1
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
2
|
Mao T, Zhang Y, Xue W, Jin Y, Zhao H, Wang Y, Wang S, Zhuo S, Gao F, Su Y, Yu C, Guo X, Sheng Y, Zhang J, Zhang H. Identification, characterisation and expression analysis of peanut sugar invertase genes reveal their vital roles in response to abiotic stress. PLANT CELL REPORTS 2024; 43:30. [PMID: 38195770 DOI: 10.1007/s00299-023-03123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.
Collapse
Affiliation(s)
- Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yaru Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yu Jin
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Hongfei Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yibo Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Shengnan Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Shengjie Zhuo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Feifei Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanping Su
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Xiaotong Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
| |
Collapse
|
3
|
Wang Q, Zhao X, Sun Q, Mou Y, Wang J, Yan C, Yuan C, Li C, Shan S. Genome-wide identification of the LRR-RLK gene family in peanut and functional characterization of AhLRR-RLK265 in salt and drought stresses. Int J Biol Macromol 2024; 254:127829. [PMID: 37926304 DOI: 10.1016/j.ijbiomac.2023.127829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) play important roles in plant developmental regulations and various stress responses. Peanut (Arachis hypogaea L.) is a worldwide important oil crop; however, no systematic identification or analysis of the peanut LRR-RLK gene family has been reported. In present study, 495 LRR-RLK genes in peanut were identified and analyzed. The 495 AhLRR-RLK genes were classed into 14 groups and 10 subgroups together with their Arabidopsis homologs according to phylogenetic analyses, and 491 of 495 AhLRR-RLK genes unequally located on 20 chromosomes. Analyses of gene structure and protein motif organization revealed similarity in exon/intron and motif organization among members of the same subgroup, further supporting the phylogenetic results. Gene duplication events were found in peanut LRR-RLK gene family via syntenic analysis, which were important in LRR-RLK gene family expansion in peanut. We found that the expression of AhLRR-RLK genes was detected in different tissues using RNA-seq data, implying that AhLRR-RLK genes may differ in function. In addition, Arabidopsis plants overexpressing stress-induced AhLRR-RLK265 displayed lower seed germination rates and root lengths compared to wild-type under exogenous ABA treatment. Notably, overexpression of AhLRR-RLK265 enhanced tolerance to salt and drought stresses in transgenic Arabidopsis. Moreover, the AhLRR-RLK265-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under salt and drought stress treatments. We believe these results may provide valuable information about the function of peanut LRR-RLK genes for further analysis.
Collapse
Affiliation(s)
- Qi Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| | - Xiaobo Zhao
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Quanxi Sun
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yifei Mou
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Caixia Yan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Cuiling Yuan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Chunjuan Li
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, China.
| |
Collapse
|
4
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Dong W, Jiao B, Wang J, Sun L, Li S, Wu Z, Gao J, Zhou S. Genome-Wide Identification and Expression Analysis of Lipoxygenase Genes in Rose ( Rosa chinensis). Genes (Basel) 2023; 14:1957. [PMID: 37895306 PMCID: PMC10606720 DOI: 10.3390/genes14101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Lipoxygenases (LOX) play pivotal roles in plant resistance to stresses. However, no study has been conducted on LOX gene identification at the whole genome scale in rose (Rosa chinensis). In this study, a total of 17 RcLOX members were identified in the rose genome. The members could be classified into three groups: 9-LOX, Type I 13-LOX, and Type II 13-LOX. Similar gene structures and protein domains can be found in RcLOX members. The RcLOX genes were spread among all seven chromosomes, with unbalanced distributions, and several tandem and proximal duplication events were found among RcLOX members. Expressions of the RcLOX genes were tissue-specific, while every RcLOX gene could be detected in at least one tissue. The expression levels of most RcLOX genes could be up-regulated by aphid infestation, suggesting potential roles in aphid resistance. Our study offers a systematic analysis of the RcLOX genes in rose, providing useful information not only for further gene cloning and functional exploration but also for the study of aphid resistance.
Collapse
Affiliation(s)
- Wenqi Dong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China;
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Bo Jiao
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jiao Wang
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Lei Sun
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Songshuo Li
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Zhiming Wu
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China;
| | - Shuo Zhou
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
6
|
Hu F, Zhang Y, Guo J. Identification and characterization of lipoxygenase (LOX) genes involved in abiotic stresses in yellow horn. PLoS One 2023; 18:e0292898. [PMID: 37831731 PMCID: PMC10575502 DOI: 10.1371/journal.pone.0292898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Lipoxygenase (LOX) gene plays an essential role in plant growth, development, and stress response. 15 LOX genes were identified, which were unevenly distributed on chromosomes and divided into three subclasses in this study. In promoter region analysis, many cis-elements were identified in growth and development, abiotic stress response, hormonal response, and light response. qRT-PCR showed that the LOX gene showed tissue specificity in seven tissues, especially XsLOX1, 3, and 7 were relatively highly expressed in roots, stems, and axillary buds. The different expression patterns of LOX genes in response to abiotic stress and hormone treatment indicate that different XsLOX genes have different reactions to these stresses and play diversified roles. This study improves our understanding of the mechanism of LOX regulation in plant growth, development, and stress and lays a foundation for further analysis of biological functions.
