1
|
Wan R, Shi Z, Li Y, Huang T, Cao Y, An W, Zhang X, Zhao J, Qin K, Wang X, Yang L. Effect of potassium on the agronomic traits and fruit quality of Goji (Lycium barbarum L.). Sci Rep 2024; 14:21477. [PMID: 39277666 PMCID: PMC11401933 DOI: 10.1038/s41598-024-72472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
To investgate the effects of potassium (K) application on the agronomic traits and fruit quality of Lycium barbarum L. (Goji), three levels of K fertilizer, namely LK (25 g/plant), CK (50 g/plant), and HK (75 g/plant), were applied to plants in phytotron for observing and measuring relevant indicators. The investigation involved seven agronomic traits: plant height, plant stem diameter, new branch increment, yield of fresh fruits per plant, dry fruit quantity within 50 g, ratio of different grade fruits, and ratio of longitudinal diameter to transverse diameter of Goji fruits. The results showed that K application level had significant effect on ratio of the longitudinal diameter to the transverse diameter of fresh Goji fruits, and that the influence on other agronomic traits was slight. In the meanwhile, the concentrations of amino acids, betaine, polysaccharides and flavonoids of Goji fruits in different levels of K fertilizer were tested. The K treatment increased the content of glutamic acid, and decreased that of flavonoids (P < 0.05), whereas the content of other amino acids, polysaccharides and betaine were unaffected. A total of 132 flavonoid metabolites was identified. Among them, K treatment up-regulated 36 metabolites and down-regulated 30 metabolites (P < 0.05). The results provided a basis for balanced K supply to regulate the agronomic traits and nutrients of Goji fruits.
Collapse
Affiliation(s)
- Ru Wan
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Zhigang Shi
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China.
| | - Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China.
| | - Ting Huang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Wei An
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiyan Zhang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Jianhua Zhao
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Ken Qin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiao Wang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Libin Yang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| |
Collapse
|
2
|
Li N, Chen W, Wang B, Zhang C, Wang Y, Li R, Yan Y, He J. Arbuscular mycorrhizal fungi improve the disease resistance of Lycium barbarum to root rot by activating phenylpropane metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1459651. [PMID: 39354935 PMCID: PMC11443343 DOI: 10.3389/fpls.2024.1459651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Root rot is one of the common diseases of Lycium barbarum. Pathogens can cause devastating disasters to plants after infecting host plants. This study investigated the effect of arbuscular mycorrhizal fungi (AMF) Rhizophagus intraradices inoculation on phenylpropane metabolism in L. barbarum and evaluated its resistance to root rot. The experiment was set up with AMF inoculation treatments (inoculated or not) and root rot pathogen-Fusarium solani inoculation treatments (inoculated or not). The results showed that AMF was able to form a symbiosis with the root system of L. barbarum, thereby promoting plant growth significantly and increasing plants' resistance to disease stress. The plant height of AMF-colonized L. barbarum increased by 24.83% compared to non-inoculated diseased plants. After inoculation with AMF, the plant defense response induced by pathogen infection was stronger. When the enzyme activity of the leaves reached the maximum after the onset of mycorrhizal L. barbarum, phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, and 4-coumaric acid-CoA ligase increased by 3.67%, 31.47%, and 13.61%, respectively, compared with the non-inoculated diseased plants. The products related to the lignin pathway and flavonoid pathway downstream of phenylpropane metabolism such as lignin and flavonoids were also significantly increased by 141.65% and 44.61% compared to nonmycorrhizal diseased plants. The activities of chitinase and β-1,3-glucanase increased by 36.00% and 57.96%, respectively. The contents of salicylic acid and jasmonic acid were also 17.7% and 31.63% higher than those of nonmycorrhizal plants in the early stage of plant growth, respectively. The results indicated that AMF significantly promoted plant growth and enhanced disease resistance by increasing enzyme activities and the production of lignin and flavonoids.
