1
|
Yang C, Lu X, Du D, Liang Z, Li C, Hu K, Wang H, Cheng Y, Lian T, Nian H, Ma Q. GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean. BMC PLANT BIOLOGY 2024; 24:1251. [PMID: 39725892 DOI: 10.1186/s12870-024-06004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily. RESULTS The GsMYB10 gene was up-regulated by acidic aluminum stress and rich in the roots with a constitutive expression pattern in soybean. It was found that GsMYB10 protein contains the MYB and coiled-coil (CC) domains, localizes in the nucleus and holds transcriptional activity. The analysis of the transgenic phenotype revealed that the taproot length and root fresh weights of the GsMYB10-OE plants were greater than those of the wild type when subjected to AlCl3 treatments. While the accumulation of Al3+ in root tip of GsMYB10 transgenic plants (59.37 ± 3.59 µg/g) significantly reduced compared with that of wild type (80.40 ± 3.16 µg/g) which were shallowly stained by hematoxylin under the treatments of AlCl3. Physiological indexes showed that the proline content significantly increased 39-45% and the malondialdehyde content significantly reduced 37-42% in GsMYB10-OE plants compared with that of wild type. Transcriptomic analysis showed that overexpression of GsMYB10 induced a large number of differentially expressed genes (DEGs) with Al-treatment, which were related to wall modification related genes included PGs (such as Glyma.19g006200, Glyma.05g005800), XTHs (such as Glyma.12g080100, Glyma.12g101800, Glyma.08g093900 and Glyma.13g322500), NRAMPs and ABCs. CONCLUSIONS In summary, the data presented in this paper indicate that GsMYB10, as a new soybean MYB-CC TF, is a positive regulator and increases the adaptability of soybeans to acidic aluminum stress. The findings will contribute to the understanding of soybean response to acidic aluminum stress.
Collapse
Affiliation(s)
- Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiang Lu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Dan Du
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhongyi Liang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Cheng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Kang Hu
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hongjie Wang
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanbo Cheng
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tengxiang Lian
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Qibin Ma
- Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
2
|
Ariharasutharsan G, Akilan M, Dhasarathan M, Amaravel M, Divya S, Deivamani M, Sudha M, Pandiyan M, Karthikeyan A, Senthil N. De Novo Transcriptome Assembly of Rice Bean ( Vigna umbellata) and Characterization of WRKY Transcription Factors Response to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3170. [PMID: 39599379 PMCID: PMC11598158 DOI: 10.3390/plants13223170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Rice bean is an underutilized legume crop cultivated in Asia, and it is a good source of protein, minerals, and essential fatty acids for human consumption. Moreover, the leaves left over after harvesting rice bean seeds contain various biological constituents beneficial to humans and animals. In our study, we performed a de-novo transcriptome assembly of rice bean, characterized the WRKY transcription factors, and studied their response to aluminum stress. A total of 46.6 million clean reads, with a GC value of 43%, were generated via transcriptome sequencing. De novo assembly of the clean reads resulted in 90,933 transcripts and 74,926 unigenes, with minimum and maximum lengths of 301 bp and 24,052 bp, and N50 values of 1801 bp and 1710 bp, respectively. A total of 27,095 and 28,378 unigenes were annotated and subjected to GO and KEGG analyses. Among the unigenes, 15,593, 20,770, and 15,385 unigenes were identified in the domains of biological process, molecular function, and cellular component, respectively. A total of 16,132 unigenes were assigned to 188 pathways, including metabolic pathways (5500) and secondary metabolite biosynthesis (2858). Transcription factor analysis revealed 4860 unigenes from 98 different transcription factor families. For WRKY, a total of 95 unigenes were identified. Further analysis revealed the diverse response of WRKY transcription factors to aluminum stress. Collectively, the results of this study boost genomic resources and provide a baseline for further research on the role of WRKY transcription factors in aluminum tolerance in rice bean.
