1
|
Li S, Gu X, Wang S, Wang L, Lin Y, Liang X, Yang J, Zhu X, Wang J, Cai K. Rhamnolipid Modified Silica Nanoparticles Control Rice Blast Disease by Enhancing Antifungal Activity In Vivo and Antioxidant Defense System of Rice ( Oryza sativa L.). ACS APPLIED MATERIALS & INTERFACES 2025; 17:1792-1802. [PMID: 39704214 DOI: 10.1021/acsami.4c11833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Blast disease caused by Magnaporthe oryzae is a devastating disease that limits rice grain production. Here, we synthesized rhamnolipid (RL) modified silica nanoparticles (SiO2NPs) based on the excellent antimicrobial activity of RL against various phytopathogens and the role of SiO2NPs in alleviating plant diseases and investigated the roles and mechanisms of RL@SiO2NPs application in controlling rice blast disease. Two-week-old rice seedlings were sprayed with 100 mL/L of different materials before pathogen inoculation, and blast incidence was investigated 5 days after inoculation. The results showed that RL0.1@SiO2NPs were the most suitable mixture ratio in suppressing blast and enhanced plant resistance. Compared with the control, application of RL0.1@SiO2NPs significantly reduced rice blast disease incidence by 10.80% and the relative growth of fungus by 97.05% and increased the shoot dry biomass by 13.33%, which alleviated the infection pressure of rice blast fungus. Additionally, after RL0.1@SiO2NPs treatment, peroxidase, ascorbate peroxidase, and polyphenol oxidase activities in rice leaves were significantly increased by 47.02%, 34.26%, and 44.36%, respectively, the total phenolics content was significantly increased by 24.14%, and the malondialdehyde and hydrogen peroxide content was decreased by 5.28% and 14.58%, respectively. RL0.1@SiO2NPs also improved plant nutrient status and enhanced disease resistance of infected plants by restoring nutrient balance or ion homeostasis, including increased potassium concentration (23.84%) in leaves and Si concentration (60.34%) in roots and decreased magnesium (11.89%) and iron concentrations (30.55%) in rice leaves. In summary, our results suggest that RL0.1@SiO2NPs enhance rice plant resistance against blast by enhancing the antifungal activity in vivo, activating the antioxidant defense system, and affecting nutrient acquisition in rice seedlings. RL@SiO2NPs have shown potential application as green and efficient agricultural chemical substitutes in plant disease management.
Collapse
Affiliation(s)
- Sicong Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, P. R. China
| | - Xiaolin Gu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Sheng Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, P. R. China
| | - Lei Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, P. R. China
| | - Yongyi Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, P. R. China
| | - Xinwen Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, P. R. China
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Jinxiang Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Root Biology Center, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Agricultural and Rural pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, P. R. China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, P. R. China
| |
Collapse
|
2
|
Bouchrati MA, Villaume S, Guise JF, Feussner I, Vaillant-Gaveau N, Dhondt-Cordelier S. Impact of exogenous rhamnolipids on plant photosynthesis and biochemical parameters under prolonged heat stress. PHOTOSYNTHETICA 2024; 62:393-405. [PMID: 39811712 PMCID: PMC11726169 DOI: 10.32615/ps.2024.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens. To date, how RLs act under abiotic stresses is unexplored. In this study, we aimed to investigate whether RLs could modify Arabidopsis thaliana physiology during prolonged heat stress. Measurement of leaf gas exchange and chlorophyll fluorescence showed that heat stress reduces photosynthetic rate through stomatal limitation and reduction of photosystem II yield. Our study reported decreased chlorophyll content and accumulation of soluble sugars and proline in response to heat stress. RLs were shown to have no detrimental effect on photosynthesis and carbohydrate metabolism in all conditions. These results extend the knowledge of plant responses to prolonged heat stress.
