1
|
Shahzad R, Koerniati S, Harlina PW, Hastilestari BR, Djalovic I, Prasad PVV. Iron oxide nanoparticles enhance alkaline stress resilience in bell pepper by modulating photosynthetic capacity, membrane integrity, carbohydrate metabolism, and cellular antioxidant defense. BMC PLANT BIOLOGY 2025; 25:170. [PMID: 39924529 PMCID: PMC11808985 DOI: 10.1186/s12870-025-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Bell pepper (Capsicum annuum L.) is a commercially important and nutritionally rich vegetable crop in the Solanaceae family. Alkaline stress (AS) can disrupt growth, metabolism, and, particularly, nutritional quality. This study aims to evaluate the role of iron oxide nanoparticles (FeNP) in mitigating AS and enhancing plant growth and metabolic functions by conducting experiments under controlled greenhouse conditions with four main treatments: AS (irrigating plants with alkaline salts mixture solution); FeNP (foliar application of Fe3O4 nanoparticles at 100 mg L-¹); AS + FeNP (integrated treatment of AS and FeNP); and CK (control). The results clearly demonstrated that the AS treatment negatively affects plant biomass, photosynthetic attributes, membrane integrity, carbohydrate metabolism, and the balance of the antioxidant system. Additionally, key phenolic and flavonoid compounds decreased under the AS, indicating a detrimental effect on the plant's secondary metabolites. In contrast, the application of FeNP under the AS not only improved growth and photosynthetic attributes but also enhanced membrane integrity and restored antioxidant balance. This restoration was driven by the accumulation of sugars (glucose, fructose, sucrose) and starch, along with key carbohydrate metabolism enzymes-sucrose phosphate synthase (SPS), sucrose synthase (SuSy), neutral invertase (NI), and vacuolar invertase (VI)-and their associated gene expression. The correlation analysis further revealed a tight regulation of carbohydrate metabolism at both enzymatic and transcript levels in all tissue types, except for SPS in the roots. Furthermore, the AS + FeNP treatment resulted in increased levels of key phenolics (dihydrocapsaicin, capsaicin, p-coumaric acid, sinapic acid, p-OH benzoic acid, p-OH benzaldehyde, and ferulic acid) and flavonoid compounds (dihydroquercetin, naringenin, kaempferol, dihydrokaempferol, and quercetin) compared to the AS treatment, thus suggesting that these secondary metabolites likely contribute to the stabilization of cellular structures and membranes, ultimately supporting improved physiological functions and resilience under stress. In conclusion, the application of FeNP demonstrate potential in enhancing the resilience of bell pepper plants against the AS by improving growth, carbohydrate metabolism, and the levels of secondary metabolites.
Collapse
Affiliation(s)
- Raheel Shahzad
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia.
| | - Sri Koerniati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung, 45363, Indonesia
| | - Bernadetta Rina Hastilestari
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, 21000, Serbia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, 108 Waters Hall, 1603 Old Claflin Place, Manhattan, KS, 66506, USA
| |
Collapse
|
2
|
Wang A, Wang R, Miao X. Mechanism of Transcription Factor ChbZIP1 Enhanced Alkaline Stress Tolerance in Chlamydomonas reinhardtii. Int J Mol Sci 2025; 26:769. [PMID: 39859481 PMCID: PMC11766021 DOI: 10.3390/ijms26020769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Alkaline environments such as alkaline lands, lakes, and industrial wastewater are not conducive to the growth of plants and microorganisms due to high pH and salinity. ChbZIP1 is a bZIP family transcription factor isolated from an alkaliphilic microalgae (Chlorella sp. BLD). Previous studies have demonstrated its ability to enhance alkaline tolerance in Arabidopsis thaliana. However, the potential of ChbZIP1 to confer similar alkaline tolerance in other microalgae remains unclear, and the specific mechanisms are not fully understood. The analysis of cellular physiological and biochemical indicators revealed that the ChbZIP1 transformants exhibited enhanced photosynthetic activity, increased lipid accumulation, and reduced fatty acid unsaturation. Genes associated with cellular reactive oxygen species (ROS) detoxification were found to be upregulated, and a corresponding increase in antioxidant enzyme activity was detected. In addition, the relative abundance of intracellular ROS and malondialdehyde (MDA) was significantly lower in the transformants. In summary, our research indicates that ChbZIP1 enhances the tolerance of Chlamydomonas reinhardtii to alkaline environments through several mechanisms, including the repair of damaged photosynthesis, increased lipid accumulation, improved fatty acid unsaturation, and enhanced antioxidant enzyme activity. This study aims to contribute to a more comprehensive understanding of the mechanisms underlying alkalinity tolerance in microalgae and offers new insights and theoretical foundations for the utilization of microalgae in alkaline environments.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.W.); (R.W.)
| | - Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.W.); (R.W.)
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.W.); (R.W.)
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
3
|
Wang J, Zhang Y, Wang J, Ma F, Wang L, Zhan X, Li G, Hu S, Khan A, Dang H, Li T, Hu X. Promoting γ-aminobutyric acid accumulation to enhances saline-alkali tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2089-2104. [PMID: 39186533 DOI: 10.1093/plphys/kiae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
Saline-alkali stress is a widely distributed abiotic stress that severely limits plant growth. γ-Aminobutyric acid (GABA) accumulates rapidly in plants under saline-alkali stress, but the underlying molecular mechanisms and associated regulatory networks remain unclear. Here, we report a MYB-like protein, I-box binding factor (SlMYBI), which positively regulates saline-alkali tolerance through induced GABA accumulation by directly modulating the glutamate decarboxylase (GAD) gene SlGAD1 in tomato (Solanum lycopersicum L.). Overexpression of SlGAD1 increased GABA levels and decreased reactive oxygen species accumulation under saline-alkali stress, while silencing of SlGAD1 further suggested that SlGAD1 plays an active role in GABA synthesis and saline-alkali tolerance of tomato. In addition, we found that SlMYBI activates SlGAD1 transcription. Both overexpression of SlMYBI and editing of SlMYBI using CRISPR-Cas9 showed that SlMYBI regulates GABA synthesis by modulating SlGAD1 expression. Furthermore, the interaction of SlNF-YC1 with SlMYBI enhanced the transcriptional activity of SlMYBI on SlGAD1 to further improve saline-alkali tolerance in tomato. Interestingly, we found that ethylene signaling was involved in the GABA response to saline-alkali stress by RNA-seq analysis of SlGAD1-overexpressing lines. This study elucidates the involvement of SlMYBI in GABA synthesis regulation. Specifically, the SlMYBI-SlNF-YC1 module is involved in GABA accumulation in response to saline-alkali stress.
Collapse
Affiliation(s)
- Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Junzheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Fang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Haoran Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
4
|
Gao Y, Liu B, Wei H, Lu Y. Effects of saline-alkali stress on cotton growth and physiochemical expression with cascading effects on aphid abundance. FRONTIERS IN PLANT SCIENCE 2024; 15:1459654. [PMID: 39439515 PMCID: PMC11493616 DOI: 10.3389/fpls.2024.1459654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Introduction Environmental stresses, such as soil salinity or alkalinity, usually affect crop growth and secondary plant metabolism, with follow on effects on foliar-feeding insects. Nevertheless, the underlying mechanism of how saline-alkali stress affects the key cotton pest Aphis gossypii Glover is poorly understood. Methods In this study, we first considered effects of three types of saline-alkali stress (i.e., salinity alone, alkalinity alone - both at different concentration - and their mixed effects) on cotton plants. We then measured impacts of stress on (1) above and below plant growth traits (e.g., plant height, leaf area, root volume), (2) levels of nutrients and secondary metabolites in cotton leaves, and (3) feeding behavior, life-table parameters, and population growth of A. gossypii. We then used a path analysis to evaluate cascading effects of changes in plant growth (due to stress) and changes in levels of nutrients or secondary metabolites on growth of individual cotton aphids and aphid populations. Results We found either salinity or alkalinity stresses significantly reduced cotton growth, increased the content of tannin, soluble sugars, and proline in the leaves, and suppressed aphid growth and development, (including longevity, fecundity, and intrinsic rate of increase) and aphid population growth. Alkalinity had stronger effects on these traits than did salinity. Discussion This work provides insights into the bottom-up interaction mechanism by which these environmental stresses mediate aphid infestation levels in the cotton agricultural ecosystem.
