1
|
Yao J, Chu Q, Guo X, Shao W, Shang N, Luo K, Li X, Chen H, Cheng Q, Mo F, Zheng D, Xu F, Guo F, Zhu QH, Deng S, Chu C, Xu X, Liu H, Fan L. Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination. Dev Cell 2024; 59:2320-2332.e5. [PMID: 38848718 DOI: 10.1016/j.devcel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Characterizing cellular features during seed germination is crucial for understanding the complex biological functions of different embryonic cells in regulating seed vigor and seedling establishment. We performed spatially enhanced resolution omics sequencing (Stereo-seq) and single-cell RNA sequencing (scRNA-seq) to capture spatially resolved single-cell transcriptomes of germinating rice embryos. An automated cell-segmentation model, employing deep learning, was developed to accommodate the analysis requirements. The spatial transcriptomes of 6, 24, 36, and 48 h after imbibition unveiled both known and previously unreported embryo cell types, including two unreported scutellum cell types, corroborated by in situ hybridization and functional exploration of marker genes. Temporal transcriptomic profiling delineated gene expression dynamics in distinct embryonic cell types during seed germination, highlighting key genes involved in nutrient metabolism, biosynthesis, and signaling of phytohormones, reprogrammed in a cell-type-specific manner. Our study provides a detailed spatiotemporal transcriptome of rice embryo and presents a previously undescribed methodology for exploring the roles of different embryonic cells in seed germination.
Collapse
Affiliation(s)
- Jie Yao
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qinjie Chu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- BGI Research, Shenzhen 518103, China; BGI Research, Wuhan 430074, China
| | - Wenwen Shao
- BGI Research, Shenzhen 518103, China; BGI Research, Wuhan 430074, China
| | - Nianmin Shang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Kang Luo
- College of Computer Science and Technology & Polytechnic Institute, Zhejiang University, Hangzhou 310015, Zhejiang, China
| | - Xiaohan Li
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Hongyu Chen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qing Cheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Fangyu Mo
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Dihuai Zheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Shuiguang Deng
- College of Computer Science and Technology & Polytechnic Institute, Zhejiang University, Hangzhou 310015, Zhejiang, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xun Xu
- BGI Research, Shenzhen 518103, China
| | - Huan Liu
- BGI Research, Shenzhen 518103, China.
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China.
| |
Collapse
|
2
|
Guo H, Li S, Liu Y, Yang Q. Catechin promotes the germination of Pistacia chinensis seeds via GA biosynthesis. ANNALS OF BOTANY 2024; 134:233-246. [PMID: 38682952 PMCID: PMC11232523 DOI: 10.1093/aob/mcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS Chinese pistachio (Pistacia chinensis), an important horticultural plant species, holds great ornamental value with beautiful leaves and fruits. Seedling propagation of this tree species is restricted by its erratic seed germination; however, the germination mechanism is ambiguous. The aim of this study was to determine the germination mechanism from a novel perspective based on the multi-omics data. METHODS The multi-omics technique combined with hormone content measurement was applied to seed germination of Chinese pistachio. KEY RESULTS Due to its great accumulation during seed germination, catechin stood out from the identified metabolites in a broadly targeted metabolomic analysis. Exogenous catechin at 10 mg L-1 significantly improved the germination of Chinese pistachio seeds. An interesting result of hormone analysis was that the improving effect of catechin could be attributed to an increase in gibberellic acid 3 (GA3) content rather than a decrease in abscisic acid (ABA) content before germination. Treatments with paclobutrazol (PAC, a GA biosynthesis inhibitor) and PAC + catechin also showed that the promoting effect of catechin on seed germination depends on GA biosynthesis. Transcriptome analysis and qRT‒PCR further revealed that catechin induced the expression of PcGA20ox5 to activate GA biosynthesis. Several transcription factors were induced by catechin and GA treatments, such as TCP, bZIP and C3H, which may play an important regulatory role in GA biosynthesis in a catechin-mediated way. CONCLUSIONS Catechin promotes seed germination via GA biosynthesis in Chinese pistachios. This study proposes a novel mechanism by which catechin promotes seed germination via the GA pathway, which provides new insight into a comprehensive understanding of seed dormancy and germination.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| | - Shiqin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| | - Qinsong Yang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
Dueñas C, Pagano A, Calvio C, Srikanthan DS, Slamet-Loedin I, Balestrazzi A, Macovei A. Genotype-specific germination behavior induced by sustainable priming techniques in response to water deprivation stress in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1344383. [PMID: 38390302 PMCID: PMC10881859 DOI: 10.3389/fpls.2024.1344383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Water stress brought about by climate change is among the major global concerns threatening food security. Rice is an important staple food which requires high water resources. Being a semi-aquatic plant, rice is particularly susceptible to drought. The aim of this work was to develop techniques directed to promote rice resilience to water deprivation stress during germination by implementing specific seed priming treatments. Five popular Italian rice varieties were subjected to priming treatments using novel, sustainable solutions, like poly-gamma-glutamic acid (γ-PGA), denatured γ-PGA (dPGA), and iron (Fe) pulsing, alone or in combination. The effect of the developed priming methods was tested under optimal conditions as well as under water deprivation stress imposed by polyethylene glycol (PEG) treatments. The priming efficacy was phenotypically