: 10.3389/fpls.2024.1435440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Introduction Casuarina equisetifolia is a common protective forest in coastal areas. However, artificial C. equisetifolia forests cannot self-renew, mainly due to the accumulation of allelochemicals. Endophytic bacteria may alleviate the root growth inhibition caused by allelochemicals in C. equisetifolia seedlings. B. amyloliquefaciens and B. aryabhattai were endophytic bacteria with strong allelopathy in C. equisetifolia root. The allelopathy mechanism of these two endophytes and their interaction with C. equisetifolia remains to be studied. Methods Whole-genome sequencing of B. amyloliquefaciens and B. aryabhattai isolated from the roots of allelochemical-accumulating C. equisetifolia was performed using Illumina Hiseq and PacBio single-molecule sequencing platforms. Sterile seedlings of C. equisetifolia were treated with either individual or mixed bacterial cultures through root drenching. Transcriptional and metabolomics analyses were conducted after 3 days of infection. Results and discussion Whole-genome sequencing of Bacillus aryabhattai and Bacillus amyloliquefaciens showed that the two strains contained various horizontal gene transfer elements such as insertion sequence, prophage and transposon. In addition, these two strains also contain numerous genes related to the synthesis and catabolism of allelochemicals. After these two strains of bacteria were individually or mixed infected with C. equisetifolia, metabolomics and transcriptomic analysis of C. equisetifolia showed the 11 important secondary metabolite biosynthesis among them alkaloids biosynthesis, phenylpropanoid and terpenes biosynthesis and related genes were putatively regulated. Correlation analysis revealed that 48 differentially expressed genes had strong positive correlations with 42 differential metabolites, and 48 differentially expressed genes had strong negative correlations with 36 differential metabolites. For example, CMBL gene showed positive correlations with the allelochemical (-)-Catechin gallate, while Bp10 gene showed negative correlations with (-)-Catechin gallate. Conclusion The intergenerational accumulation of allelochemicals may induce horizontal gene transfer in endogenic bacteria of Casuarina equisetifolia root. Endophytic Bacillus plays an allelopathic role by assisting the host in regulating gene expression and the production and/or variety of allelochemicals. This comprehensive study sheds light on the intricate genetic and metabolic interactions between Bacillus endophytes and C. equisetifolia. These findings provide insights into endophyte-mediated allelopathy and its potential uses in plant biology and forest sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
7
|
Groff DB, Marmentini J, Gaglioti AL, Silva PRDA, Knob A. Endophytic fungi associated with Araucaria angustifolia (Bertol.) Kuntze. AN ACAD BRAS CIENC 2024; 96:e20230251. [PMID: 39292101 DOI: 10.1590/0001-3765202420230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
The diversity of endophytes and their ecological relationships with the endangered conifer Araucaria angustifolia (a critically endangered species) are unrevealed. This study aimed to characterize the diversity of endophytic fungi associated with A. angustifolia. To this end, we analyzed 90 fragments from five individuals collected from a mixed localized fragment in Guarapuava-PR, Brazil. The total DNA of 61 morphotypes was extracted and the Internal Transcribed Spacer (ITS) region was amplified and sequenced. The sequence analysis allowed the identification of 37 genera belonging to the phylum Ascomycota and the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes, divided into 11 orders and 13 families. Most of the isolated fungi belonged to the Sordariomycetes class (40%) and to the Xylaria genus (14%), while Eurotiomycetes was the minority class within the community. Our results reveal the high endophytic richness supporting the life cycle of A. angustifolia and reinforce the necessity for the conservation of this conifer, as many genetic resources can be lost owing to its irrational exploration.
Collapse
Affiliation(s)
- Danieli B Groff
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Jéssica Marmentini
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - André Luiz Gaglioti
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Paulo Roberto DA Silva
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Adriana Knob
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| |
Collapse
|
8
|
Nguyen DH, Tran QH, Le LT, Nguyen HHT, Tran HT, Do TP, Ho AN, Tran QH, Thu HTN, Bui VN, Chu HH, Pham NB. Genomic characterization and identification of candidate genes for putative podophyllotoxin biosynthesis pathway in Penicillium herquei HGN12.1C. Microb Biotechnol 2024; 17:e70007. [PMID: 39235571 PMCID: PMC11376216 DOI: 10.1111/1751-7915.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Previous studies have reported the functional role, biochemical features and synthesis pathway of podophyllotoxin (PTOX) in plants. In this study, we employed combined morphological and molecular techniques to identify an endophytic fungus and extract PTOX derivatives. Based on the analysis of ITS sequences and the phylogenetic tree, the isolate was classified as Penicillium herquei HGN12.1C, with a sequence identity of 98.58%. Morphologically, the HGN12.1C strain exhibits white colonies, short-branched mycelia and densely packed hyphae. Using PacBio sequencing at an average read depth of 195×, we obtained a high-quality genome for the HGN12.1C strain, which is 34.9 Mb in size, containing eight chromosomes, one mitochondrial genome and a GC content of 46.5%. Genome analysis revealed 10 genes potentially involved in PTOX biosynthesis. These genes include VdtD, Pinoresinollariciresinol reductase (PLR), Secoisolariciresinol dehydrogenase (SDH), CYP719A23, CYP71BE54, O-methyltransferase 1 (OMT1), O-methyltransferase 3 (OMT3), 2-ODD, CYP71CU and CYP82D61. Notably, the VdtD gene in fungi shares functional similarities with the DIR gene found in plants. Additionally, we identified peltatin, a PTOX derivative, in the HGN12.1C extract. Docking analysis suggests a potential role for the 2-ODD enzyme in converting yatein to deoxypodophyllotoxin. These findings offer invaluable insights into the synthesis mechanism of PTOX in fungi, shedding light on the relationship between host plants and endophytes.
Collapse
Affiliation(s)
- Duong Huy Nguyen
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Quang Ho Tran
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- Graduate University of Science and Technology (GUST), VASTHanoiVietnam
| | - Lam Tung Le
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Ha Hong Thi Nguyen
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Hoa Thi Tran
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- Graduate University of Science and Technology (GUST), VASTHanoiVietnam
| | - Thuy Phuong Do
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Anh Ngoc Ho
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- Graduate University of Science and Technology (GUST), VASTHanoiVietnam
| | | | - Hien Thi Nguyen Thu
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Van Ngoc Bui
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- Graduate University of Science and Technology (GUST), VASTHanoiVietnam
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- Graduate University of Science and Technology (GUST), VASTHanoiVietnam
| | - Ngoc Bich Pham
- Institute of Biotechnology (IBT)Vietnam Academy of Science and Technology (VAST)HanoiVietnam
- Graduate University of Science and Technology (GUST), VASTHanoiVietnam
| |
Collapse
|
9
|
Awais M, Xiang Y, Yang D, Lai Y, Cai F, Shah N, Khan M, Li H. The Mechanisms of Cadmium Stress Mitigation by Fungal Endophytes from Maize Grains. J Fungi (Basel) 2024; 10:581. [PMID: 39194906 DOI: 10.3390/jof10080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Maize is a crucial staple crop that ensures global food security by supplying essential nutrients. However, heavy metal (HM) contamination inhibits maize growth, reduces output, and affects food security. Some endophytic fungi (EFs) in maize seeds have the potential to enhance growth and increase dry biomass, offering a solution to mitigate the negative effect of HM contamination. Using these functional EFs could help maintain crop production and ensure food safety in HM-contaminated areas. In the present study, the diversity of EFs in corn grains from various HM-contaminated areas in China was studied through culture-dependent and culture-independent methods. We tested the plant growth-promoting (PGP) traits of several dominant culturable isolates and evaluated the growth-promoting effects of these twenty-one isolates through pot experiments. Both studies showed that HM contamination increased the diversity and richness of corn grain EFs and affected the most dominant endophytes. Nigrospora and Fusarium were the most prevalent culturable endophytes in HM-contaminated areas. Conversely, Cladosporium spp. were the most isolated endophytes in non-contaminated areas. Different from this, Saccharomycopsis and Fusarium were the dominant EFs in HM-contaminated sites, while Neofusicoccum and Sarocladium were dominant in non-contaminated sites, according to a culture-independent analysis. PGP trait tests indicated that 70% of the tested isolates (forty-two) exhibited phosphorus solubilization, IAA production, or siderophore production activity. Specifically, 90% of the tested isolates from HM-contaminated sites showed better PGP results than 45% of the isolates from non-contaminated sites. The benefit of the twenty-one isolates on host plant growth was further studied through pot experiments, which showed that all the isolates could improve host plant growth. Among them, strains derived from HM-contaminated sites, including AK18 (Nigrospora), AK32 (Beauveria), SD93 (Gibberellia), and SD64 (Fusarium), had notable effects on enhancing the dry biomass of shoots and roots of maize under Cd stress. We speculate that the higher ratio of PGP EFs in corn grains from HM-contaminated areas may explain their competitiveness in such extreme environments. Fusarium and Cladosporium isolates show high PGP properties, but they can also be phytopathogenic. Therefore, it is essential to evaluate their pathogenic properties and safety for crops before considering their practical use in agriculture.