Collapse
Affiliation(s)
- M A Bouchrati
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, University of Göttingen, 37077 Göttingen, Germany
| | - S Villaume
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France
| | - J F Guise
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France
| | - I Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, University of Göttingen, 37077 Göttingen, Germany
| | - N Vaillant-Gaveau
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France
| | - S Dhondt-Cordelier
- University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France
| |
Collapse
|
3
|
Sudyoung N, Samosorn S, Dolsophon K, Nantavisai K, Pringsulaka O, Sirikantaramas S, Oikawa A, Sarawaneeyaruk S. Rhamnolipid-Enriched PA3 Fraction from Pseudomonas aeruginosa SWUC02 Primes Chili Plant Defense Against Anthracnose. Int J Mol Sci 2024; 25:12593. [PMID: 39684305 DOI: 10.3390/ijms252312593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Chili anthracnose, caused by Colletotrichum truncatum, causes significant yield loss in chili production. In this study, we investigated the elicitor properties of a rhamnolipid (RL)-enriched PA3 fraction derived from Pseudomonas aeruginosa SWUC02 in inducing systemic resistance in yellow chili seedlings and antifungal activity against C. truncatum CFPL01 (Col). Fractionation of the ethyl acetate extract yielded 12 fractions, with PA3 demonstrating the most effective disease suppression, reducing the disease severity index to 4 ± 7.35% at 7 days post-inoculation compared with Col inoculation alone (83 ± 23.57%). PA3 also exhibited direct antifungal activity, inhibiting Col mycelial growth by 41 ± 0.96% at 200 µg/mL. Subfractionation revealed PA3 as a mixture of mono- and di-RLs, confirmed by 1H nuclear magnetic resonance and electrospray ionization mass spectrometry data. Additionally, PA3 enhanced seed germination and promoted plant growth without causing phytotoxicity. Transcriptomics revealed that PA3 pre-treatment prior to Col infection primed the defense response, upregulating defense-related genes involved in the phenylpropanoid, flavonoid, and jasmonic acid biosynthesis pathways, as well as those associated with cell wall reinforcement. Our findings highlight the potential of RL-enriched PA3 as both an antifungal agent and a plant defense elicitor, with transcriptome data providing new insights into defense priming and resistance pathways in chili, offering an eco-friendly solution for sustainable anthracnose management.
Collapse
Affiliation(s)
- Natthida Sudyoung
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Kwannan Nantavisai
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Onanong Pringsulaka
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Siriruk Sarawaneeyaruk
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
4
|
Yang T, Li J, Mao Y, Wu H, Lin M, Chen L. The role of rhamnolipids in the growth and defense responses of passion fruit plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1659-1671. [PMID: 39506996 PMCID: PMC11534940 DOI: 10.1007/s12298-024-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024]
Abstract
Rhamnolipids (RLs) are bioactive compounds that have gained a lot of attention for their potential applications in agriculture. However, the exploration of RLs in passion fruit plants remains limited. This study aimed to investigate the role of RLs in passion fruit plants growth and defense responses. Firstly, the results demonstrated that RLs act as plant growth regulators, significantly enhancing the survival rate and root system development of passion fruit seedlings propagated by cutting. Further analyses suggested that RLs may enhance photosynthetic capacity and modulate the accumulation of indoleacetic acid (IAA) and cytokinin (CTK) in passion fruit cuttings, thereby promoting plant growth and development. Additionally, this study revealed that RLs effectively reduced susceptibility to viral pathogen telosma mosaic virus (TeMV) in passion fruit plants compared to distilled water-pretreated controls, resulting in alleviated disease symptoms. Significant up-regulation of