Collapse
Affiliation(s)
- Yu Gao
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Wei
- Ministry of Education Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
5
|
Sun L, Cao X, Du J, Wang Y, Zhang F. Canola ( Brassica napus) enhances sodium chloride and sodium ion tolerance by maintaining ion homeostasis, higher antioxidant enzyme activity and photosynthetic capacity fluorescence parameters. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23089. [PMID: 39088691 DOI: 10.1071/fp23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/08/2024] [Indexed: 08/03/2024]
Abstract
Under salt stress, plants are forced to take up and accumulate large amounts of sodium (Na+ ) and chloride (Cl- ). Although most studies have focused on the toxic effects of Na+ on plants, Cl- stress is also very important. This study aimed to clarify physiological mechanisms underpinning growth contrasts in canola varieties with different salt tolerance. In hydroponic experiments, 150mM Na+ , Cl- and NaCl were applied to salt-tolerant and sensitive canola varieties. Both NaCl and Na+ treatments inhibited seedling growth. NaCl caused the strongest damage to both canola varieties, and stress damage was more severe at high concentrations of Na+ than Cl- . High Cl- promoted the uptake of ions (potassium K+ , calcium Ca2+ ) and induced antioxidant defence. Salt-tolerant varieties were able to mitigate ion toxicity by maintaining lower Na+ content in the root system for a short period of time, and elevating magnesium Mg2+ content, Mg2+ /Na+ ratio, and antioxidant enzyme activity to improve photosynthetic capacity. They subsequently re-established new K+ /Na+ and Ca2+ /Na+ balances to improve their salt tolerance. High concentrations of Cl salts caused less damage to seedlings than NaCl and Na salts, and Cl- also had a positive role in inducing oxidative stress and responsive antioxidant defence in the short term.
Collapse
Affiliation(s)
- Lupeng Sun
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoqiang Cao
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Juncan Du
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yan Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Fenghua Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
6
|
Zhang R, Zhang H, Wang L, Zeng Y. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica. Sci Rep 2024; 14:13199. [PMID: 38851793 PMCID: PMC11162456 DOI: 10.1038/s41598-024-61737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 05/09/2024] [Indexed: 06/10/2024] Open
Abstract
The increasing global phenomenon of soil salinization has prompted heightened interest in the physiological ecology of plant salt and alkali tolerance. Halostachys caspica belonging to Amaranthaceae, an exceptionally salt-tolerant halophyte, is widely distributed in the arid and saline-alkali regions of Xinjiang, in Northwest China. Soil salinization and alkalinization frequently co-occur in nature, but very few studies focus on the interactive effects of various salt and alkali stress on plants. In this study, the impacts on the H. caspica seed germination, germination recovery and seedling growth were investigated under the salt and alkali stress. The results showed that the seed germination percentage was not significantly reduced at low salinity at pH 5.30-9.60, but decreased with elevated salt concentration and pH. Immediately after, salt was removed, ungerminated seeds under high salt concentration treatment exhibited a higher recovery germination percentage, indicating seed germination of H. caspica was inhibited under the condition of high salt-alkali stress. Stepwise regression analysis indicated that, at the same salt concentrations, alkaline salts exerted a more severe inhibition on seed germination, compared to neutral salts. The detrimental effects of salinity or high pH alone were less serious than their combination. Salt concentration, pH value, and their interactions had inhibitory effects on seed germination, with salinity being the decisive factor, while pH played a secondary role in salt-alkali mixed stress.