Collapse
Affiliation(s)
- Muhammad Awais
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingying Xiang
- The Affiliated Yanan Hospital of Kunming Medical University, Kunming 650051, China
| | - Dian Yang
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibin Lai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fenglian Cai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Majid Khan
- Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Haiyan Li
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Shah WH, Khan W, Nisa S, Barfuss MH, Schinnerl J, Bacher M, Valant-Vetschera K, Ali A, Nafidi HA, Jardan YAB, Giesy JP. HPLC, NMR Based Characterization, Antioxidant and Anticancer Activities of Chemical Constituents from Therapeutically Active Fungal Endophytes. J Microbiol Biotechnol 2024; 34:1452-1463. [PMID: 38858094 PMCID: PMC11294646 DOI: 10.4014/jmb.2403.03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Fungi generate different metabolites some of which are intrinsically bioactive and could therefore serve as templates for drug development. In the current study, six endophytic fungi namely Aspergillus flavus, Aspergillus tubigenesis, Aspergillus oryzae, Penicillium oxalicum, Aspergillus niger, and Aspergillus brasiliensis were isolated and identified from the medicinal plant, Silybum marianum. These endophytic fungi were identified through intra transcribed sequence (ITS) gene sequencing. The bioactive potentials of fungal extracts were investigated using several bioassays such as antibacterial activity by well-diffusion, MIC, MBC, anti-biofilm, antioxidant, and haemolysis. The Pseudomonas aeruginosa PAO1 was used to determine the antibiofilm activity. The ethyl acetate extract of Aspergillus flavus showed strong to moderate efficacy against Staphylococcus aureus, Escherichia coli, P. aeruginosa, and Bacillus spizizenii. Aspergillus flavus and Aspergillus brasiliensis exhibited significant antibiofilm activity with IC50 at 4.02 and 3.63 mg/ml, while A. flavus exhibited maximum antioxidant activity of 50.8%. Based on HPLC, LC-MS, and NMR experiments kojic acid (1) and carbamic acid (methylene-4, 1-phenylene) bis-dimethyl ester (2) were identified from A. flavus. Kojic acid exhibited DPPH free radical scavenging activity with an IC50 value of 99.3 μg/ml and moderate activity against ovarian teratocarcinoma (CH1), colon carcinoma (SW480), and non-small cell lung cancer (A549) cell lines. These findings suggest that endophytic fungi are able to produce promising bioactive compounds which deserve further investigation.
Collapse
Affiliation(s)
- Waqas Hussain Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln 3430, Austria
| | - Wajiha Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan
| | - Michael H.J. Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences (BOKU), Tulln 3430, Austria
| | - Karin Valant-Vetschera
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Ashraf Ali
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325 Quebec City, QC G1V 0A6, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyah, 11433, Saudi Arabia
| |
Collapse
|
11
|
Kollath-Leiß K, Repnik U, Winter H, Winkelmann H, Freund AS, Kempken F. The First Observation of the Filamentous Fungus Neurospora crassa Growing in the Roots of the Grass Brachypodium distachyon. J Fungi (Basel) 2024; 10:487. [PMID: 39057371 PMCID: PMC11278470 DOI: 10.3390/jof10070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The model organism Neurospora crassa has been cultivated in laboratories since the 1920s and its saprotrophic lifestyle has been established for decades. However, beyond their role as saprotrophs, fungi engage in intricate relationships with plants, showcasing diverse connections ranging from mutualistic to pathogenic. Although N. crassa has been extensively investigated under laboratory conditions, its ecological characteristics remain largely unknown. In contrast, Brachypodium distachyon, a sweet grass closely related to significant crops, demonstrates remarkable ecological flexibility and participates in a variety of fungal interactions, encompassing both mutualistic and harmful associations. Through a comprehensive microscopic analysis using electron, fluorescence, and confocal laser scanning microscopy, we discovered a novel endophytic interaction between N. crassa and B. distachyon roots, where fungal hyphae not only thrive in the apoplastic space and vascular bundle but also may colonize plant root cells. This new and so far hidden trait of one of the most important fungal model organisms greatly enhances our view of N. crassa, opening new perspectives concerning the fungus' ecological role. In addition, we present a new tool for studying plant-fungus interspecies communication, combining two well-established model systems, which improves our possibilities of experimental design on the molecular level.
Collapse
Affiliation(s)
- Krisztina Kollath-Leiß
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Urska Repnik
- Zentrale Mikroskopie, Christian-Albrechts-Universität, 24118 Kiel, Germany;
| | - Hannes Winter
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Heinrich Winkelmann
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Anna Sophia Freund
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Frank Kempken
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| |
Collapse
|
12
|
Rabbee MF, Ali MS, Islam MN, Rahman MM, Hasan MM, Baek KH. Endophyte mediated biocontrol mechanisms of phytopathogens in agriculture. Res Microbiol 2024:104229. [PMID: 38992820 DOI: 10.1016/j.resmic.2024.104229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global human population is growing and demand for food is increasing. Global agriculture faces numerous challenges, including excessive application of synthetic pesticides, emergence of herbicide-and pesticide-resistant pathogenic microbes, and more frequent natural disasters associated with global warming. Searches for valuable endophytes have increased, with the aim of making agriculture more sustainable and environmentally friendly. Endophytic microbes are known to have a variety of beneficial effects on plants. They can effectively transfer nutrients from the soil into plants, promote plant growth and development, increase disease resistance, increase stress tolerance, prevent herbivore feeding, reduce the virulence of pathogens, and inhibit the growth of rival plant species. Endophytic microbes can considerably minimize the need for agrochemicals, such as fertilizers, fungicides, bactericides, insecticides, and herbicides in the cultivation of crop plants. This review summarizes current knowledge on the roles of endophytes focusing on their mechanisms of disease control against phytopathogens through the secretion of antimicrobial substances and volatile organic compounds, and the induction of systemic resistance in plants. Additionally, the beneficial roles of these endophytes and their metabolites in the control of postharvest diseases in plants have been summarized.
Collapse
Affiliation(s)
- Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea.
| | - Md Sarafat Ali
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Nurul Islam
- Soil Resource Development Institute, Regional Office, Rajshahai 6000, Bangladesh
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, South Korea.
| |
Collapse
|
13
|
Morales-Vargas AT, López-Ramírez V, Álvarez-Mejía C, Vázquez-Martínez J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024; 12:1357. [PMID: 39065124 PMCID: PMC11279104 DOI: 10.3390/microorganisms12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Endophytic fungi (EFs) have emerged as promising modulators of plant growth and stress tolerance in agricultural ecosystems. This review synthesizes the current knowledge on the role of EFs in enhancing the adaptation of crops to abiotic stress. Abiotic stresses, such as drought, salinity, and extreme temperatures, pose significant challenges to crop productivity worldwide. EFs have shown remarkable potential in alleviating the adverse effects of these stresses. Through various mechanisms, including the synthesis of osmolytes, the production of stress-related enzymes, and the induction of plant defense mechanisms, EFs enhance plant resilience to abiotic stressors. Moreover, EFs promote nutrient uptake and modulate the hormonal balance in plants, further enhancing the stress tolerance of the plants. Recent advancements in molecular techniques have facilitated the identification and characterization of stress-tolerant EF strains, paving the way for their utilization in agricultural practices. Furthermore, the symbiotic relationship between EFs and plants offers ecological benefits, such as improved soil health and a reduced dependence on chemical inputs. However, challenges remain in understanding the complex interactions between EFs and host plants, as well as in scaling up their application in diverse agricultural systems. Future research should focus on elucidating the mechanisms underlying endophytic-fungal-mediated stress tolerance and developing sustainable strategies for harnessing their potential in crop production.