antioxidative enzyme activities and reducing substances were observed in RL's-pretreated plants upon TeMV-inoculation compared to distilled water-pretreated ones. Moreover, RLs were found to promote other defense-related signaling pathways upon TeMV-inoculation in passion fruit plants, including salicylic acid (SA) accumulation and expression levels of defense-related genes such as pathogenesis-related gene (PR3), phenylalanine ammonia-lyase (PAL), transcription factors (TFs) WRKY and NAC. Collectively, these findings underscored the positive roles played by RLs both in promoting growth and eliciting defense responses within passion fruit plants. These results provided valuable insights for designing environment-friendly management strategies for cutting propagation as well as prevention and control measures against viral diseases in passion fruits. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01511-z.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Jihu Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Yongkai Mao
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Han Wu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Mingjiang Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| | - Lijuan Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong People’s Republic of China
| |
Collapse
|
5
|
Fomitcheva V, Strauch CJ, Bonse S, Bauer P, Kühne T, Niehl A. Bio-control of soil-borne virus infection by seed application of Glycyrrhiza glabra extract and the rhamnolipid Rhapynal. PLANTA 2024; 260:94. [PMID: 39269658 PMCID: PMC11399307 DOI: 10.1007/s00425-024-04529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
MAIN CONCLUSION Seed-application of the natural products protects sugar beet and wheat plants against infection with plasmodiophorid-transmitted viruses and thus may represent an efficient, environmentally friendly, easy and cost effective biocontrol strategy. In times of intensive agriculture, resource shortening and climate change, alternative, more sustainable and eco-friendly plant protection strategies are required. Here, we tested the potential of the natural plant substances Glycyrrhiza glabra leaf extract (GE) and the rhamnolipid Rhapynal (Rha) applied to seeds to protect against infection of sugar beet and wheat with soil-borne plant viruses. The soil-borne Polymyxa betae- and Polymyxa graminis-transmitted viruses cause extensive crop losses in agriculture and efficient control strategies are missing. We show that GE and Rha both efficiently protect plants against infection with soil-borne viruses in sugar beet and wheat when applied to seeds. Moreover, the antiviral protection effect is independent of the cultivar used. No protection against Polymyxa sp. was observed after seed treatment with the bio-substances at our analysis time points. However, when we applied the bio-substances directly to soil a significant anti-Polymyxa graminis effect was obtained in roots of barley plants grown in the soil as well as in the treated soil. Despite germination can be affected by high concentrations of the substances, a range of antiviral protection conditions with no effect on germination were identified. Seed-treatment with the bio-substances did not negatively affect plant growth and development in virus-containing soil, but was rather beneficial for plant growth. We conclude that seed treatment with GE and Rha may represent an efficient, ecologically friendly, non-toxic, easy to apply and cost efficient biocontrol measure against soil-borne virus infection in plants.
Collapse
Affiliation(s)
- Viktoria Fomitcheva
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, Brunswick, Germany
| | - Claudia J Strauch
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, Brunswick, Germany
| | - Sabine Bonse
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, Brunswick, Germany
| | - Petra Bauer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, Brunswick, Germany
| | - Thomas Kühne
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, Brunswick, Germany
| | - Annette Niehl
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, Brunswick, Germany.
