1
|
Sun X, Xu M, Luo M, Wu X, Li H, Nie J, Qi Y, Yang Z, Tian Z. Potato miR394 targets StA/N-INVE and StLCR to negatively regulate late blight resistance. PHYSIOLOGIA PLANTARUM 2024; 176:e14293. [PMID: 38641970 DOI: 10.1111/ppl.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.
Collapse
Affiliation(s)
- Xinyuan Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Meng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Ming Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Hongjun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Jiahui Nie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Yetong Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Zhu Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, China
| |
Collapse
|
3
|
Dong J, Tu W, Wang H, Zuo Y, Liu T, Zhao Q, Ying J, Wu J, Liu Y, Cai X, Song B. Genome sequence analysis provides insights into the mode of 2n egg formation in Solanum malmeanum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:157. [PMID: 37340281 DOI: 10.1007/s00122-023-04406-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
KEY MESSAGE Our genomic investigation confirms the mechanism of 2n eggs formation in S. malmeanum and aid in optimizing the use of wild germplasm. Wild potatoes are a valuable source of agronomic traits. However, substantial reproductive barriers limit gene flow into cultivated species. 2n gametes are instrumental in preventing endosperm abortion caused by genetic imbalances in the endosperm. However, little is known about the molecular mechanisms underlying the formation of 2n gametes. Here, the wild species Solanum malmeanum Bitter (2x, 1EBN, endosperm balance number) was used in inter- and intrapoloid crosses with other Solanum species, with viable seeds being produced only when S. malmeanum was used as the female parent to cross the 2EBN Solanum genus and with the likely involvement of 2n gametes. Subsequently, we substantiated the formation of 2n eggs in S. malmeanum using fluorescence in situ hybridization (FISH) and genomic sequencing technology. Additionally, the transmission rate of maternal heterozygous polymorphism sites was assessed from a genomic perspective to analyze the mode of 2n egg formation in S. malmeanum × S. tuberosum and S. malmeanum × S. chacoense crosses; each cross acquired an average of 31.12% and 22.79% maternal sites, respectively. This confirmed that 2n egg formation in S. malmeanum attributed to second-division restitution (SDR) coupled with the occurrence of exchange events. The high-throughput sequencing technology used in this study has strong advantages over traditional cytological analyses. Furthermore, S. malmeanum, which has a variety of excellent traits not available from present cultivated potato genepool, has received little research attention and has successfully achieved gene flow in cultivated species in the current study. These findings will facilitate the understanding and optimization of wild germplasm utilization in potatoes.
Collapse
Affiliation(s)
- Jianke Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Tu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Haibo Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tengfei Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinghao Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwen Ying
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianghai Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|