Collapse
Affiliation(s)
- Adan Topiltzin Morales-Vargas
- Programa de Ingeniería en Biotecnología, Campus Celaya-Salvatierra, Universidad de Guanajuato, Mutualismo #303, Col. La Suiza, Celaya 36060, Mexico
| | - Varinia López-Ramírez
- Departamento de Ingeniería Bioquímica, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| | - Cesar Álvarez-Mejía
- Coordinación de Ingeniería Ambiental, TecNM/ITS Abasolo, Cuitzeo de los Naranjos #401, Col. Cuitzeo de los Naranjos, Abasolo 36976, Mexico
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| |
Collapse
|
14
|
Sharma V, Panjgotra S, Sharma N, Abrol V, Goutam U, Jaglan S. Epigenetic modifiers as inducer of bioactive secondary metabolites in fungi. Biotechnol Lett 2024; 46:297-314. [PMID: 38607602 DOI: 10.1007/s10529-024-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn't express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.
Collapse
Affiliation(s)
- Vishal Sharma
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivali Panjgotra
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Nisha Sharma
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vidushi Abrol
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Umesh Goutam
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Fan Y, Shi B. Endophytic Fungi from the Four Staple Crops and Their Secondary Metabolites. Int J Mol Sci 2024; 25:6057. [PMID: 38892244 PMCID: PMC11173346 DOI: 10.3390/ijms25116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Endophytic fungi are present in every plant, and crops are no exception. There are more than 50,000 edible plant species on the planet, but only 15 crops provide 90 percent of the global energy intake, and "the big four"-wheat, rice, maize and potato-are staples for about 5 billion people. Not only do the four staple crops contribute to global food security, but the endophytic fungi within their plant tissues are complex ecosystems that have been under scrutiny. This review presents an outline of the endophytic fungi and their secondary metabolites in four staple crops: wheat, rice, maize and potato. A total of 292 endophytic fungi were identified from the four major crops, with wheat having the highest number of 157 endophytic fungi. Potato endophytic fungi had the highest number of secondary metabolites, totaling 204 compounds, compared with only 23 secondary metabolites from the other three crops containing endophytic fungi. Some of the compounds are those with specific structural and pharmacological activities, which may be beneficial to agrochemistry and medicinal chemistry.
Collapse
Affiliation(s)
| | - Baobao Shi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China;
| |
Collapse
|
16
|
El-Khawaga HA, Mustafa AE, El Khawaga MA, Mahfouz AY, Daigham GE. Bio-stimulating effect of endophytic Aspergillus flavus AUMC 16068 and its respective ex-polysaccharides in lead stress tolerance of Triticum aestivum plant. Sci Rep 2024; 14:11952. [PMID: 38796501 PMCID: PMC11127936 DOI: 10.1038/s41598-024-61936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/11/2024] [Indexed: 05/28/2024] Open
Abstract
Heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. As a result, metal-induced phytotoxicity concerns require quick and urgent action to retain and maintain the physiological activities of microorganisms, the nitrogen pool of soils, and the continuous yields of wheat in a constantly worsening environment. The current study was conducted to evaluate the plant growth-promoting endophytic Aspergillus flavus AUMC 16,068 and its EPS for improvement of plant growth, phytoremediation capacity, and physiological consequences on wheat plants (Triticum aestivum) under lead stress. After 60 days of planting, the heading stage of wheat plants, data on growth metrics, physiological properties, minerals content, and lead content in wheat root, shoot, and grains were recorded. Results evoked that lead pollution reduced wheat plants' physiological traits as well as growth at all lead stress concentrations; however, inoculation with lead tolerant endophytic A. flavus AUMC 16,068 and its respective EPS alleviated the detrimental impact of lead on the plants and promoted the growth and physiological characteristics of wheat in lead-contaminated conditions and also lowering oxidative stress through decreasing (CAT, POD, and MDA), in contrast to plants growing in the un-inoculated lead polluted dealings. In conclusion, endophytic A. flavus AUMC 16,068 spores and its EPS are regarded as eco-friendly, safe, and powerful inducers of wheat plants versus contamination with heavy metals, with a view of protecting plant, soil, and human health.
Collapse
Affiliation(s)
- Hend A El-Khawaga
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Abeer E Mustafa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Maie A El Khawaga
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt.
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| |
Collapse
|
17
|
Kumar V, Huang J, Dong Y, Hao GF. Targeting Fks1 proteins for novel antifungal drug discovery. Trends Pharmacol Sci 2024; 45:366-384. [PMID: 38493014 DOI: 10.1016/j.tips.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Fungal infections are a major threat to human health. The limited availability of antifungal drugs, the emergence of drug resistance, and a growing susceptible population highlight the critical need for novel antifungal agents. The enzymes involved in fungal cell wall synthesis offer potential targets for antifungal drug development. Recent studies have enhanced our focus on the enzyme Fks1, which synthesizes β-1,3-glucan, a critical component of the cell wall. These studies provide a deeper understanding of Fks1's function in cell wall biosynthesis, pathogenicity, structural biology, evolutionary conservation across fungi, and interaction with current antifungal drugs. Here, we discuss the role of Fks1 in the survival and adaptation of fungi, guided by insights from evolutionary and structural analyses. Furthermore, we delve into the dynamics of Fks1 modulation with novel antifungal strategies and assess its potential as an antifungal drug target.
Collapse
Affiliation(s)
- Vinit Kumar
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; BMLT, Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand 825301, India
| | - Juan Huang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
18
|
Dos Reis JBA, Lorenzi AS, Pinho DB, Cortelo PC, do Vale HMM. The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications. Arch Microbiol 2024; 206:185. [PMID: 38506928 DOI: 10.1007/s00203-024-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | | | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
19
|
Singha R, Sharma D, Saha AK, Das P. Foliar phenols and flavonoids level in pteridophytes: an insight to culturable fungal endophyte colonisation. Arch Microbiol 2024; 206:170. [PMID: 38491263 DOI: 10.1007/s00203-024-03880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
There are many available reports of secondary metabolites as bioactive molecules from culturable endophytes, nevertheless, there are scarce research pertaining to the levels of metabolites in plants with respect to the incidence and colonisation of fungal endophytes in the same foliar tissues. Therefore, the study was focussed to examine whether fungal endophyte colonisation and the accumulation of secondary metabolites, such as flavonoids and phenols, in the plants are related in any way. For this reason, the study aims to analyse phenols and flavonoids from the fronds of eleven pteridophytes along with the culture-dependent isolation of fungal endophytes from the host plants subsequently assigning them to morphological category and their quantitative analysis and further resolving its identities through molecular affiliation. The results revealed that nine morpho-categories of fungal endophytes were allotted based on culture attributes, hyphal patterns and reproductive structural characters. Highest numbers of species were isolated from Adiantum capillus-veneris and least was recorded from Pteris vittata and Dicranopteris linearis. Maximum phenol content was analysed from the fronds of P. vittata and lowest was recorded in A. capillus-veneris. Highest flavonoid content was measured in D. linearis and lowest was detected in Christella dentata. Significant negative correlation was observed between phenol content of ferns and species richness of fungi. Moreover, significant positive correlation was observed with the relative abundance of Chaetomium globosum and flavonoid content of ferns and negative significant relation was found between relative abundance of Pseudopestalotiopsis chinensis and phenol content of pteridophytes. The occurrence and the quantitative aspects of endophytes in ferns and their secondary metabolites are discussed.
Collapse
Affiliation(s)
- Royee Singha
- Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Dipashree Sharma
- Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Ajay Krishna Saha
- Mycology and Plant Pathology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Panna Das
- Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
20
|
Saied E, Abdel-Maksoud MA, Alfuraydi AA, Kiani BH, Bassyouni M, Al-Qabandi OA, Bougafa FHE, Badawy MSEM, Hashem AH. Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Front Microbiol 2024; 15:1345423. [PMID: 38533339 PMCID: PMC10964773 DOI: 10.3389/fmicb.2024.1345423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
In the current study, endophytic Aspergillus hiratsukae was used for the biosynthesis of silver nanoparticles (Ag-NPs) for the first time. The characterizations were performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and UV-Vis spectroscopy. The obtained results demonstrated the successful formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 to 31 nm. The FT-IR studied and displayed the various functional groups involved, which played a role in capping and reducing agents for Ag-NPs production. The SEM-EDX revealed that the main constituent of the AS-formed sample was primarily Ag, with a weight percentage of 64.2%. The mycosynthesized Ag-NPs were assessed for antimicrobial as well as photocatalytic activities. The antimicrobial results indicated that the synthesized Ag-NPs possess notable antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, with minimum inhibitory concentrations (MICs) of Ag-NPs ranging from 62.5 to 250 μg/mL. Moreover, the biosynthesized Ag-NPs demonstrated weak antifungal activity against Aspergillus brasiliensis and Candida albicans, with MICs of 500 and 1,000 μg/mL, respectively. In addition, the mycosynthesized Ag-NPs exhibited photocatalytic activity toward acid black 2 (nigrosine) dye under both light and dark stimulation. Notably, After 300 min exposure to light, the nigrosine dye was degraded by 93%. In contrast, 51% degradation was observed after 300 min in darkness. In conclusion, Ag-NPs were successfully biosynthesized using endophytic A. hiratsukae and also exhibited antimicrobial and photocatalytic activities that can be used in environmental applications.