Collapse
Affiliation(s)
- Gunasekaran Ariharasutharsan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
| | - Manoharan Akilan
- Department of Genetics and Plant Breeding, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620027, India
| | - Manickam Dhasarathan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Agro Climate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manivel Amaravel
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Centre of Excellence in Millets, Tamil Nadu Agricultural University, Tiruvannamalai 606603, India
| | - Sankaran Divya
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Mariyappan Deivamani
- ICAR-Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Dharmapuri 636809, India
| | - Manickam Sudha
- Department of Plant Biotechnology, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Muthaiyan Pandiyan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Eachangkottai, Thanjavur 614902, India
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Excellence for Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625105, India
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
3
|
Lin J, Monsalvo I, Kwon H, Pullano S, Kovinich N. The WRKY Family Transcription Factor GmWRKY72 Represses Glyceollin Phytoalexin Biosynthesis in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:3036. [PMID: 39519954 PMCID: PMC11548433 DOI: 10.3390/plants13213036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Phytoalexins are plant defense metabolites that are biosynthesized transiently in response to pathogens. Despite that their biosynthesis is highly restricted in plant tissues, the transcription factors that negatively regulate phytoalexin biosynthesis remain largely unknown. Glyceollins are isoflavonoid-derived phytoalexins that have critical roles in protecting soybean crops from the oomycete pathogen Phytophthora sojae. To identify regulators of glyceollin biosynthesis, we used a transcriptomics approach to search for transcription factors that are co-expressed with glyceollin biosynthesis in soybean and stilbene synthase phytoalexin genes in grapevine. We identified and functionally characterized the WRKY family protein GmWRKY72, which is one of four WRKY72-type transcription factors of soybean. Overexpressing and RNA interference silencing of GmWRKY72 in the soybean hairy root system decreased and increased expression of glyceollin biosynthetic genes and metabolites, respectively, in response to wall glucan elicitor from P. sojae. A translational fusion with green fluorescent protein demonstrated that GFP-GmWRKY72 localizes mainly to the nucleus of soybean cells. The GmWRKY72 protein directly interacts with several glyceollin biosynthetic gene promoters and the glyceollin transcription factor proteins GmNAC42-1 and GmMYB29A1 in yeast hybrid systems. The results show that GmWRKY72 is a negative regulator of glyceollin biosynthesis that may repress biosynthetic gene expression by interacting with transcription factor proteins and the DNA of glyceollin biosynthetic genes.
Collapse
Affiliation(s)
| | | | | | | | - Nik Kovinich
- Department of Biology, Faculty of Science, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada; (J.L.); (I.M.); (H.K.); (S.P.)
| |
Collapse
|
4
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
5
|
Zhao Z, Wang R, Su W, Sun T, Qi M, Zhang X, Wei F, Yu Z, Xiao F, Yan L, Yang C, Zhang J, Wang D. A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus. BMC Genomics 2024; 25:620. [PMID: 38898399 PMCID: PMC11188170 DOI: 10.1186/s12864-024-10523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear. RESULTS Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were differentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box element. CONCLUSION Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which provides guidance for future studies in understanding virus-resistance mechanisms in soybean.