Collapse
Affiliation(s)
- Rui Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, 830017, China
| | - Huizhen Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, 830017, China
| | - Lai Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, 830017, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, 830017, China.
| |
Collapse
|
7
|
Zhu F, Cheng H, Guo J, Bai S, Liu Z, Huang C, Shen J, Wang K, Yang C, Guan Q. Vegetative cell wall protein OsGP1 regulates cell wall mediated soda saline-alkali stress in rice. PeerJ 2024; 12:e16790. [PMID: 38436004 PMCID: PMC10908258 DOI: 10.7717/peerj.16790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024] Open
Abstract
Plant growth and development are inhibited by the high levels of ions and pH due to soda saline-alkali soil, and the cell wall serves as a crucial barrier against external stresses in plant cells. Proteins in the cell wall play important roles in plant cell growth, morphogenesis, pathogen infection and environmental response. In the current study, the full-length coding sequence of the vegetative cell wall protein gene OsGP1 was characterized from Lj11 (Oryza sativa longjing11), it contained 660 bp nucleotides encoding 219 amino acids. Protein-protein interaction network analysis revealed possible interaction between CESA1, TUBB8, and OsJ_01535 proteins, which are related to plant growth and cell wall synthesis. OsGP1 was found to be localized in the cell membrane and cell wall. Furthermore, overexpression of OsGP1 leads to increase in plant height and fresh weight, showing enhanced resistance to saline-alkali stress. The ROS (reactive oxygen species) scavengers were regulated by OsGP1 protein, peroxidase and superoxide dismutase activities were significantly higher, while malondialdehyde was lower in the overexpression line under stress. These results suggest that OsGP1 improves saline-alkali stress tolerance of rice possibly through cell wall-mediated intracellular environmental homeostasis.
Collapse
Affiliation(s)
- Fengjin Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Huihui Cheng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Jianan Guo
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Shuomeng Bai
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Ziang Liu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chunxi Huang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Jiayi Shen
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Kai Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chengjun Yang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| |
Collapse
|
8
|
Nie W, Gong B, Geng B, Wen D, Qiao P, Guo H, Shi Q. The Effects of Exogenous 2,4-Epibrassinolide on the Germination of Cucumber Seeds under NaHCO 3 Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:394. [PMID: 38337927 PMCID: PMC10856843 DOI: 10.3390/plants13030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
This investigation focused on the suppressive impact of varying NaHCO3 concentrations on cucumber seed germination and the ameliorative effects of 2,4-Epibrassinolide (EBR). The findings revealed a negative correlation between NaHCO3 concentration and cucumber seed germination, with increased NaHCO3 concentrations leading to a notable decline in germination. Crucially, the application of exogenous EBR significantly counteracted this inhibition, effectively enhancing germination rates and seed vigor. Exogenous EBR was observed to substantially elevate the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), thereby mitigating oxidative damage triggered under NaHCO3 stress conditions. Additionally, EBR improved enzyme activity under alkaline stress conditions and reduced starch content in the seeds. Pertinently, EBR upregulated genes that were associated with gibberellin (GA) synthesis (GA20ox and GA3ox), and downregulated genes that were linked to abscisic acid (ABA) synthesis (NCED1 and NCED2). This led to an elevation in GA3 concentration and a reduction in ABA concentration within the cucumber seeds. Therefore, this study elucidates that alleviating oxidative stress, promoting starch catabolism, and regulating the GA and ABA balance are key mechanisms through which exogenous EBR mitigates the suppression of cucumber seed germination resulting from alkaline stress.