Collapse
Affiliation(s)
- Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Mostafa A. Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akram A. Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Mohamed Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said, Egypt
- Center of Excellence in Membrane-Based Water Desalination Technology for Testing and Characterization (CEMTC), Port Said University, Port Said, Egypt
| | - Osama A. Al-Qabandi
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Fathia H. E. Bougafa
- Department of Microbiology, Faculty of Science, Tobruk University, Tobruk, Libya
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
21
|
Chen HW, Wu XY, Zhao ZY, Huang ZQ, Lei XS, Yang GX, Li J, Xiong J, Hu JF. Terricoxanthones A-E, unprecedented dihydropyran-containing dimeric xanthones from the endophytic fungus Neurospora terricola HDF-Br-2 associated with the vulnerable conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2024; 219:113963. [PMID: 38171409 DOI: 10.1016/j.phytochem.2023.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 μg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 μg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 μg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xi-Ying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Zi-Qi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xin-Sheng Lei
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
22
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
23
|
Zhong L, Niu B, Xiang D, Wu Q, Peng L, Zou L, Zhao J. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol 2024; 15:1353763. [PMID: 38444811 PMCID: PMC10912284 DOI: 10.3389/fmicb.2024.1353763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Buckwheat is a famous edible and medicinal coarse cereal which contain abundant of bioactive flavonoids, such as rutin. In this study, the composition and diversity of endophytic fungi in eight different buckwheat seeds were analyzed by high-throughput sequencing of ITS rDNA. Results showed that, the fungal sequences reads were allocated to 272 OTUs, of them, 49 OTUs were shared in eight buckwheat seeds. These endophytic fungi could be classified into 6 phyla, 19 classes, 41 orders, 79 families, 119 genera, and 191 species. At genus level, Alternaria sp. was the domain fungal endophyte. Besides, fungal endophytes belonged to the genera of Epicocum, Cladosporium, Botrytis, Filbobasidium, Stemphylium, and Vishniacozyma were highly abundant in buckwheat seeds. The total flavonoids and rutin contents in tartary buckwheat cultivars (CQ, XQ, CH, K2) were much higher than those in common buckwheat cultivars (HT, T2, T4, T8). For tartary buckwheat cultivars, the total flavonoids and rutin contents were ranging from 2.6% to 3.3% and 0.9% to 1.3%, respectively. Accordingly, the tartary buckwheat samples displayed stronger antioxidant activity than the common buckwheat. Spearman correlation heat map analysis was successfully found that certain fungal species from the genera of Alternaria, Botryosphaeria, Colletorichum and Diymella exhibited significant positive correlation with flavonoids contents. Results of this study preliminary revealed the fungi-plant interaction relationship at secondary metabolite level, and could provide novel strategy for increasing the flavonoids accumulation of buckwheat seeds, as well as improving their quality.
Collapse
Affiliation(s)
- Lingyun Zhong
- College of Preclinical Medicine, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Bei Niu
- College of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
24
|
Sundar RDV, Arunachalam S. Xenomyrothecium tongaense PTS8: a rare endophyte of Polianthes tuberosa with salient antagonism against multidrug-resistant pathogens. Front Microbiol 2024; 15:1327190. [PMID: 38435697 PMCID: PMC10906109 DOI: 10.3389/fmicb.2024.1327190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Endophytes refer to microorganisms residing within the endosphere of plants, particularly perennials, without inflicting noticeable injury or inducing obvious morphological variations to their host plant or host organism. Endophytic fungi, although often overlooked microorganisms, have garnered interest due to their significant biological diversity and ability to produce novel pharmacological substances. Methods In this study, fourteen endophytic fungi retrieved were from the stem of the perennial plant Polianthes tuberosa of the Asparagaceae family. These fungal crude metabolites were tested for antagonistic susceptibility to Multi-Drug Resistant (MDR) pathogens using agar well diffusion, Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) assays. The chequerboard test was used to assess the synergistic impact of active extract. Results and discussion In early antibacterial screening using the Agar plug diffusion test, three of fourteen endophytes demonstrated antagonism against Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE). Three isolates were grown in liquid medium and their secondary metabolites were recovered using various organic solvents. Eight extracts from three endophytic fungi displayed antagonism against one or more human pathogens with diameters ranging from 11 to 24 mm. The highest antagonistic effect was obtained in ethyl acetate extract for PTS8 isolate against two MRSA (ATCC 43300, 700699) with 20 ± 0.27 and 22 ± 0.47 mm zones of inhibition, respectively, among different solvent extracts. The extract had MICs of 3.12 ± 0.05 and 1.56 ± 0.05 μg/mL, and MBCs of 50 ± 0.01 and 12.5 ± 0.04 μg/mL, respectively. Antagonism against VRE was 18 ± 0.23 mm Zone of Inhibition (ZOI) with MIC and MBC of 6.25 ± 0.25 and 25 ± 0.01 μg/mL. When ethyl acetate extract was coupled with antibiotics, the chequerboard assay demonstrated a synergistic impact against MDR bacteria. In an antioxidant test, it had an inhibitory impact of 87 ± 0.5% and 88.5 ± 0.5% in 2,2-Diphenyl-1-Picrylhydrazyl and reducing power assay, respectively, at 150 μg/mL concentration. PTS8 was identified as a Xenomyrothecium tongaense strain by 18S rRNA internal transcribed spacer (ITS) sequencing. To our insight, it is the foremost study to demonstrate the presence of an X. tongaense endophyte in the stem of P. tuberosa and the first report to study the antibacterial efficacy of X. tongaense which might serve as a powerful antibacterial source against antibiotic-resistant human infections.
Collapse
Affiliation(s)
- Ranjitha Dhevi V. Sundar
- Laboratory of Microbiology, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- Laboratory of Microbiology, Department of Agriculture Microbiology, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Sathiavelu Arunachalam
- Laboratory of Microbiology, Department of Agriculture Microbiology, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
25
|
Rungjindamai N, Jones EBG. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J Fungi (Basel) 2024; 10:67. [PMID: 38248976 PMCID: PMC10820240 DOI: 10.3390/jof10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
A review of selected studies on fungal endophytes confirms the paucity of Basidiomycota and basal fungi, with almost 90% attributed to Ascomycota. Reasons for the low number of Basidiomycota and basal fungi, including the Chytridiomycota, Mucoromycota, and Mortierellomycota, are advanced, including isolation procedure and media, incubation period and the slow growth of basidiomycetes, the identification of non-sporulating isolates, endophyte competition, and fungus-host interactions. We compare the detection of endophytes through culture-dependent methods and culture-independent methods, the role of fungi on senescence of the host plant, and next-generation studies.
Collapse
Affiliation(s)
- Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
26
|
Meesters C, Weldegergis BT, Dicke M, Jacquemyn H, Lievens B. Limited effects of plant-beneficial fungi on plant volatile composition and host-choice behavior of Nesidiocoris tenuis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322719. [PMID: 38235197 PMCID: PMC10791865 DOI: 10.3389/fpls.2023.1322719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Biological control using plant-beneficial fungi has gained considerable interest as a sustainable method for pest management, by priming the plant for enhanced defense against pathogens and insect herbivores. However, despite promising outcomes, little is known about how different fungal strains mediate these beneficial effects. In this study, we evaluated whether inoculation of tomato seeds with the plant-beneficial fungi Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and Trichoderma harzianum T22 affected the plant's volatile organic compound (VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an emerging pest species in NW-European tomato cultivation, and the related zoophytophagous biocontrol agent Macrolophus pygmaeus. Results indicated that fungal inoculation did not significantly alter the VOC composition of tomato plants. However, in a two-choice cage assay where female insects were given the option to select between control plants and fungus-inoculated plants, N. tenuis preferred control plants over M. brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested chose the control treatment. In all other combinations tested, no significant differences were found for none of the insects. We conclude that inoculation of tomato with plant-beneficial fungi had limited effects on plant volatile composition and host-choice behavior of insects. However, the observation that N. tenuis was deterred from the crop when inoculated with M. brunneum and attracted to non-inoculated plants may provide new opportunities for future biocontrol based on a push-pull strategy.