Collapse
Affiliation(s)
- Zhihua Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Rongna Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Su
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Mengnan Qi
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xueyan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fengju Wei
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zhouliang Yu
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Fuming Xiao
- Handan Municipal Academy of Agricultural Sciences, Hebei Province, Handan, 056001, China
| | - Long Yan
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
6
|
Shi G, Liu G, Liu H, Xu N, Yang Q, Song Z, Ye W, Wang L. WRKY Transcriptional Factor IlWRKY70 from Iris laevigata Enhances Drought and Salinity Tolerances in Nicotiana tabacum. Int J Mol Sci 2023; 24:16174. [PMID: 38003365 PMCID: PMC10670936 DOI: 10.3390/ijms242216174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Drought and high salinity greatly affect plant growth and development. WRKY transcription factors play a key role in plant tolerance to abiotic stress, but the functions of WRKYs in the ornamental monocotyledon Iris laevigata remain largely unexplored. In this study, we cloned IlWRKY70 and found that it is a Group III WRKY localized in the nucleus. The expression of IlWRKY70 was induced by NaCl and PEG-6000, which reached peaks (4.38 and 5.65 times) after 3 h and 1 h, respectively. The exogenous overexpression of IlWRKY70 in N. tabacum significantly improved the resistance under NaCl and drought treatments, as evidenced by higher germination rates, longer root lengths, and increased fresh weights compared to those of control plants. In addition, transgenic seedlings showed significantly reduced wilting, higher photosynthetic performance, higher Fv/Fm and chlorophyll content, and lower stomatal conductance. Moreover, transgenic lines showed higher antioxidant enzymatic activities, lower reactive oxygen species (ROS), and lower malondialdehyde contents. Accordingly, we also found higher expressions of antioxidant defense genes, including SOD, CAT, and POD, in transgenic lines compared to controls under salt and drought stresses. Thus, IlWRKY70 enhances the abilities of salt and drought tolerances in plants, at least partially, via ROS regulation and can be used for breeding I. laevigata possessing enhanced salt and drought resistances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China (G.L.); (N.X.); (Q.Y.); (W.Y.)
| |
Collapse
|
7
|
Dabravolski SA, Isayenkov SV. Recent Updates on ALMT Transporters' Physiology, Regulation, and Molecular Evolution in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3167. [PMID: 37687416 PMCID: PMC10490231 DOI: 10.3390/plants12173167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Aluminium toxicity and phosphorus deficiency in soils are the main interconnected problems of modern agriculture. The aluminium-activated malate transporters (ALMTs) comprise a membrane protein family that demonstrates various physiological functions in plants, such as tolerance to environmental Al3+ and the regulation of stomatal movement. Over the past few decades, the regulation of ALMT family proteins has been intensively studied. In this review, we summarise the current knowledge about this transporter family and assess their involvement in diverse physiological processes and comprehensive regulatory mechanisms. Furthermore, we have conducted a thorough bioinformatic analysis to decipher the functional importance of conserved residues, structural components, and domains. Our phylogenetic analysis has also provided new insights into the molecular evolution of ALMT family proteins, expanding their scope beyond the plant kingdom. Lastly, we have formulated several outstanding questions and research directions to further enhance our understanding of the fundamental role of ALMT proteins and to assess their physiological functions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
8
|
Wang H, Li C, Wang L, Zhong H, Xu X, Cheng Y, Nian H, Liu W, Chen P, Zhang A, Ma Q. GmABR1 encoding an ERF transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1125245. [PMID: 37035040 PMCID: PMC10076715 DOI: 10.3389/fpls.2023.1125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The ethylene response factor (ERF) transcription factors, which is one of the largest transcription factor families in plants, are involved in biological and abiotic stress response and play an important role in plant growth and development. In this study, the GmABR1 gene from the soybean inbred line Zhonghuang24 (ZH24)×Huaxia 3 (HX3) was investigated its aluminum (Al) tolerance. GmABR1 protein has a conserved domain AP2, which is located in the nucleus and has transcriptional activation ability. The results of real-time quantitative PCR (qRT-PCR) showed that the GmABR1 gene presented a constitutive expression pattern rich in the root tip, stem and leaf tissues of HX3. After Al stress, the GmABR1 transcript was significantly increased in the roots. The transcripts of GmABR1 in the roots of HX3 treated with 50 µM AlCl3 was 51 times than that of the control. The GmABR1 was spatiotemporally specific with the highest expression levels when Al concentration was 50 µM, which was about 36 times than that of the control. The results of hematoxylin staining showed that the root tips of GmABR1-overexpression lines were stained the lightest, followed by the control, and the root tips of GmABR1 RNAi lines were stained the darkest. The concentrations of Al3+ in root tips were 207.40 µg/g, 147.74 µg/g and 330.65 µg/g in wild type (WT), overexpressed lines and RNAi lines, respectively. When AlCl3 (pH4.5) concentration was 100 µM, all the roots of Arabidopsis were significantly inhibited. The taproot elongation of WT, GmABR1 transgenic lines was 69.6%, 85.6%, respectively. When treated with Al, the content of malondialdehyde (MDA) in leaves of WT increased to 3.03 µg/g, while that of transgenic Arabidopsis increased from 1.66-2.21 µg/g, which was lower than that of WT. Under the Al stress, the Al stress responsive genes such as AtALMT1 and AtMATE, and the genes related to ABA pathway such as AtABI1, AtRD22 and AtRD29A were up-regulated. The results indicated that GmABR1 may jointly regulate plant resistance to Al stress through genes related to Al stress response and ABA response pathways.
