1
|
Yoon H, Lim C, Lyu B, Song Q, Park SY, Kang K, Cho SH, Paek NC. Rice CHD3/Mi-2 chromatin remodeling factor RFS regulates vascular development and root formation by modulating the transcription of auxin-related genes NAL1 and OsPIN1. BMB Rep 2024; 57:441-446. [PMID: 39044456 PMCID: PMC11524826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 07/25/2024] Open
Abstract
The vascular system in plants facilitates long-distance transportation of water and nutrients through the xylem and phloem, while also providing mechanical support for vertical growth. Although many genes that regulate vascular development in rice have been identified, the mechanism by which epigenetic regulators control vascular development remains unclear. This study found that Rolled Fine Striped (RFS), a Chromodomain Helicase DNA-binding 3 (CHD3)/Mi-2 subfamily protein, regulates vascular development in rice by affecting the initiation and development of primordia. The rfs mutant was found to affect auxin-related genes, as revealed by RNA sequencing and reverse transcription-quantitative PCR analysis. The transcript levels of OsPIN1 and NAL1 genes were downregulated in rfs mutant, compared to the wild-type plant. The chromatin immunoprecipitation assays showed lower levels of H3K4me3 in the OsPIN1a and NAL1 genes in rfs mutant. Furthermore, exogenous auxin treatment partially rescued the reduced adventitious root vascular development in rfs mutant. Subsequently, exogenous treatments with auxin or an auxin-transport inhibitor revealed that the expression of OsPIN1a and NAL1 is mainly affected by auxin. These results provide strong evidence that RFS plays an important role in vascular development and root formation through the auxin signaling pathway in rice. [BMB Reports 2024; 57(10): 441-446].
Collapse
Affiliation(s)
- Hyeryung Yoon
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea, Incheon 22012, Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea, Incheon 22012, Korea
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA, Incheon 22012, Korea
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA, Incheon 22012, Korea
| | - So-Yon Park
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA, Incheon 22012, Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea, Incheon 22012, Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea, Incheon 22012, Korea
| |
Collapse
|
2
|
Han J, Wang Q, Qian B, Liu Q, Wang Z, Liu Y, Chen Z, Wu W, Zhang C, Yin Y. Exploring the Roles of the Swi2/ Snf2 Gene Family in Maize Abiotic Stress Responses. Int J Mol Sci 2024; 25:9686. [PMID: 39273633 PMCID: PMC11396418 DOI: 10.3390/ijms25179686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The maize Snf2 gene family plays a crucial role in chromatin remodeling and response to environmental stresses. In this study, we identified and analyzed 35 members of the maize Snf2 gene family (ZmCHR1 to ZmCHR35) using the Ensembl Plants database. Each protein contained conserved SNF2-N and Helicase-C domains. Phylogenetic analysis revealed six groups among the Snf2 proteins, with an uneven distribution across subfamilies. Physicochemical analysis indicated that the Snf2 proteins are hydrophilic, with varied amino acid lengths, isoelectric points, and molecular weights, and are predominantly localized in the nucleus. Chromosomal mapping showed that these genes are distributed across all ten maize chromosomes. Gene structure analysis revealed diverse exon-intron arrangements, while motif analysis identified 20 conserved motifs. Collinearity analysis highlighted gene duplication events, suggesting purifying selection. Cis-regulatory element analysis suggested involvement in abiotic and biotic stress responses. Expression analysis indicated tissue-specific expression patterns and differential expression under various stress conditions. Specifically, qRT-PCR validation under drought stress showed that certain Snf2 genes were upregulated at 12 h and downregulated at 24 h, revealing potential roles in drought tolerance. These findings provide a foundation for further exploration of the functional roles of the maize Snf2 gene family in development and stress responses.
Collapse
Affiliation(s)
- Jiarui Han
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Buxuan Qian
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Qing Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Ziyu Wang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Weilin Wu
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun 130033, China
| |
Collapse
|
3
|
Jiao A, Chen L, Ma X, Ma J, Cui D, Han B, Sun J, Han L. Linkage Mapping and Discovery of Candidate Genes for Drought Tolerance in Rice During the Vegetative Growth Period. RICE (NEW YORK, N.Y.) 2024; 17:53. [PMID: 39198267 PMCID: PMC11358570 DOI: 10.1186/s12284-024-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Drought is a major abiotic stress affecting crop yields. Mapping quantitative trait loci (QTLs) and mining genes for drought tolerance in rice are important for identifying gene functions and targets for molecular breeding. Here, we performed linkage analysis of drought tolerance using a recombinant inbred line population derived from Jileng 1 (drought sensitive) and Milyang 23 (drought tolerant). An ultra-high-density genetic map, previously constructed by our research team using genotype data from whole-genome sequencing, was used in combination with phenotypic data for rice grown under drought stress conditions in the field in 2017-2019. Thirty-nine QTLs related to leaf rolling index and leaf withering degree were identified, and QTLs were found on all chromosomes except chromosomes 6, 10, and 11. qLWD4-1 was detected after 32 days and 46 days of drought stress in 2017 and explained 7.07-8.19% of the phenotypic variation. Two loci, qLRI2-2 and qLWD4-2, were identified after 29, 42, and 57 days of drought stress in 2018. These loci explained 10.59-17.04% and 5.14-5.71% of the phenotypic variation, respectively. There were 281 genes within the QTL interval. Through gene functional annotation and expression analysis, two candidate genes, Os04g0574600 and OsCHR731, were found. Quantitative reverse transcription PCR analysis showed that the expression levels of these genes were significantly higher under drought stress than under normal conditions, indicating positive regulation. Notably, Os04g0574600 was a newly discovered drought tolerance gene. Haplotype analysis showed that the RIL population carried two haplotypes (Hap1 and Hap2) of both genes. Lines carrying Hap2 exhibited significantly or extremely stronger drought tolerance than those carrying Hap1, indicating that Hap2 is an excellent haplotype. Among rice germplasm resources, there were two and three haplotypes of Os04g0574600 and OsCHR731, respectively. A high proportion of local rice resources in Sichuan, Yunnan, Anhui, Guangdong and Fujian provinces had Hap of both genes. In wild rice, 50% of accessions contained Hap1 of Os04g0574600 and 50% carried Hap4; 13.51%, 59.46% and 27.03% of wild rice accessions contained Hap1, Hap2, and Hap3, respectively. Hap2 of Os04g0574600 was found in more indica rice resources than in japonica rice. Therefore, Hap2 has more potential for utilization in future drought tolerance breeding of japonica rice.