Collapse
Affiliation(s)
- Caroline Meesters
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
28
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
29
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
30
|
Bashir A, Manzoor MM, Ahmad T, Farooq S, Sultan P, Gupta AP, Riyaz-Ul-Hassan S. Endophytic fungal community of Rosa damascena Mill. as a promising source of indigenous biostimulants: Elucidating its spatial distribution, chemical diversity, and ecological functions. Microbiol Res 2023; 276:127479. [PMID: 37639964 DOI: 10.1016/j.micres.2023.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
The role of endophytes in maintaining healthy plant ecosystems and holding promise for agriculture and food security is deeply appreciated. In the current study, we determine the community structure, spatial distribution, chemical diversity, and ecological functions of fungal endophytes of Rosa damascena growing in the North-Western Himalayas. Culture-dependent methods revealed that R. damascena supported a rich endophyte diversity comprising 32 genera and 68 OTUs. The diversity was governed by climate, altitude, and tissue type. Species of Aspergillus, Cladosporium, Penicillium, and Diaporthe were the core endophytes of the host plant consisting of 48.8% of the endophytes collectively. The predominant pathogen of the host was Alternaria spp., especially A. alternata. GC-MS analyses affirmed the production of diverse arrays of volatile organic compounds (VOC) by individual endophytes. Among the primary rose oil components, Diaporthe melonis RDE257, and Periconia verrucosa RDE85 produced phenyl ethyl alcohol (PEA) and benzyl alcohol (BA). The endophytes displayed varied levels of plant growth-promoting, colonization, and anti-pathogenic traits. Between the selected endophytes, P. verrucosa and D. melonis significantly potentiated plant growth and the flavonoids and chlorophyll content in the host. The potential of these two endophytes and their metabolites PEA and BA was confirmed on Nicotiana tabacum. The treatments of the metabolites and individual endophytes enhanced the growth parameters in the model plant significantly. The results imply that P. verrucosa and D. melonis are potential plant growth enhancers and their activity may be partially due to the production of PEA and BA. Thus, R. damascena harbors diverse endophytes with potential applications in disease suppression and host growth promotion. Further investigations at the molecular level are warranted to develop green endophytic agents for sustainable cultivation of R. damascena and biocontrol of leaf spot disease.
Collapse
Affiliation(s)
- Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malik Muzafar Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Phalisteen Sultan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India
| | - Ajai P Gupta
- Quality Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Gwinn KD, Leung MCK, Stephens AB, Punja ZK. Fungal and mycotoxin contaminants in cannabis and hemp flowers: implications for consumer health and directions for further research. Front Microbiol 2023; 14:1278189. [PMID: 37928692 PMCID: PMC10620813 DOI: 10.3389/fmicb.2023.1278189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.
Collapse
Affiliation(s)
- Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Ariell B. Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
32
|
Wijesekara T, Xu B. Health-Promoting Effects of Bioactive Compounds from Plant Endophytic Fungi. J Fungi (Basel) 2023; 9:997. [PMID: 37888253 PMCID: PMC10608072 DOI: 10.3390/jof9100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The study examines the intricate relationship between plants and the endophytic fungi inhabiting their tissues. These fungi harmoniously coexist with plants, forming a distinct symbiotic connection that has caught scientific attention due to its potential implications for plant health and growth. The diverse range of bioactive compounds produced by these fungi holds significant promise for human health. The review covers various aspects of this topic, starting by introducing endophytic microorganisms, explaining their colonization of different plant parts, and illuminating their potential roles in enhancing plant defense against diseases and promoting growth. The review emphasizes the widespread occurrence and diversity of these microorganisms among plant species while highlighting the complexities and significance of isolating and extracting bioactive compounds from them. It focuses on the health benefits of these bioactive compounds, including their capacity to exhibit antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. The review delves into the mechanisms behind these health-promoting effects, spotlighting how the compounds interact with cellular receptors, signaling pathways, and gene expression. In conclusion, the review provides a comprehensive overview of health-promoting bioactive compounds from plant endophytic fungi. It outlines their multifaceted impact, potential applications, and future research avenues in health and medicine.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Department of Food Science and Technology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
33
|
Ayaz M, Li CH, Ali Q, Zhao W, Chi YK, Shafiq M, Ali F, Yu XY, Yu Q, Zhao JT, Yu JW, Qi RD, Huang WK. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. Molecules 2023; 28:6735. [PMID: 37764510 PMCID: PMC10537577 DOI: 10.3390/molecules28186735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Plants are constantly exposed to various phytopathogens such as fungi, Oomycetes, nematodes, bacteria, and viruses. These pathogens can significantly reduce the productivity of important crops worldwide, with annual crop yield losses ranging from 20% to 40% caused by various pathogenic diseases. While the use of chemical pesticides has been effective at controlling multiple diseases in major crops, excessive use of synthetic chemicals has detrimental effects on the environment and human health, which discourages pesticide application in the agriculture sector. As a result, researchers worldwide have shifted their focus towards alternative eco-friendly strategies to prevent plant diseases. Biocontrol of phytopathogens is a less toxic and safer method that reduces the severity of various crop diseases. A variety of biological control agents (BCAs) are available for use, but further research is needed to identify potential microbes and their natural products with a broad-spectrum antagonistic activity to control crop diseases. This review aims to highlight the importance of biocontrol strategies for managing crop diseases. Furthermore, the role of beneficial microbes in controlling plant diseases and the current status of their biocontrol mechanisms will be summarized. The review will also cover the challenges and the need for the future development of biocontrol methods to ensure efficient crop disease management for sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Cai-Hong Li
- Cotton Sciences Research Institute of Hunan, Changde 415101, China;
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Muhammad Shafiq
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, China;
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Xi-Yue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Qing Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Jing-Tian Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Jing-Wen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| |
Collapse
|
34
|
Ma N, Yin D, Liu Y, Gao Z, Cao Y, Chen T, Huang Z, Jia Q, Wang D. Succession of endophytic fungi and rhizosphere soil fungi and their correlation with secondary metabolites in Fagopyrum dibotrys. Front Microbiol 2023; 14:1220431. [PMID: 37601353 PMCID: PMC10434241 DOI: 10.3389/fmicb.2023.1220431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Golden buckwheat (Fagopyrum dibotrys, also known as F. acutatum) is a traditional edible herbal medicinal plant with a large number of secondary metabolites and is considered to be a source of therapeutic compounds. Different ecological environments have a significant impact on their compound content and medicinal effects. However, little is known about the interactions between soil physicochemical properties, the rhizosphere, endophytic fungal communities, and secondary metabolites in F. dibotrys. In this study, the rhizosphere soil and endophytic fungal communities of F. dibotrys in five different ecological regions in China were identified based on high-throughput sequencing methods. The correlations between soil physicochemical properties, active components (total saponins, total flavonoids, proanthocyanidin, and epicatechin), and endophytic and rhizosphere soil fungi of F. dibotrys were analyzed. The results showed that soil pH, soil N, OM, and P were significantly correlated with the active components of F. dibotrys. Among them, epicatechin, proanthocyanidin, and total saponins were significantly positively correlated with soil pH, while proanthocyanidin content was significantly positively correlated with STN, SAN, and OM in soil, and total flavone content was significantly positively correlated with P in soil. In soil microbes, Mortierella, Trechispora, Exophiala, Ascomycota_unclassified, Auricularia, Plectosphaerella, Mycena, Fungi_unclassified, Agaricomycetes_unclassified, Coprinellus, and Pseudaleuria were significantly related to key secondary metabolites of F. dibotrys. Diaporthe and Meripilaceae_unclassified were significantly related to key secondary metabolites in the rhizome. This study presents a new opportunity to deeply understand soil-plant-fungal symbioses and secondary metabolites in F. dibotrys, as well as provides a scientific basis for using biological fertilization strategies to improve the quality of F. dibotrys.