determined in terms of germination behavior by measuring a series of parameters (germinability, germination index, mean germination time, seed vigor index, root and shoot length, germination stress tolerance index). Biochemical analyses were carried out to measure the levels of iron uptake and accumulation of reactive oxygen species (ROS). Integrative data analyses revealed that the rice varieties exhibited a strong genotype- and treatment-specific germination behavior. PEG strongly inhibited germination while most of the priming treatments were able to rescue it in all varieties tested except for Unico, which can be defined as highly stress sensitive. Molecular events (DNA repair, antioxidant response, iron homeostasis) associated with the transition from seed to seedling were monitored in terms of changes in gene expression profiles in two varieties sensitive to water deprivation stress with different responses to priming. The investigated genes appeared to be differentially expressed in a genotype-, priming treatment-, stress- and stage-dependent manner. The proposed seed priming treatments can be envisioned as sustainable and versatile agricultural practices that could help in addressing the impact of climate challenges on the agri-food system.
Collapse
Affiliation(s)
- Conrado Dueñas
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | | | - Inez Slamet-Loedin
- Trait and Genome Engineering Cluster, Rice Breeding Innovations, International Rice Research Institute, Metro Manila, Philippines
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Smolikova G, Krylova E, Petřík I, Vilis P, Vikhorev A, Strygina K, Strnad M, Frolov A, Khlestkina E, Medvedev S. Involvement of Abscisic Acid in Transition of Pea ( Pisum sativum L.) Seeds from Germination to Post-Germination Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:206. [PMID: 38256760 PMCID: PMC10819913 DOI: 10.3390/plants13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Ekaterina Krylova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Ivan Petřík
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Polina Vilis
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| | - Aleksander Vikhorev
- School of Advanced Engineering Studies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Faculty of Science, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; (I.P.); (M.S.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia;
| | - Elena Khlestkina
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (S.M.)
| |
Collapse
|
5
|
Zeng F, Zheng C, Ge W, Gao Y, Pan X, Ye X, Wu X, Sun Y. Regulatory function of the endogenous hormone in the germination process of quinoa seeds. FRONTIERS IN PLANT SCIENCE 2024; 14:1322986. [PMID: 38259945 PMCID: PMC10801742 DOI: 10.3389/fpls.2023.1322986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
The economic and health significance of quinoa is steadily growing on a global scale. Nevertheless, the primary obstacle to achieving high yields in quinoa cultivation is pre-harvest sprouting (PHS), which is intricately linked to seed dormancy. However, there exists a dearth of research concerning the regulatory mechanisms governing PHS. The regulation of seed germination by various plant hormones has been extensively studied. Consequently, understanding the mechanisms underlying the role of endogenous hormones in the germination process of quinoa seeds and developing strategies to mitigate PHS in quinoa cultivation are of significant research importance. This study employed the HPLC-ESI-MS/MS internal standard and ELISA method to quantify 8 endogenous hormones. The investigation of gene expression changes before and after germination was conducted using RNA-seq analysis, leading to the discovery of 280 differentially expressed genes associated with the regulatory pathway of endogenous hormones. Additionally, a correlation analysis of 99 genes with significant differences identified 14 potential genes that may act as crucial "transportation hubs" in hormonal interactions. Through the performance of an analysis on the modifications in hormone composition and the expression of associated regulatory genes, we posit a prediction that implies the presence of a negative feedback regulatory mechanism of endogenous hormones during the germination of quinoa seeds. This mechanism is potentially influenced by the unique structure of quinoa seeds. To shed light on the involvement of endogenous hormones in the process of quinoa seed germination, we have established a regulatory network. This study aims to offer innovative perspectives on the breeding of quinoa varieties that exhibit resistance to PHS, as well as strategies for preventing PHS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
6
|
Yi K, Yue J, Yang S, Jiang Y, Hong L, Zeng H, Wei K, Mao P, Sun Y, Dou L, Li M. Germination of aged oat seeds associated with changes in antioxidant enzyme activity and storage compounds mobilization. PHYSIOLOGIA PLANTARUM 2023; 175:e14020. [PMID: 37882312 DOI: 10.1111/ppl.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
Germination of aged seeds may be associated with specific metabolic changes. The objective of this study was to examine physiological and metabolic alterations before and after germination of control and aged oat (Avena sativa) seeds. The activity of antioxidant enzymes and the level of storage compounds were measured in the embryo and endosperm at 0, 4, 16, and 32 h of imbibition for control seeds and 0, 4, 16, 32, and 60 h of imbibition for medium vigor seeds after artificially accelerated aging; metabolomic changes were determined in embryos at 16 and 32 h of seed imbibition. In aged oat seeds, superoxide dismutase activity and catalase activity increased in the late imbibition stage. The content of soluble sugars decreased significantly in the later stages of imbibition, while the content of proteins increased in 32 h of seed imbibition eventually producing mannitol and proline. The mobilization of fat in deteriorated seeds was mainly through the sphingolipid metabolic pathway generated by cell growth-promoting dihydrosphingosine-1-phosphate. Ascorbic acid, avenanthramide and proline levels increased significantly at 60 h of imbibition, playing an important role in the germination of aged oat seeds.