Collapse
Affiliation(s)
- Nan Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yupeng Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yuke Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
3
|
Duan P, Rehemujiang H, Zhang L, Lu M, Li C, Hu L, Wang Y, Diao Q, Xu G. Lycium barbarum (Wolfberry) Branches and Leaves Enhance the Growth Performance and Improve the Rumen Microbiota in Hu Sheep. Animals (Basel) 2024; 14:1610. [PMID: 38891656 PMCID: PMC11171408 DOI: 10.3390/ani14111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The Lycium barbarum branches and leaves (LBL) are known to contain a range of active substances that have positive effects on animal immunity and antioxidation. This study aimed to examine how LBL impacts the growth and slaughter performance as well as rumen fermentation and microbiota in Hu sheep. A total of 50 male Hu sheep of indigenous origin, aged 3 months, were randomly divided into 5 groups of 10 sheep each. The groups were given different levels of LBL supplementation (0%, 3%, 6%, 9%, and 12%) to evaluate growth performance and nutrient apparent digestibility. Rumen fluid samples were collected for analysis of the fermentation parameters and rumen chyme was examined to study the rumen microbiota. The slaughter performance, meat quality, and organ index were evaluated at the conclusion of the experiment. The results showed that the final body weight and average daily gain of the LBL1 group were significantly higher than those of the CON group, LBL3 group, and LBL4 group (p < 0.05). The average dry matter intake of the LBL4 group was significantly lower than that of other experimental groups (p < 0.05). The apparent digestibility of CP in the LBL1 and LBL2 groups was higher than that in other experimental groups (p < 0.05). At the same time, the eye muscle area and grade-rule (GR) value of Hu sheep in the LBL1 group significantly increased and the quality of Hu sheep meat improved (p < 0.05). There was no significant difference in organ weight and organ index between the experimental groups (p > 0.05). The pH of the rumen fluid in the LBL1 group was significantly lower than that in the CON group (p < 0.05). There was no significant difference in the NH3-N content between the experimental groups (p > 0.05). The propionate and valerate in the rumen fluid of Hu sheep in the LBL2 group were significantly higher than those in other experimental groups (p < 0.05). In addition, this had no significant effect on the structure and abundance of the rumen microbiota (p > 0.05). LBL is a promising functional feed. Adding an appropriate amount of LBL to the diet can improve the feed efficiency, growth performance, and meat quality of Hu sheep but has no adverse effects on the rumen. In this experiment, the appropriate supplemental level of LBL in the diet was 3%.
Collapse
Affiliation(s)
- Pingping Duan
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Halidai Rehemujiang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Lidong Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Mulong Lu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Changchang Li
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Lihong Hu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
| | - Youli Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China;
| | - Qiyu Diao
- Institute of Feed Research, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100080, China;
| | - Guishan Xu
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (P.D.); (H.R.); (L.Z.); (M.L.); (C.L.); (L.H.)
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Tarim University, Alar 843300, China
| |
Collapse
|
4
|
Li Z, Liu J, Chen Y, Liang A, He W, Qin X, Qin K, Mu Z. Genome-Wide Identification of PYL/RCAR ABA Receptors and Functional Analysis of LbPYL10 in Heat Tolerance in Goji ( Lycium barbarum). PLANTS (BASEL, SWITZERLAND) 2024; 13:887. [PMID: 38592885 PMCID: PMC10975129 DOI: 10.3390/plants13060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The characterization of the PYL/RCAR ABA receptors in a great deal of plant species has dramatically advanced the study of ABA functions involved in key physiological processes. However, the genes in this family are still unclear in Lycium (Goji) plants, one of the well-known economically, medicinally, and ecologically valuable fruit crops. In the present work, 12 homologs of Arabidopsis PYL/RCAR ABA receptors were first identified and characterized from Lycium (L.) barbarum (LbPYLs). The quantitative real-time PCR (qRT-PCR) analysis showed that these genes had clear tissue-specific expression patterns, and most of them were transcribed in the root with the largest amount. Among the three subfamilies, while the Group I and Group III members were down-regulated by extraneous ABA, the Group II members were up-regulated. At 42 °C, most transcripts showed a rapid and violent up-regulation response to higher temperature, especially members of Group II. One of the genes in the Group II members, LbPYL10, was further functionally validated by virus-induced gene silencing (VIGS) technology. LbPYL10 positively regulates heat stress tolerance in L. barbarum by alleviating chlorophyll degradation, thus maintaining chlorophyll stability. Integrating the endogenous ABA level increase following heat stress, it may be concluded that LbPYL-mediated ABA signaling plays a vital role in the thermotolerance of L. barbarum plants. Our results highlight the strong potential of LbPYL genes in breeding genetically modified L. barbarum crops that acclimate to climate change.