| |
Collapse
|
6
|
Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, Esmaeel Q. Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl Microbiol Biotechnol 2024; 108:439. [PMID: 39145847 PMCID: PMC11327198 DOI: 10.1007/s00253-024-13255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Salma Benchlih
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Essaid Ait-Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
7
|
Mottola M, Bertolino MC, Kourdova LT, Valdivia Pérez JA, Bogino MF, Nocelli NE, Chaveriat L, Martin P, Vico RV, Fabro G, Fanani ML. Nanoemulsions of synthetic rhamnolipids act as plant resistance inducers without damaging plant tissues or affecting soil microbiota. FRONTIERS IN PLANT SCIENCE 2023; 14:1195718. [PMID: 37674738 PMCID: PMC10478713 DOI: 10.3389/fpls.2023.1195718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/14/2023] [Indexed: 09/08/2023]
Abstract
Plant pathogens and pests can cause significant losses in crop yields, affecting food security and the global economy. Many traditional chemical pesticides are used to combat these organisms. This can lead to the development of pesticide-resistant strains of pathogens/insects and negatively impact the environment. The development of new bioprotectants, which are less harmful to the environment and less likely to lead to pesticide-resistance, appears as a sustainable strategy to increase plant immunity. Natural Rhamnolipids (RL-Nat) are a class of biosurfactants with bioprotectant properties that are produced by an opportunistic human pathogen bacterium. RL-Nat can act as plant resistance inducers against a wide variety of pathogens. Recently, a series of bioinspired synthetic mono-RLs produced by green chemistry were also reported as phytoprotectants. Here, we explored their capacity to generate novel colloidal systems that might be used to encapsulate bioactive hydrophobic compounds to enhance their performance as plant bioprotectants. The synthetic mono-RLs showed good surfactant properties and emulsification power providing stable nanoemulsions capable of acting as bio-carriers with good wettability. Synthetic RLs-stabilized nanoemulsions were more effective than RLs suspensions at inducing plant immunity, without causing deleterious effects. These nanoemulsions were innocuous to native substrate microbiota and beneficial soil-borne microbes, making them promising safe bio-carriers for crop protection.
Collapse
Affiliation(s)
- Milagro Mottola
- Centro de Investigaciones y Transferencia Tierra del Fuego (CIT-TDF) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tierra del Fuego (UNTDF), Rio Grande, Argentina
| | - María C. Bertolino
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lucille Tihomirova Kourdova
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jessica Aye Valdivia Pérez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Florencia Bogino
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Natalia E. Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ludovic Chaveriat
- Univ. Artois, UnilaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Patrick Martin
- Univ. Artois, UnilaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Raquel V. Vico
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Georgina Fabro
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
8
|
Pierre E, Marcelo P, Croutte A, Dauvé M, Bouton S, Rippa S, Pageau K. Impact of Rhamnolipids (RLs), Natural Defense Elicitors, on Shoot and Root Proteomes of Brassica napus by a Tandem Mass Tags (TMTs) Labeling Approach. Int J Mol Sci 2023; 24:ijms24032390. [PMID: 36768708 PMCID: PMC9916879 DOI: 10.3390/ijms24032390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The rapeseed crop is susceptible to many pathogens such as parasitic plants or fungi attacking aerial or root parts. Conventional plant protection products, used intensively in agriculture, have a negative impact on the environment as well as on human health. There is therefore a growing demand for the development of more planet-friendly alternative protection methods such as biocontrol compounds. Natural rhamnolipids (RLs) can be used as elicitors of plant defense mechanisms. These glycolipids, from bacteria secretome, are biodegradable, non-toxic and are known for their stimulating and protective effects, in particular on rapeseed against filamentous fungi. Characterizing the organ responsiveness to defense-stimulating compounds such as RLs is missing. This analysis is crucial in the frame of optimizing the effectiveness of RLs against various diseases. A Tandem Mass Tags (TMT) labeling of the proteins extracted from the shoots and roots of rapeseed has been performed and showed a differential pattern of protein abundance between them. Quantitative proteomic analysis highlighted the differential accumulation of parietal and cytoplasmic defense or stress proteins in response to RL treatments with a clear effect of the type of application (foliar spraying or root absorption). These results must be considered for further use of RLs to fight specific rapeseed pathogens.
Collapse
Affiliation(s)
- Elise Pierre
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Antoine Croutte
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Morgane Dauvé
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Sophie Bouton
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (S.R.); (K.P.)
| | - Karine Pageau
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (S.R.); (K.P.)