Collapse
Affiliation(s)
- Hongjie Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lidan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongying Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Xu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenhua Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Pei Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Aixia Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
An Oxalate Transporter Gene, AtOT, Enhances Aluminum Tolerance in Arabidopsis thaliana by Regulating Oxalate Efflux. Int J Mol Sci 2023; 24:ijms24054516. [PMID: 36901947 PMCID: PMC10003554 DOI: 10.3390/ijms24054516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Secretion and efflux of oxalic acid from roots is an important aluminum detoxification mechanism for various plants; however, how this process is completed remains unclear. In this study, the candidate oxalate transporter gene AtOT, encoding 287 amino acids, was cloned and identified from Arabidopsis thaliana. AtOT was upregulated in response to aluminum stress at the transcriptional level, which was closely related to aluminum treatment concentration and time. The root growth of Arabidopsis was inhibited after knocking out AtOT, and this effect was amplified by aluminum stress. Yeast cells expressing AtOT enhanced oxalic acid resistance and aluminum tolerance, which was closely correlated with the secretion of oxalic acid by membrane vesicle transport. Collectively, these results underline an external exclusion mechanism of oxalate involving AtOT to enhance oxalic acid resistance and aluminum tolerance.
Collapse
|
10
|
Li S, Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Chen X, Yuan X. Identification and Functional Characterization of WRKY, PHD and MYB Three Salt Stress Responsive Gene Families in Mungbean ( Vigna radiata L.). Genes (Basel) 2023; 14:463. [PMID: 36833390 PMCID: PMC9956968 DOI: 10.3390/genes14020463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
WRKY-, PHD-, and MYB-like proteins are three important types of transcription factors in mungbeans, and play an important role in development and stress resistance. The genes' structures and characteristics were clearly reported and were shown to contain the conservative WRKYGQK heptapeptide sequence, Cys4-His-cys3 zinc binding motif, and HTH (helix) tryptophan cluster W structure, respectively. Knowledge on the response of these genes to salt stress is largely unknown. To address this issue, 83 VrWRKYs, 47 VrPHDs, and 149 VrMYBs were identified by using comparative genomics, transcriptomics, and molecular biology methods in mungbeans. An intraspecific synteny analysis revealed that the three gene families had strong co-linearity and an interspecies synteny analysis showed that mungbean and Arabidopsis were relatively close in genetic relationship. Moreover, 20, 10, and 20 genes showed significantly different expression levels after 15 days of salt treatment (p < 0.05; Log2 FC > 0.5), respectively. Additionally, in the qRT-PCR analysis, VrPHD14 had varying degrees of response to NaCl and PEG treatments after 12 h. VrWRKY49 was upregulated by ABA treatment, especially in the beginning (within 24 h). VrMYB96 was significantly upregulated in the early stages of ABA, NaCl, and PEG stress treatments (during the first 4 h). VrWRKY38 was significantly upregulated by ABA and NaCl treatments, but downregulated by PEG treatment. We also constructed a gene network centered on the seven DEGs under NaCl treatment; the results showed that VrWRKY38 was in the center of the PPI network and most of the homologous Arabidopsis genes of the interacted genes were reported to have response to biological stress. Candidate genes identified in this study provide abundant gene resources for the study of salt tolerance in mungbeans.
Collapse
Affiliation(s)
- Shicong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|