Collapse
Affiliation(s)
- Kun Yi
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Jiaming Yue
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Shuangfeng Yang
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Liu Hong
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hanguo Zeng
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kai Wei
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Peisheng Mao
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yan Sun
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Liru Dou
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Manli Li
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Min CW, Gupta R, Jung JY, Rakwal R, Kang JW, Cho JH, Jeon JS, Kim ST. Comparative Proteome-wide Characterization of Three Different Tissues of High-Protein Mutant and Wild Type Unravels Protein Accumulation Mechanisms in Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12357-12367. [PMID: 37549031 DOI: 10.1021/acs.jafc.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Improving the proteins and amino acid contents of rice seeds is one of the prime objectives of plant breeders. We recently developed an EMS mutant/high-protein mutant (HPM) of rice that exhibits 14.8% of the total protein content as compared to its parent Dharial (wild-type), which shows only 9.3% protein content in their mature seeds. However, the mechanisms underlying the higher protein accumulation in these HPM seeds remain largely elusive. Here, we utilized high-throughput proteomics to examine the differences in the proteome profiles of the embryo, endosperm, and bran tissues of Dharial and HPM seeds. Utilizing a label-free quantitative proteomic and subsequent functional analyses of the identified proteins revealed that nitrogen compound biosynthesis, intracellular transport, protein/amino acid synthesis, and photosynthesis-related proteins were specifically enriched in the endosperm and bran of the high-protein mutant seed. Our data have uncovered proteome-wide changes highlighting various functions of metabolic pathways associated with protein accumulation in rice seeds.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Ju-Young Jung
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea
| | - Jun-Hyeon Cho
- Sangju Substation, National Institute of Crop Science, Rural Development Administration (RDA), Sangju 37139, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
8
|
Tang X, Zhong W, Wang K, Gong X, Xia Y, Nong J, Xiao L, Xia S. Regulation of Grain Chalkiness and Starch Metabolism by FLO2 Interaction Factor 3, a bHLH Transcription Factor in Oryza sativa. Int J Mol Sci 2023; 24:12778. [PMID: 37628959 PMCID: PMC10454616 DOI: 10.3390/ijms241612778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chalkiness is a key determinant that directly affects the appearance and cooking quality of rice grains. Previously, Floury endosperm 2 (FLO2) was reported to be involved in the formation of rice chalkiness; however, its regulation mechanism is still unclear. Here, FLO2 interaction factor 3 (OsFIF3), a bHLH transcription factor, was identified and analyzed in Oryza sativa. A significant increase in chalkiness was observed in OsFIF3-overexpressed grains, coupled with a round, hollow filling of starch granules and reduced grain weight. OsFIF3 is evolutionarily conserved in monocotyledons, but variable in dicotyledons. Subcellular localization revealed the predominant localization of OsFIF3 in the nucleus. The DAP-seq (DNA affinity purification sequencing) results showed that OsFIF3 could affect the transcriptional accumulation of β-amylase 1, α-amylase isozyme 2A-like, pectinesterase 11, β-glucosidase 28 like, pectinesterase, sucrose transport protein 1 (SUT1), and FLO2 through the binding of the CACGTG motif on their promoters. Moreover, FLO2 and SUT1 with abundant OsFIF3 binding signals showed significant expression reduction in OsFIF3 overexpression lines, further confirming OsFIF3's role in starch metabolism regulation and energy material allocation. Taken together, these findings show that the overexpression of OsFIF3 inhibits the expression of FLO2 and SUT1, thereby increasing grain chalkiness and affecting grain weight.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (W.Z.); (K.W.); (X.G.); (Y.X.); (J.N.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (W.Z.); (K.W.); (X.G.); (Y.X.); (J.N.)
| |
Collapse
|