Collapse
Affiliation(s)
- Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyi Huang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
El-Sharkawy HHA, Rashad YM, Elazab NT. Biocontrol potential of the endophytic Epicoccum nigrum HE20 against stripe rust of wheat. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105517. [PMID: 37532330 DOI: 10.1016/j.pestbp.2023.105517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Biological control using endophytic microorganisms represents an eco-friendly and effective alternative to the health-hazardous chemical fungicides used to control devastating plant diseases such as stripe rust in wheat. In this study, the inhibitory potential of the endophytic Epicoccum nigrum HE20, isolated from a healthy wheat plant, was screened against uredospores germination in vitro. A high suppression (96%) in the germination of the uredospores was recorded. GC-MS analysis of the culture filtrate of E. nigrum HE20 showed a production of various secondary metabolites with an antifungal background such as butyric acid, α-linolenic acid, hexanoic acid, lactic acid, 10,12-Tricosadiynoic acid, and pentadecanoic acid. Results from the greenhouse experiment revealed that the application of E. nigrum HE20 suspension led to a reduction in the disease severity by 87.5%, compared with the untreated-infected plants. Real-time PCR results exhibited an overexpression in three defensive genes (JERF3, GLU, and PR1) in the infected wheat plants, in response to the application of E. nigrum HE20, recorded 8-, 15.8-, and 3.5-fold, respectively. In addition, an increment in the phenolic content, activity of POD, PPO, and CAT, and a reduction in the lipid peroxidation were recorded due to the endophyte application. Transmission electron microscopic observations indicated mitigation of the pathogen in wheat cells after the treatment with E. nigrum HE20 metabolite. Furthermore, a growth-promoting effect was also observed due to E. nigrum HE20 application, as well as an increment in the total photosynthetic pigments in wheat leaves. Based on these results, it can be concluded that E. nigrum HE20 is a probable efficient bioagent against stripe rust in wheat. However, its field evaluation is highly necessary in the future studies.
Collapse
Affiliation(s)
- Hany H A El-Sharkawy
- Mycology Research and Plant Diseases Survey Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Younes M Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt.
| | - Nahla T Elazab
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
36
|
Li B, Liu L, Zhang D, Guo S. Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains. Microorganisms 2023; 11:1914. [PMID: 37630474 PMCID: PMC10458900 DOI: 10.3390/microorganisms11081914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/27/2023] Open
Abstract
Armillaria sp. 541, a genus of root-infecting fungi, forms a symbiosis with traditional Chinese medicine Gastrodia elata (Orchid) and Polyporus umbellatus via extensive networks of durable rhizomorphs. It is not clear the hallmarks of comparative transcriptome between the rhizomorphs and hyphae of Armillaria sp. 541. In the present study, transcriptomic analysis of Armillaria sp. 541 identified 475 differentially expressed genes (DEGs) between Armillaria rhizomorphs (AR) and hyphae (AH). Of them, 285 genes were upregulated and 190 were downregulated. Bioinformatics analyses and tests demonstrated DEGs involved in oxidoreductase activity and peptidoglycan binding were significantly enriched in this process when rhizomorph formed from hyphae. We accordingly obtained 14 gene-encoding proteins containing the LysM domain, and further consensus pattern and phylogenetic analysis indicated that their amino acid sequences were conserved and their biological functions may be peptidoglycan binding for recognition between the fungus and host. Among these genes, one, named Armillaria LysM domain recognition gene (aLDRG), was expressed significantly when rhizomorphs were differentiated from hyphae. It was located in the cortical cells of the rhizomorph by in situ hybridization. Furthermore, biolayer interferometry (BLI) assay demonstrated that aLDRG can bind specifically to chitin oligosaccharide of the fungal cell wall, including N,N',N″-Triacetylchitotriose (CO3) and N,N',N″,N'″,N″″-Pentaacetylchitopentaose (CO5). Therefore, we deduced that Armillaria sp. 541 expressed higher levels of LysM protein aLDRG for better binding of oligosaccharide after rhizomorphs were generated. This study provides functional genes for further studies on the interaction between Armillaria sp. 541 and its host.
Collapse
Affiliation(s)
- Bing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (B.L.); (L.L.)
| | - Liu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (B.L.); (L.L.)
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (B.L.); (L.L.)
| |
Collapse
|
37
|
Jha P, Kaur T, Chhabra I, Panja A, Paul S, Kumar V, Malik T. Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. Front Microbiol 2023; 14:1227830. [PMID: 37497538 PMCID: PMC10366620 DOI: 10.3389/fmicb.2023.1227830] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Endophytic fungi comprise host-associated fungal communities which thrive within the tissues of host plants and produce a diverse range of secondary metabolites with various bioactive attributes. The metabolites such as phenols, polyketides, saponins, alkaloids help to mitigate biotic and abiotic stresses, fight against pathogen attacks and enhance the plant immune system. We present an overview of the association of endophytic fungal communities with a plant host and discuss molecular mechanisms induced during their symbiotic interaction. The overview focuses on the secondary metabolites (especially those of terpenoid nature) secreted by endophytic fungi and their respective function. The recent advancement in multi-omics approaches paved the way for identification of these metabolites and their characterization via comparative analysis of extensive omics datasets. This study also elaborates on the role of diverse endophytic fungi associated with key agricultural crops and hence important for sustainability of agriculture.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tamanna Kaur
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Sushreeta Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
38
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
39
|
Wilberts L, Rojas-Preciado N, Jacquemyn H, Lievens B. Fungal strain and crop cultivar affect growth of sweet pepper plants after root inoculation with entomopathogenic fungi. FRONTIERS IN PLANT SCIENCE 2023; 14:1196765. [PMID: 37342144 PMCID: PMC10277683 DOI: 10.3389/fpls.2023.1196765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023]
Abstract
As endophytes, entomopathogenic fungi can protect plants against biotic and abiotic stresses and at the same time promote plant growth and plant health. To date, most studies have investigated whether Beauveria bassiana can enhance plant growth and plant health, while only little is known about other entomopathogenic fungi. In this study, we evaluated whether root inoculation of the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128, B. bassiana ARSEF 3097 and Cordyceps fumosorosea ARSEF 3682 can promote plant growth of sweet pepper (Capsicum annuum L.), and whether effects are cultivar-dependent. Plant height, stem diameter, number of leaves, canopy area, and plant weight were assessed four weeks following inoculation in two independent experiments using two cultivars of sweet pepper (cv. 'IDS RZ F1' and cv. 'Maduro'). Results showed that the three entomopathogenic fungi were able to enhance plant growth, particularly canopy area and plant weight. Further, results showed that effects significantly depended on cultivar and fungal strain, with the strongest fungal effects obtained for cv. 'IDS RZ F1', especially when inoculated with C. fumosorosea. We conclude that inoculation of sweet pepper roots with entomopathogenic fungi can stimulate plant growth, but effects depend on fungal strain and crop cultivar.
Collapse
Affiliation(s)
- Liesbet Wilberts
- Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Nicolas Rojas-Preciado
- Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Centre of Microbial and Plant Genetics (CMPG) Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S) KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
40
|
Devi R, Abdulhaq A, Verma R, Sharma K, Kumar D, Kumar A, Tapwal A, Yadav R, Mohan S. Improvement in the Phytochemical Content and Biological Properties of Stevia rebaudiana (Bertoni) Bertoni Plant Using Endophytic Fungi Fusarium fujikuroi. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051151. [PMID: 36904011 PMCID: PMC10005530 DOI: 10.3390/plants12051151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/14/2023]
Abstract
This study aimed to increase the therapeutic potential of medicinal plants through inoculation with endophytic fungi. As endophytes influence medicinal plants' biological properties, twenty fungal strains were isolated from the medicinal plant Ocimum tenuiflorum. Among all fungal isolates, the R2 strain showed the highest antagonistic activity towards plant pathogenic fungi Rosellinia necatrix and Fusarium oxysporum. The partial ITS region of the R2 strain was deposited in the GenBank nucleotide sequence databases under accession number ON652311 as Fusarium fujikuroi isolate R2 OS. To ascertain the impact of an endophytic fungus on the biological functions of medicinal plants, Stevia rebaudiana seeds were inoculated with Fusarium fujikuroi (ON652311). In the DPPH assay, the IC50 value of the inoculated Stevia plant extracts (methanol, chloroform, and positive control) was 72.082 µg/mL, 85.78 µg/mL, and 18.86 µg/mL, respectively. In the FRAP assay, the IC50 value of the inoculated Stevia extracts (methanol, chloroform extract, and positive control) was 97.064 µM Fe2+ equivalents, 117.662 µM Fe2+ equivalents, and 53.384 µM Fe2+ equivalents, respectively. In the extracts of the plant inoculated with endophytic fungus, rutin and syringic acid (polyphenols) concentrations were 20.8793 mg/L and 5.4389 mg/L, respectively, which were higher than in the control plant extracts. This approach can be further utilized for other medicinal plants to increase their phytochemical content and hence medicinal potential in a sustainable way.