Collapse
Affiliation(s)
- Fang Hu
- The College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yunxiang Zhang
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Jinzhong, Shanxi, China
| | - Jinping Guo
- The College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Jinzhong, Shanxi, China
| |
Collapse
|
7
|
Liu X, Su L, Li L, Zhang Z, Li X, Liang Q, Li L. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut. BMC Genomics 2023; 24:119. [PMID: 36927268 PMCID: PMC10018853 DOI: 10.1186/s12864-023-09219-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND HR (hairy root) has emerged as a valuable tissue for the rapid characterization of plant gene function and enzyme activity in vivo. AhGLK1 (Arachis hypogaea L. golden2-like 1) is known to play a role in post-drought recovery. However, it is unclear (a) whether HR has properties that are distinct from those of PR (primary root); and (b) which gene networks are regulated by AhGLK1 in response to drought stress and recovery in peanut. RESULTS We found that cells of the root tip cortex were larger in HR than in PR, while a total of 850 differentially expressed genes (DEGs) were identified in HR compared to PR. Eighty-eight of these DEGs, relating to chlorophyll and photosynthesis, were upregulated in HR. In addition, AhGLK1-OX (AhGLK1-overexpressing) HR showed a green phenotype, and had a higher relative water content than 35 S::eGFP (control) HR during drought stress. RNA-seq analysis showed that 74 DEGs involved both in the drought response and the post-drought recovery process were significantly enriched in the galactose metabolism pathway. GO terms enrichment analysis revealed that 59.19%, 29.79% and 17.02% of the DEGs mapped to the 'biological process' (BP), 'molecular function' (MF) and 'cellular component' (CC) domains, respectively. Furthermore, 20 DEGs involved in post-drought recovery were uniquely expressed in AhGLK1-OX HR and were significantly enriched in the porphyrin metabolism pathway. GO analysis showed that 42.42%, 30.30% and 27.28% of DEGs could be assigned to the BP, MF and CC domains, respectively. Transcription factors including bHLH and MYB family members may play a key role during drought stress and recovery. CONCLUSION Our data reveal that HR has some of the characteristics of leaves, indicating that HR is suitable for studying genes that are mainly expressed in leaves. The RNA-seq results are consistent with previous studies that show chlorophyll synthesis and photosynthesis to be critical for the role of AhGLK1 in improving post-drought recovery growth in peanut. These findings provide in-depth insights that will be of great utility for the exploration of candidate gene functions in relation to drought tolerance and/or post-drought recovery ability in peanut.
Collapse
Affiliation(s)
- Xing Liu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, 519040, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Liangchen Su
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, 519040, Zhuhai, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Qingjian Liang
- School of Fishery, Zhejiang Ocean University, 316022, Zhoushan, Zhejiang, China.
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
8
|
Arias-Gaguancela O, Aziz M, Chapman KD. Fatty acid amide hydrolase and 9-lipoxygenase modulate cotton seedling growth by ethanolamide oxylipin levels. PLANT PHYSIOLOGY 2023; 191:1234-1253. [PMID: 36472510 PMCID: PMC9922431 DOI: 10.1093/plphys/kiac556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Polyunsaturated N-acylethanolamines (NAEs) can be hydrolyzed by fatty acid amide hydrolase (FAAH) or oxidized by lipoxygenase (LOX). In Arabidopsis (Arabidopsis thaliana), the 9-LOX product of linoleoylethanolamide, namely, 9-hydroxy linoleoylethanolamide (9-NAE-HOD), is reported to negatively regulate seedling development during secondary dormancy. In upland cotton (Gossypium hirsutum L.), six putative FAAH genes (from two diverged groups) and six potential 9-LOX genes are present; however, their involvement in 9-NAE-HOD metabolism and its regulation of seedling development remain unexplored. Here, we report that in cotton plants, two specific FAAH isoforms (GhFAAH Ib and GhFAAH IIb) are needed for hydrolysis of certain endogenous NAEs. Virus-induced gene silencing (VIGS) of either or both FAAHs led to reduced seedling growth and this coincided with reduced amidohydrolase activities and elevated quantities of endogenous 9-NAE-HOD. Transcripts of GhLOX21 were consistently elevated in FAAH-silenced tissues, and co-silencing of GhLOX21 and GhFAAH (Ib and/or IIb) led to reversal of seedling growth to normal levels (comparable with no silencing). This was concomitant with reductions in the levels of 9-NAE-HOD, but not of 13-NAE-HOD. Pharmacological experiments corroborated the genetic and biochemical evidence, demonstrating that direct application of 9-NAE-HOD, but not 13-NAE-HOD or their corresponding free fatty acid oxylipins, inhibited the growth of cotton seedlings. Additionally, VIGS of GhLOX21 in cotton lines overexpressing AtFAAH exhibited enhanced growth and no detectable 9-NAE-HOD. Altogether, we conclude that the growth of cotton seedlings involves fine-tuning of 9-NAE-HOD levels via FAAH-mediated hydrolysis and LOX-mediated production, expanding the mechanistic understanding of plant growth modulation by NAE oxylipins to a perennial crop species.