Collapse
Affiliation(s)
- Zeyu Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Jiyao Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Yan Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Aihua Liang
- College of Life Sciences & Technology, Tarim University, Alaer 843300, China;
- State Key Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co–Funded by Xinjiang Corps and the Ministry of Science and Technology, Alaer 843300, China
| | - Wei He
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Ken Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Zixin Mu
- College of Life Sciences & Technology, Tarim University, Alaer 843300, China;
- State Key Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co–Funded by Xinjiang Corps and the Ministry of Science and Technology, Alaer 843300, China
| |
Collapse
|
5
|
Ciceoi R, Asanica A, Luchian V, Iordachescu M. Genomic Analysis of Romanian Lycium Genotypes: Exploring BODYGUARD Genes for Stress Resistance Breeding. Int J Mol Sci 2024; 25:2130. [PMID: 38396806 PMCID: PMC10889844 DOI: 10.3390/ijms25042130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Goji berries, long valued in Traditional Chinese Medicine and Asian cuisine for their wide range of medicinal benefits, are now considered a 'superfruit' and functional food worldwide. Because of growing demand, Europe and North America are increasing their goji berry production, using goji berry varieties that are not originally from these regions. European breeding programs are focusing on producing Lycium varieties adapted to local conditions and market demands. By 2023, seven varieties of goji berries were successfully registered in Romania, developed using germplasm that originated from sources outside the country. A broader project focused on goji berry breeding was initiated in 2014 at USAMV Bucharest. In the present research, five cultivated and three wild L. barbarum genotypes were compared to analyse genetic variation at the whole genome level. In addition, a case study presents the differences in the genomic coding sequences of BODYGUARD (BDG) 3 and 4 genes from chromosomes 4, 8, and 9, which are involved in cuticle-related resistance. All three BDG genes show distinctive differences between the cultivated and wild-type genotypes at the SNP level. In the BDG 4 gene located on chromosome 8, 69% of SNPs differentiate the wild from the cultivated genotypes, while in BDG 3 on chromosome 4, 64% of SNPs could tell the difference between the wild and cultivated goji berry. The research also uncovered significant SNP and InDel differences between cultivated and wild genotypes, in the entire genome, providing crucial insights for goji berry breeders to support the development of goji berry cultivation in Romania.
Collapse
Affiliation(s)
- Roxana Ciceoi
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania;
| | - Adrian Asanica
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania; (A.A.); (V.L.)
| | - Vasilica Luchian
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania; (A.A.); (V.L.)
| | - Mihaela Iordachescu
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania;
| |
Collapse
|
6
|
Rajkowska K, Otlewska A, Broncel N, Kunicka-Styczyńska A. Microbial Diversity and Bioactive Compounds in Dried Lycium barbarum Fruits (Goji): A Comparative Study. Molecules 2023; 28:molecules28104058. [PMID: 37241797 DOI: 10.3390/molecules28104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
This study compares the microbial diversity and content of bioactive compounds in dried goji berries available on the Polish market to those of the most highly valued goji berries from the Ningxia region in China. The content of phenols, flavonoids, and carotenoids were determined, as well as the antioxidant capacities of the fruits. The quantitative and qualitative composition of the microbiota inhabiting the fruits was assessed using metagenomics by high-throughput sequencing on the Illumina platform. The highest quality was demonstrated by naturally dried fruits from the Ningxia region. These berries were characterized by a high content of polyphenols and high antioxidant activity, as well as high microbial quality. The lowest antioxidant capacity was shown by goji berries cultivated in Poland. However, they contained a high amount of carotenoids. The highest microbial contamination was found in the goji berries available in Poland (>106 CFU/g), which is important in terms of consumer safety. Despite the widely accepted benefits of consuming goji berries, both the country of cultivation and the preservation method may influence their composition, bioactivity, and microbial quality.