| |
Collapse
|
9
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
10
|
Zhao F, Wang B, Yuan M, Ren S. Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications. Microb Cell Fact 2022; 21:221. [PMID: 36274139 PMCID: PMC9590131 DOI: 10.1186/s12934-022-01950-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Chemical pesticides have defects in crop diseases control, such as narrow antimicrobial spectrum, chemicals residue risk and harm to farmland ecosystem. Antimicrobial agents from microbial sources are highly interested in agriculture. Studies showed that rhamnolipid biosurfactants possessed certain antimicrobial activity. The structural differences in rhamnolipid inevitably affect their activities. But the antimicrobial effect of mono-rhamnolipid and di-rhamnolipid is unknown. Rhamnolipid with unique structure can be produced using specific microbial cell factory. Results Different types of rhamnolipid were produced from different Pseudomonas aeruginosa strains. Rha-C10-C10 and Rha-Rha-C10-C10 were the main homologues in the separated mono-rhamnolipid and di-rhamnolipid, respectively. Both mono-rhamnolipid and di-rhamnolipid exhibited certain antimicrobial activity against the tested microbial strains, especially the fungi and Gram-positive bacteria. But mono-rhamnolipid was superior to di-rhamnolipid, with inhibition zone diameters larger than 25 mm and inhibition rate higher than 90%. The IC50 values of mono-rhamnolipid were lower than 5 mg/L against the tested bacterium and fungus, whereas the IC50 values of di-rhamnolipid were ranged from 10 mg/L to 20 mg/L. Mono-rhamnolipid stimulated the tested strains to generate higher level of intracellular ROS. Mono-rhamnolipid exhibited better antimicrobial activity to the potential agricultural pathogens, such as Alternaria alternata, Pantoea agglomerans and Cladosporium sp. The mono-rhamnolipid crude extract of strain P. aeruginosa SGΔrhlC can replace the separated mono-rhamnolipid. After 50 times dilution, the fermentation broth of the mono-rhamnolipid producing strain SGΔrhlC exhibited equal antimicrobial effect to mono-rhamnolipid (200 mg/L). Prospects of mono-rhamnolipid were also discussed for antimicrobial applications in agriculture. Conclusions This work discovered that mono-rhamnolipid was superior to di-rhamnolipid on antimicrobial activity for agricultural applications. Mono-rhamnolipid is an excellent candidate for agricultural biocontrol. The knockout strain P. aeruginosa SGΔrhlC is an excellent microbial cell factory for high producing mono-rhamnolipid. Its mono-rhamnolipid crude extract and its diluted fermentation broth are cost-effective antimicrobial agents. This work provided new insights to develop green and efficient antimicrobial agents for agricultural applications.
Collapse
|
11
|
Dutilloy E, Oni FE, Esmaeel Q, Clément C, Barka EA. Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. J Fungi (Basel) 2022; 8:jof8060632. [PMID: 35736115 PMCID: PMC9225584 DOI: 10.3390/jof8060632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Wheat and barley are the main cereal crops cultivated worldwide and serve as staple food for a third of the world's population. However, due to enormous biotic stresses, the annual production has significantly reduced by 30-70%. Recently, the accelerated use of beneficial bacteria in the control of wheat and barley pathogens has gained prominence. In this review, we synthesized information about beneficial bacteria with demonstrated protection capacity against major barley and wheat pathogens including Fusarium graminearum, Zymoseptoria tritici and Pyrenophora teres. By summarizing the general insights into molecular factors involved in plant-pathogen interactions, we show to an extent, the means by which beneficial bacteria are implicated in plant defense against wheat and barley diseases. On wheat, many Bacillus strains predominantly reduced the disease incidence of F. graminearum and Z. tritici. In contrast, on barley, the efficacy of a few Pseudomonas, Bacillus and Paraburkholderia spp. has been established against P. teres. Although several modes of action were described for these strains, we have highlighted the role of Bacillus and Pseudomonas secondary metabolites in mediating direct antagonism and induced resistance against these pathogens. Furthermore, we advance a need to ascertain the mode of action of beneficial bacteria/molecules to enhance a solution-based crop protection strategy. Moreover, an apparent disjoint exists between numerous experiments that have demonstrated disease-suppressive effects and the translation of these successes to commercial products and applications. Clearly, the field of cereal disease protection leaves a lot to be explored and uncovered.
Collapse
|