Collapse
Affiliation(s)
- Wenjing Nie
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Biao Gong
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Bing Geng
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Dan Wen
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Peng Qiao
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Hongen Guo
- Yantai Engineering Research Center for Plant Stem Cell Targeted Breeding, Shandong Institute of Sericulture, Yantai 264001, China; (W.N.)
| | - Qinghua Shi
- Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
9
|
Liu Z, Wang C, Yang X, Liu G, Cui Q, Indree T, Ye X, Huang Z. The Relationship and Influencing Factors between Endangered Plant Tetraena mongolica and Soil Microorganisms in West Ordos Desert Ecosystem, Northern China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1048. [PMID: 36903909 PMCID: PMC10005437 DOI: 10.3390/plants12051048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Soil microorganisms play crucial roles in improving nutrient cycling, maintaining soil fertility in desert ecosystems such as the West Ordos desert ecosystem in Northern China, which is home to a variety of endangered plants. However, the relationship between the plants-microorganisms-soil in the West Ordos desert ecosystem is still unclear. Tetraena mongolica, an endangered and dominant plant species in West Ordos, was selected as the research object in the present study. Results showed that (1) there were ten plant species in the Tetraena mongolica community, belonging to seven families and nine genera, respectively. The soil was strongly alkaline (pH = 9.22 ± 0.12) and the soil nutrients were relatively poor; (2) fungal diversity was more closely related to shrub diversity than bacterial and archaeal diversity; (3) among the fungal functional groups, endomycorrhizal led to a significant negative correlation between shrub diversity and fungal diversity, because endomycorrhizal had a significant positive effect on the dominance of T. mongolica, but had no significant effect on other shrubs; (4) plant diversity had a significant positive correlation with the soil inorganic carbon (SIC), total carbon (TC), available phosphorus (AVP) and available potassium (AVK). This study revealed the effects of soil properties and soil microorganisms on the community structure and the growth of T. mongolica and provided a theoretical basis for the conservation of T. mongolica and the maintenance of biodiversity in desert ecosystems.
Collapse
Affiliation(s)
- Zhangkai Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congwen Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qingguo Cui
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tuvshintogtokh Indree
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Xuehua Ye
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
10
|
Duan Y, Lei T, Li W, Jiang M, Zhao Z, Yu X, Li Y, Yang L, Li J, Gao S. Enhanced Na + and Cl - sequestration and secretion selectivity contribute to high salt tolerance in the tetraploid recretohalophyte Plumbago auriculata Lam. PLANTA 2023; 257:52. [PMID: 36757459 DOI: 10.1007/s00425-023-04082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Enhanced secretion of Na+ and Cl- in leaf glands and leaf vacuolar sequestration of Na+ or root retention of Cl-, combined with K+ retention, contribute to the improved salt tolerance of tetraploid recretohalophyte P. auriculata. Salt stress is one of the major abiotic factors threatening plant growth and development, and polyploids generally exhibit higher salt stress resistance than diploids. In recretohalophytes, which secrete ions from the salt gland in leaf epidermal cells, the effects of polyploidization on ion homeostasis and secretion remain unknown. In this study, we compared the morphology, physiology, and ion homeostasis regulation of diploid and autotetraploid accessions of the recretohalophyte Plumbago auriculata Lam. after treatment with 300 mM NaCl for 0, 2, 4, 6, and 8 days. The results showed that salt stress altered the morphology, photosynthetic efficiency, and chloroplast structure of diploid P. auriculata to a greater extent than those of its tetraploid counterpart. Moreover, the contents of organic osmoregulatory substances (proline and soluble sugars) were significantly higher in the tetraploid than in the diploid, while those of H2O2 and malondialdehyde (MDA) were significantly lower. Analysis of ion homeostasis revealed that the tetraploid cytotype accumulated more Na+ in stems and leaves and more Cl- in roots but less K+ loss in roots compared with diploid P. auriculata. Additionally, the rate of Na+ and Cl- secretion from the leaf surface was higher, while that of K+, Mg2+, and Ca2+ secretion was lower in tetraploid plants. X-ray microanalysis of mesophyll cells revealed that Na+ mainly accumulated in different cellular compartments in the tetraploid (vacuole) and diploid (cytoplasm) plants. Our results suggest that polyploid recretohalophytes require the ability to sequester Na+ and Cl-(via accumulation in leaf cell vacuoles or unloading by roots) and selectively secrete these ions (through salt glands) together with the ability to prevent K+ loss (by roots). This mechanism required to maintain K+/Na+ homeostasis in polyploid recretohalophytes under high salinity provides new insights in the improved maintenance of ion homeostasis in polyploids under salt stress.