Collapse
Affiliation(s)
- Reema Devi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Ahmed Abdulhaq
- Unit of Medical Microbiology, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Correspondence: (R.V.); (S.M.)
| | - Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Business Management, Solan 173229, India
| | - Ajay Kumar
- Himalayan Forest Research Institute, Conifer Campus, Shimla 171013, India
| | - Ashwani Tapwal
- Himalayan Forest Research Institute, Conifer Campus, Shimla 171013, India
| | - Rahul Yadav
- Shoolini Life Sciences, Private Limited, Solan 173229, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 600077, India
- Correspondence: (R.V.); (S.M.)
| |
Collapse
|
41
|
Stelmasiewicz M, Świątek Ł, Ludwiczuk A. Chemical and Biological Studies of Endophytes Isolated from Marchantia polymorpha. Molecules 2023; 28:2202. [PMID: 36903448 PMCID: PMC10004590 DOI: 10.3390/molecules28052202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Natural bioresources, predominantly plants, have always been regarded as the richest source of drugs for diseases threatening humanity. Additionally, microorganism-originating metabolites have been extensively explored as weapons against bacterial, fungal, and viral infections. However, the biological potential of metabolites produced by plant endophytes still remains understudied, despite significant efforts reflected in recently published papers. Thus, our goal was to evaluate the metabolites produced by endophytes isolated from Marchantia polymorpha and to study their biological properties, namely anticancer and antiviral potential. The cytotoxicity and anticancer potential were assessed using the microculture tetrazolium technique (MTT) against non-cancerous VERO cells and cancer cells-namely the HeLa, RKO, and FaDu cell lines. The antiviral potential was tested against the human herpesvirus type-1 replicating in VERO cells by observing the influence of the extract on the virus-infected cells and measuring the viral infectious titer and viral load. The most characteristic metabolites identified in the ethyl acetate extract and fractions obtained by use of centrifugal partition chromatography (CPC) were volatile cyclic dipeptides, cyclo(l-phenylalanyl-l-prolyl), cyclo(l-leucyl-l-prolyl), and their stereoisomers. In addition to the diketopiperazine derivatives, this liverwort endophyte also produced arylethylamides and fatty acids amides. The presence of N-phenethylacetamide and oleic acid amide was confirmed. The endophyte extract and isolated fractions showed a potential selective anticancer influence on all tested cancer cell lines. Moreover, the extract and the first separated fraction noticeably diminished the formation of the HHV-1-induced cytopathic effect and reduced the virus infectious titer by 0.61-1.16 log and the viral load by 0.93-1.03 log. Endophytic organisms produced metabolites with potential anticancer and antiviral activity; thus, future studies should aim to isolate pure compounds and evaluate their biological activities.
Collapse
Affiliation(s)
- Mateusz Stelmasiewicz
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
42
|
Azar N, Liarzi O, Zavitan M, Samara M, Nasser A, Ezra D. Endophytic Penicillium species secretes mycophenolic acid that inhibits the growth of phytopathogenic fungi. Microb Biotechnol 2023. [PMID: 36700385 PMCID: PMC10364310 DOI: 10.1111/1751-7915.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
The worldwide demand for reduced and restricted use of pesticides in agriculture due to serious environmental effects, health risks and the development of pathogen resistance calls for the discovery of new bioactive compounds. In the medical field, antibiotic-resistant microorganisms have become a major threat to man, increasing mortality. Endophytes are endosymbiotic microorganisms that inhabit plant tissues without causing any visible damage to their host. Many endophytes secrete secondary metabolites with biological activity against a broad range of pathogens, making them potential candidates for novel drugs and alternative pesticides of natural origin. We isolated endophytes from wild plants in Israel, focusing on endophytes that secrete secondary metabolites with biological activity. We isolated 302 different endophytes from 30 different wild plants; 70 of them exhibited biological activity against phytopathogens. One biologically active fungal endophyte from the genus Penicillium, isolated from a squill (Urginea maritima) leaf, was further examined. Chloroform-based extraction of its growth medium was similarly active against phytopathogens. High-performance liquid chromatography separation followed by gas chromatography/mass spectrometry analysis revealed a single compound-mycophenolic acid-as the main contributor to the biological activity of the organic extract.
Collapse
Affiliation(s)
- Neri Azar
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Orna Liarzi
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Maor Zavitan
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Mohamed Samara
- Institute of Soils, Water and Environmental Sciences, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Ahmed Nasser
- Institute of Soils, Water and Environmental Sciences, ARO - the Volcani Center, Rishon LeZion, Israel
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
43
|
Fernandez-Soto P, Celi D, Tejera E, Alvarez-Suarez JM, Machado A. Cinnamomum sp. and Pelargonium odoratissimum as the Main Contributors to the Antibacterial Activity of the Medicinal Drink Horchata: A Study Based on the Antibacterial and Chemical Analysis of 21 Plants. Molecules 2023; 28:693. [PMID: 36677749 PMCID: PMC9862262 DOI: 10.3390/molecules28020693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Horchata, a herbal infusion drink from Ecuador containing a mixture of medicinal plants, has been reported to exhibit anti-inflammatory, analgesic, diuretic, and antioxidant activity. The antibacterial activity of each of the plants contained in the horchata mixture has not been fully evaluated. Thus, in this study, we analysed the antibacterial activity of 21 plants used in horchata, collected from the Ecuadorian Andes region, against bacterial strains of clinical importance. The methanolic extract of Cinnamomum sp. showed minimal inhibitory concentration (MIC) values of 250 µg/mL against Staphylococcus aureus ATCC25923 and Methicillin-resistant S. aureus (MRSA), while Pelargonium odoratissimum exhibited a MIC value of 500 µg/mL towards S. aureus ATCC25923. The high-performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS) analyses identified in Cinnamomum sp. epicatechin tannins, cinnamaldehyde, and prehelminthosporol molecules, whereas in P. odoratissimum, gallocatechin and epigallocatechin tannins, some flavonoids, and gallic acid and derivatives were identified. Finally, Cinnamomum sp. and P. odoratissimum showed partial inhibition of biofilm formation of S. aureus ATCC25923 and MRSA. Overall, our findings revealed which of the plants used in horchata are responsible for the antibacterial activity attributed to this herbal drink and exhibit the potential for Cinnamomum sp. and P. odoratissimum secondary metabolites to be explored as scaffolds in drug development.
Collapse
Affiliation(s)
- Paulina Fernandez-Soto
- Facultad de Ciencias de la Salud, Carrera de Enfermería, Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Diana Celi
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería Agroindustrial, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - José Miguel Alvarez-Suarez
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - António Machado
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Instituto de Microbiología, Laboratorio de Bacteriología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| |
Collapse
|
44
|
Nasif SO, Siddique AB, Siddique AB, Islam MM, Hassan O, Deepo DM, Hossain A. Prospects of endophytic fungi as a natural resource for the sustainability of crop production in the modern era of changing climate. Symbiosis 2022. [DOI: 10.1007/s13199-022-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Cheng JC, Chen YJ, Chuang CW, Chao YH, Huang HC, Lin CC, Chao CH. Polyoxygenated Terpenoids and Polyketides from the Roots of Flueggea virosa and Their Inhibitory Effect against SARS-CoV-2-Induced Inflammation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238548. [PMID: 36500641 PMCID: PMC9737494 DOI: 10.3390/molecules27238548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Six new polyoxygenated terpenoids, podovirosanes A-F (1-6), and two known polyketides (7 and 8) were isolated from the roots of F. virosa. Their structures, along with absolute configurations, were deduced using spectroscopic analysis as well as computational calculations, including TDDFT calculation of ECD spectra and GIAO NMR calculations combined with DP4+ probability analysis. Compounds 2, 3, 5, and 8 were found to reduce the phosphorylation levels of NF-κB p65 in SARS-CoV-2 pseudovirus-stimulated PMA-differentiated THP-1 cells.