Collapse
|
9
|
Shreya S, Supriya L, Padmaja G. Melatonin induces drought tolerance by modulating lipoxygenase expression, redox homeostasis and photosynthetic efficiency in Arachis hypogaea L. FRONTIERS IN PLANT SCIENCE 2022; 13:1069143. [PMID: 36544878 PMCID: PMC9760964 DOI: 10.3389/fpls.2022.1069143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Melatonin (N-acetyl-5-hydroxy tryptamine), a multipotent biomolecule is well known for its ability to confer tolerance to several abiotic and biotic stresses. The regulation of melatonin-mediated drought tolerance in drought-distinguished varieties can be different due to discriminating redox levels. The present study was focused on assessing the effects of melatonin priming against polyethylene glycol (PEG)-induced stress with respect to the antioxidant system, photosynthetic parameters, lipoxygenase expression, JA and ABA levels in drought-sensitive (Kadiri-7) and drought-tolerant (Kadiri-9) varieties. Exogenous melatonin alleviated the drought stress effects in sensitive variety (Kadiri-7) by increasing the endogenous melatonin content with an improved antioxidant system and photosynthetic attributes. The primed stressed plants of the sensitive variety exhibited reduced expression and activity of the chlorophyll degrading enzymes (Chl-deg PRX, pheophytinase and chlorophyllase) with a concomitant increase in chlorophyll content in comparison to unprimed controls. Interestingly, melatonin priming stimulated higher expression and activity of lipoxygenase (LOX) as well as enhanced the expression of genes involved in the synthesis of jasmonic acid (JA) including its content in drought stressed plants of the sensitive variety. The expression of NCED3 (involved in ABA-biosynthesis) was upregulated while CYP707A2 (ABA-degradation) was downregulated which corresponded with higher ABA levels. Contrastingly, priming caused a decrease in endogenous melatonin content under drought stress in tolerant variety (Kadiri-9) which might be due to feedback inhibition of its synthesis to maintain intracellular redox balance and regulate better plant metabolism. Furthermore, the higher endogenous melatonin content along with improved antioxidant system, photosynthetic efficiency and LOX expression associated with the increased levels of JA and ABA in unprimed stressed plants of the tolerant variety (Kadiri-9) is pointing towards the effectiveness of melatonin in mediating drought stress tolerance. Overall, exogenous melatonin alleviated the adverse effects of drought stress in sensitive variety while having no add-on effect on drought stress responses of tolerant variety which is inherently equipped to withstand the given duration of drought stress treatment.
Collapse
|
10
|
González-Gordo S, Cañas A, Muñoz-Vargas MA, Palma JM, Corpas FJ. Lipoxygenase (LOX) in Sweet and Hot Pepper ( Capsicum annuum L.) Fruits during Ripening and under an Enriched Nitric Oxide (NO) Gas Atmosphere. Int J Mol Sci 2022; 23:ijms232315211. [PMID: 36499530 PMCID: PMC9740671 DOI: 10.3390/ijms232315211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved in multiple functions such as the biosynthesis of jasmonic acid (JA) and volatile molecules related to the aroma and flavor production of plant tissues, among others. Using sweet pepper (Capsicum annuum L.) plants as a model, LOX activity was assayed by non-denaturing polyacrylamide gel electrophoresis (PAGE) and specific in-gel activity staining. Thus, we identified a total of seven LOX isozymes (I to VII) distributed among the main plant organs (roots, stems, leaves, and fruits). Furthermore, we studied the FA profile and the LOX isozyme pattern in pepper fruits including a sweet variety (Melchor) and three autochthonous Spanish varieties that have different pungency levels (Piquillo, Padrón, and Alegría riojana). It was observed that the number of LOX isozymes increased as the capsaicin content increased in the fruits. On the other hand, a total of eight CaLOX genes were identified in sweet pepper fruits, and their expression was differentially regulated during ripening and by the treatment with nitric oxide (NO) gas. Finally, a deeper analysis of the LOX IV isoenzyme activity in the presence of nitrosocysteine (CysNO, a NO donor) suggests a regulatory mechanism via S-nitrosation. In summary, our data indicate that the different LOX isozymes are differentially regulated by the capsaicin content, fruit ripening, and NO.
Collapse
|