Collapse
Affiliation(s)
- Yifan Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenji Li
- Chongqing Industry Polytechnic College, Chongqing, 401120, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zi'an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Xie B, Xiao X, Li H, Wei S, Li J, Gao Y, Yu J. Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives ( Allium tuberosum Rottler). Foods 2023; 12:204. [PMID: 36613420 PMCID: PMC9818334 DOI: 10.3390/foods12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sodium chloride (NaCl), as a eustressor, can trigger relevant pathways to cause plants to produce a series of metabolites, thus improving the quality of crops to a certain extent. However, there are few reports on the improvement of nutrient quality and flavor of hydroponic Chinese chives (Allium tuberosum Rottler) by sodium chloride. In this study, five NaCl concentrations were used to investigate the dose-dependent effects on growth, nutritional quality and flavor in Chinese chives. The results show that 10 mM NaCl had no significant effect on the growth of Chinese chives, but significantly decreased the nitrate content by 40% compared with 0 mM NaCl treatment, and the content of soluble protein and vitamin C was increased by 3.6% and 2.1%, respectively. In addition, a total of 75 volatile compounds were identified among five treatments using headspace solid-phase microextraction gas chromatography/mass spectrometry (HS-SPME/GC-MS). Compared with the 0 mM NaCl treatment, 10 mM NaCl had the greatest effect on the quantity and content of volatile compounds, with the total content increased by 27.8%. Furthermore, according to the odor activity values (OAVs) and odor description, there were 14 major aroma-active compounds (OAVs > 1) in Chinese chives. The “garlic and onion” odor was the strongest among the eight categories of aromas, and its highest value was observed in the 10 mM NaCl treatment (OAVs = 794).Taken together, adding 10 mM NaCl to the nutrient solution could improve the nutritional quality and flavor of Chinese chives without affecting their normal growth.
Collapse
Affiliation(s)
- Bojie Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| | - Haiyan Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanqiang Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
12
|
Akbar A, Ashraf MA, Rasheed R, Hussain I, Ali S, Parveen A. Exogenous menadione sodium bisulphite alleviates detrimental effects of alkaline stress on wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1889-1903. [PMID: 36484028 PMCID: PMC9723007 DOI: 10.1007/s12298-022-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Menadione sodium bisulphite (MSB) is known to augment plant defense responses against abiotic and biotic stresses. Wheat is an essential cereal with significant sensitivity to alkaline stress. The present study investigated the effects of MSB seed priming (5 and 10 mM) in alleviating the damaging effects of alkaline stress on hydroponically grown wheat cultivars (salt-sensitive cv. MH-97 and salt-tolerant cv. Millat-2011). Our findings revealed a significant reduction in growth, chlorophyll contents, total soluble proteins, free amino acids, K+, Ca2+, P, and K+/Na+ in wheat cultivars under alkaline stress. In contrast, a noteworthy accretion in lipid peroxidation, H2O2 production, proline levels, antioxidant enzyme activities, soluble sugars, antioxidant compounds, and Na+ levels was noticed in wheat plants grown in alkaline hydroponic medium. MSB priming significantly lowered chlorophyll degradation, Na+ levels, and osmolyte accumulation. Further, K+/Na+ ratio, antioxidant compounds, and antioxidant enzyme activities were higher in plants primed with MSB. Therefore, seed priming eminently protected plants by regulating osmotic adjustment and strengthening oxidative defense under alkaline stress. Plants administered 5 mM MSB as seed priming manifested better tolerance to alkaline stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01250-z.
Collapse
Affiliation(s)
- Ali Akbar
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| | - Abida Parveen
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| |
Collapse
|