Collapse
Affiliation(s)
- Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Yi-Ju Chen
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 110301, Taiwan
| | - Chi-Wen Chuang
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Ya-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Chia-Chi Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hua Chao
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404332, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 5157); Fax: +886-4-22078083
| |
Collapse
|
47
|
Kaldybayeva AB, Yu VK, Malmakova AE, Li T, Ten AY, Seilkhanov TM, Praliyev KD, Berlin KD. Novel Complexes of 3-[3-(1 H-Imidazol-1-yl)propyl]-3,7-diaza-bispidines and β-Cyclodextrin as Coatings to Protect and Stimulate Sprouting Wheat Seeds. Molecules 2022; 27:7406. [PMID: 36364233 PMCID: PMC9655490 DOI: 10.3390/molecules27217406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 10/29/2023] Open
Abstract
We report the syntheses and characterization of novel 3,7-bicycl[3.3.1]bispidines possessing an imidazolpropyl group attached to N-3, and at N-7 a Boc group, as well as a benzoylated-oximated group at C-9. These compounds were complexed with β-cyclodextrin [β-CD] and evaluated as seed protectors of selected wheat seedlings. Using strong acid, condensations of N-substituted piperidones with the appropriate imidazolpropyl groups at N-3 and N-7 led to bispidinones 6 and 7. These intermediates were reduced to the corresponding 3,7-diazabicyclo[3.3.1]nonane targets. The oxime at C-9 was benzoylated to yield 13. Heating these 3,7-diazabicyclo[3.3.1]nonanes in ethanol with β-CD generated the complexes required. We investigated the ability of such complexes as coatings on seedlings to protect and stimulate growth of three varieties of wheat, namely Kazakhstanskaya-10, Severyanka, and Miras. The complex of 3-[3-(1H-imidazol-1-yl)propyl]-7-(3-methoxypropyl)-3,7-diazabicyclo[3.3.1]nonane (2) promoted growth in the root systems of all three wheat varieties by more than 30% in Kazakhstanskaya-10, 30% in Severyanka and 8.5% in Miras. A complex of 3-Boc-7-[3-(1H-imidazol-1-yl)propyl]-3,7-diazabicyclo[3.3.1]nonane (9) increased both shoot and root length in only the Severyanka variety. The complex of 3-(3-butoxypropyl)-7-[3-(1H-imidazol-1-yl)propyl]-3,7-diazabicyclo[3.3.1]nonane (11) stimulated both shoot growth (0.8%, 12.3%, 13.5%) and root growth (12.3%, 9.4%, 21.7%) in all three varieties of wheat, respectively. The nature of substituents on the bispidine affect the activity. Solid complexes (1:1) were generated as powders which melted above 240 °C (dec) and were characterized via elemental analyses as 1:1 complexes.
Collapse
Affiliation(s)
- Altynay B. Kaldybayeva
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Al Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Valentina K. Yu
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Aigul E. Malmakova
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Tamara Li
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, 45, Timiryazev Str., Almaty 050040, Kazakhstan
| | - Assel Yu. Ten
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Tulegen M. Seilkhanov
- Laboratory of the Engineering Profile of NMR Spectroscopy, Sh. Ualikhanov Kokshetau University, 76, Abay St., Kokshetau 020000, Kazakhstan
| | - Kaldybay D. Praliyev
- Laboratory of Chemistry of Synthetic and Natural Medicinal Substances, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan
| | - Kenneth D. Berlin
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
48
|
Yabaneri C, Sevim A. Endophytic fungi from the common walnut and their in vitro antagonistic activity against Ophiognomonia leptostyla. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Rashad YM, Abdalla SA, Shehata AS. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. BMC Microbiol 2022; 22:229. [PMID: 36175855 PMCID: PMC9524039 DOI: 10.1186/s12866-022-02651-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Fusarium root rot, caused by Fusarium solani (Mart.) Sacc., represents one of the most damaging diseases of maize affecting plant growth and yield. In this study, the antagonistic potential of a non-aflatoxigenic endophytic Aspergillus flavus YRB2, isolated from Thymelaea hirsuta (L.) Endl., was tested against F. solani in vitro. In addition, its biocontrol activity against Fusarium root rot of maize was evaluated under greenhouse conditions. Its impacts on plant molecular, pathological, physiological, and growth levels were also studied. Results obtained revealed a potent antagonistic behavior for A. flavus YRB2 against F. solani in vitro, recording 80% growth inhibition. Seventeen secondary metabolites were detected in the n-hexane extract of A. flavus YRB2 filtered culture broth using GC-MS analysis. Among them, various antifungal secondary metabolites were produced, namely palmitic acid, α-linolenic acid, stearic acid, 2, 4-di-tert-butylphenol, diisobutyl phthalate, and heneicosane. In contrast, HPLC analysis showed that no aflatoxins (B1, B2, G1, and G2) were detected. Under greenhouse conditions, colonization of maize plants with A. flavus YRB2 exhibited a potential biocontrol activity against Fusarium root rot, recording 73.4% reduction in the disease severity. Triggering of transcriptional expression level of the defense-related genes JERF3 (7.2-fold), CHI II (8-fold), and POD (9.1-fold) was reported, indicating the inducing effect on the plant immunity. In addition, an increment in the antioxidant enzymes POD and PPO, and the total phenolic content in maize roots was also observed in response to this treatment. Moreover, a growth-promoting effect was also observed for colonization of maize plants with A. flavus YRB2. Based on the obtained data, we can conclude that A. flavus YRB2 may represent a promising biocontrol and growth-promoting agent for maize plants against Fusarium root rot. Nevertheless, field evaluation is highly requested before the use recommendation.
Collapse
Affiliation(s)
- Younes M Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Sara A Abdalla
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Ahmed S Shehata
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| |
Collapse
|
50
|
Safari Motlagh MR, Jahangiri B, Kulus D, Tymoszuk A, Kaviani B. Endophytic Fungi as Potential Biocontrol Agents against Rhizoctonia solani J.G. Kühn, the Causal Agent of Rice Sheath Blight Disease. BIOLOGY 2022; 11:biology11091282. [PMID: 36138761 PMCID: PMC9495574 DOI: 10.3390/biology11091282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Rice, together with wheat and corn, is among the most important food crops for mankind. Half of the world’s population consumes rice, mainly in Asia, southern Europe, tropical America, and parts of Africa. Rice sheath blight, caused by Rhizoctonia solani, is one of the main diseases in rice production. The control of this pathogen is difficult due to its ecological behavior, broad host range, and the high survival rate of sclerotia under various environmental conditions. In this research, after morphological and molecular identification of fungal isolates, five superior isolates, including Trichoderma virens, Trichoderma harzianum, Curvularia lunata, Aspergillus fumigatus, and Aspergillus awamori were studied in the in vitro and greenhouse trials, towards their potential to inhibit R. solani. The statistical analysis showed a significant difference between the effectiveness of fungi used in the volatile metabolites assay and in terms of height and fresh weight of plants in the greenhouse. It can be concluded that T. virens and A. fumigatus are the most effective antagonists in rice sheath blight disease control. Abstract The rice sheath blight disease, caused by Rhizoctonia solani J.G. Kühn fungus, is a major disease of Oryza sativa L. occurring all over the world. Therefore, efforts need to be undertaken to limit the spread of this pathogen, preferably by using environmentally friendly methods. In the present study, 57 fungal isolates were recovered by surface sterilization technique from 120 rice samples collected from paddy fields in Guilan province, Iran. Biological characterizations of the isolated taxa were performed in vitro, in the dual culture, volatile metabolites, and slide culture methods. Among the studied isolates, Trichoderma virens (J. H. Miller, Giddens and A. A. Foster) Arx was most effective in inhibiting the mycelial growth of R. solani in the dual culture (44.16% inhibition level), while Aspergillus fumigatus Fresen and T. virens had a 62.50–68.75% inhibition efficiency by volatile metabolites. In the slide culture, all of the isolates, except for T. harzianum Rifai, were effective in inhibiting the hyphae growth of R. solani. Under greenhouse conditions, rice plants inoculated with these potential antagonistic fungi showed a reduction in disease severity by even 41.4% as in the case of T. virens. Moreover, phenotypic properties of rice, such as plant height, fresh weight, and dry weight were increased in the plants inoculated with all antagonistic fungi tested, compared to the infected plants, except for the fresh weight of plants inoculated with Curnularia lunata (Wakker) Boedijn. The present in vivo and in vitro studies revealed that T. virens and A. fumigatus are the most effective antagonists in rice sheath blight disease control and could be applied in agricultural practice.
Collapse
Affiliation(s)
- Mohammad Reza Safari Motlagh
- Department of Plant Protection, Faculty of Agriculture, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran
- Correspondence: or (M.R.S.M.); (A.T.); Tel.: +48-52-374-95-64 (A.T.)
| | - Bahar Jahangiri
- Department of Plant Protection, Faculty of Agriculture, Mehrgan Institute for High Education, Mahallat 3781654363, Iran
| | - Dariusz Kulus
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
- Correspondence: or (M.R.S.M.); (A.T.); Tel.: +48-52-374-95-64 (A.T.)
| | - Behzad Kaviani
- Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran
| |
Collapse
|