Collapse
Affiliation(s)
- Katarzyna Rajkowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| | - Natalia Broncel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
- Bionanopark Ltd., Dubois 114/116, 93-465 Łódź, Poland
| | - Alina Kunicka-Styczyńska
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland
| |
Collapse
|
7
|
Bendjedou H, Benamar H, Bennaceur M, Rodrigues MJ, Pereira CG, Trentin R, Custódio L. New Insights into the Phytochemical Profile and Biological Properties of Lycium intricatum Bois. (Solanaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:996. [PMID: 36903857 PMCID: PMC10004830 DOI: 10.3390/plants12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to boost the valorisation of Lycium intricatum Boiss. L. as a source of high added value bioproducts. For that purpose, leaves and root ethanol extracts and fractions (chloroform, ethyl acetate, n-butanol, and water) were prepared and evaluated for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, ferric reducing antioxidant power (FRAP), and metal chelating potential against copper and iron ions. Extracts were also appraised for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), type-2 diabetes mellitus (T2DM, α-glucosidase), obesity/acne (lipase), and skin hyperpigmentation/food oxidation (tyrosinase). The total content of phenolics (TPC), flavonoids (TFC), and hydrolysable tannins (THTC) was evaluated by colorimetric methods, while the phenolic profile was determined by high-performance liquid chromatography, coupled to a diode-array ultraviolet detector (HPLC-UV-DAD). Extracts had significant RSA and FRAP, and moderate copper chelation, but no iron chelating capacity. Samples had a higher activity towards α-glucosidase and tyrosinase, especially those from roots, a low capacity to inhibit AChE, and no activity towards BuChE and lipase. The ethyl acetate fraction of roots had the highest TPC and THTC, whereas the ethyl acetate fraction of leaves had the highest flavonoid levels. Gallic, gentisic, ferulic, and trans-cinnamic acids were identified in both organs. The results suggest that L. intricatum is a promising source of bioactive compounds with food, pharmaceutical, and biomedical applications.
Collapse
Affiliation(s)
- Houaria Bendjedou
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Houari Benamar
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Malika Bennaceur
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Riccardo Trentin
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Biology, University of Padova, Via U. Bassi, 58/B 35131 Padova, Italy
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Qiao F, Zhang K, Zhou L, Qiu QS, Chen Z, Lu Y, Wang L, Geng G, Xie H. Analysis of flavonoid metabolism during fruit development of Lycium chinense. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153856. [PMID: 36375401 DOI: 10.1016/j.jplph.2022.153856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.
Collapse
Affiliation(s)
- Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Kaimin Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Yueheng Lu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Luhao Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| |
Collapse
|
9
|
Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium barbarum during Fruit Ripening and Seedling Response to Heat Stress. Curr Issues Mol Biol 2022; 44:5933-5948. [PMID: 36547065 PMCID: PMC9777030 DOI: 10.3390/cimb44120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Plant−water relations mediated by aquaporins (AQPs) play vital roles in both key plant growth processes and responses to environmental challenges. As a well-known medicinal and edible plant, the harsh natural growth habitat endows Lycium plants with ideal materials for stress biology research. However, the details of their molecular switch for water transport remain unclear. In the present work, we first identified and characterized AQP family genes from Lycium (L.) barbarum at the genome scale and conducted systemic bioinformatics and expression analyses. The results showed that there were 38 Lycium barbarum AQPs (LbAQPs) in L. barbarum, which were classified into four subfamilies, including 17 LbPIP, 9 LbTIP, 10 LbNIP, and 2 LbXIP. Their encoded genes were unevenly distributed on all 12 chromosomes, except chromosome 10. Three of these genes encoded truncated proteins and three genes underwent clear gene duplication events. Cis-acting element analysis indicated that the expression of LbAQPs may be mainly regulated by biotic/abiotic stress, phytohormones and light. The qRT-PCR assay indicated that this family of genes presented a clear tissue-specific expression pattern, in which most of the genes had maximal transcript levels in roots, stems, and leaves, while there were relatively lower levels in flowers and fruits. Most of the LbAQP genes were downregulated during L. barbarum fruit ripening and presented a negative correlation with the fruit relative water content (RWC). Most of their transcripts presented a quick and sharp upregulation response to heat stress following exposure of the 2-month-old seedlings to a 42 °C temperature for 0, 1, 3, 12, or 24 h. Our results proposed that LbAQPs were involved in L. barbarum key development events and abiotic stress responses, which may lay a foundation for further studying the molecular mechanism of the water relationship of Lycium plants, especially in harsh environments.
Collapse
|