Collapse
Affiliation(s)
- Aixia Jiao
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Chen
- Institute of Crop Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, 750001, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Ma
- Institute of Crop Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, 750001, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianchang Sun
- Institute of Crop Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, 750001, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Myint ZM, Koide Y, Takanishi W, Ikegaya T, Kwan C, Hikichi K, Tokuyama Y, Okada S, Onishi K, Ishikawa R, Fujita D, Yamagata Y, Matsumura H, Kishima Y, Kanazawa A. OlCHR, encoding a chromatin remodeling factor, is a killer causing hybrid sterility between rice species Oryza sativa and O. longistaminata. iScience 2024; 27:109761. [PMID: 38706863 PMCID: PMC11067373 DOI: 10.1016/j.isci.2024.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The genetic mechanisms of reproductive isolation have been widely investigated within Asian cultivated rice (Oryza sativa); however, relevant genes between diverged species have been in sighted rather less. Herein, a gene showing selfish behavior was discovered in hybrids between the distantly related rice species Oryza longistaminata and O. sativa. The selfish allele S13l in the S13 locus impaired male fertility, discriminately eliminating pollens containing the allele S13s from O. sativa in heterozygotes (S13s/S13l). Genetic analysis revealed that a gene encoding a chromatin-remodeling factor (CHR) is involved in this phenomenon and a variety of O. sativa owns the truncated gene OsCHR745, whereas its homologue OlCHR has a complete structure in O. longistaminata. CRISPR-Cas9-mediated loss of function mutants restored fertility in hybrids. African cultivated rice, which naturally lacks the OlCHR homologue, is compatible with both S13s and S13l carriers. These results suggest that OlCHR is a Killer gene, which leads to reproductive isolation.
Collapse
Affiliation(s)
- Zin Mar Myint
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wakana Takanishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohito Ikegaya
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Choi Kwan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kiwamu Hikichi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshiki Tokuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shuhei Okada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazumitsu Onishi
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Chen G, Mishina K, Zhu H, Kikuchi S, Sassa H, Oono Y, Komatsuda T. Genome-Wide Analysis of Snf2 Gene Family Reveals Potential Role in Regulation of Spike Development in Barley. Int J Mol Sci 2022; 24:ijms24010457. [PMID: 36613901 PMCID: PMC9820626 DOI: 10.3390/ijms24010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins, as the catalytic core of ATP-dependent chromatin remodeling complexes, play important roles in nuclear processes as diverse as DNA replication, transcriptional regulation, and DNA repair and recombination. The Snf2 gene family has been characterized in several plant species; some of its members regulate flower development in Arabidopsis. However, little is known about the members of the family in barley (Hordeum vulgare). Here, 38 Snf2 genes unevenly distributed among seven chromosomes were identified from the barley (cv. Morex) genome. Phylogenetic analysis categorized them into 18 subfamilies. They contained combinations of 21 domains and consisted of 3 to 34 exons. Evolution analysis revealed that segmental duplication contributed predominantly to the expansion of the family in barley, and the duplicated gene pairs have undergone purifying selection. About eight hundred Snf2 family genes were identified from 20 barley accessions, ranging from 38 to 41 genes in each. Most of these genes were subjected to purification selection during barley domestication. Most were expressed abundantly during spike development. This study provides a comprehensive characterization of barley Snf2 family members, which should help to improve our understanding of their potential regulatory roles in barley spike development.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Kohei Mishina
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Hongjing Zhu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
- Correspondence: (Y.O.); (T.K.); Tel.: +81-29-838-7443 (Y.O.); +86-531-6665-8143 (T.K.)
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo 271-8510, Japan
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/Shandong Technology Innovation Center of Wheat, Jinan 252100, China
- Correspondence: (Y.O.); (T.K.); Tel.: +81-29-838-7443 (Y.O.); +86-531-6665-8143 (T.K.)
| |
Collapse
|