1
|
Zhu Y, Che R, Dong Z, Guo T, He X, Li J, Wang F. Metabolomics reveals the potential mechanism of La(III) promoting enrichment of Sodium hydrogen arsenate and Roxarsone in Solanum nigrum L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175990. [PMID: 39245378 DOI: 10.1016/j.scitotenv.2024.175990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The rare earth element lanthanum (La(III)) has been found to effectively enhance crop yields and improve plant growth and development. Arsenic (As), as a class of toxic metals widely found in the environment, poses a serious threat to both ecological and human health. Research on the application of La(III) in phytoremediation to enhance remediation efficiency is currently lacking. This study examined the impact of La(III) on physiological and biochemical indicators of Solanum nigrum L. (S. nigrum) exposed to Sodium hydrogen arsenate (SA) and Roxarsone (ROX) treatments under hydroponic conditions. Results indicated that La(III) treatment increased S. nigrum's aboveground As transport capacity by 58.68 %-213 % compared to no La(III) application. Additionally, foliar spraying of La(III) significantly inhibited the expression of toxic metabolites in the root system of S. nigrum, reducing Benzamide by 99.79 % under SA treatment and ZON by 87.72 % under ROX treatment. La(III) is likely to promote the transport of toxins and nutrients within and out of cells by activating ABC transporters, thereby enhancing S. nigrum's arsenic tolerance and metabolic activity. These findings provide molecular-scale insights into La(III) enhancement of the resilience of hyper-enriched plants and the remediation potential of contaminated sites.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xin He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
2
|
Lentini M, Ciriello M, Rouphael Y, Carillo P, Fusco GM, Pagliaro L, Vaccari FP, De Pascale S. Mitigating Salt Stress with Biochar: Effects on Yield and Quality of Dwarf Tomato Irrigated with Brackish Water. PLANTS (BASEL, SWITZERLAND) 2024; 13:2801. [PMID: 39409671 PMCID: PMC11478744 DOI: 10.3390/plants13192801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The increase in the frequency and magnitude of environmental stresses poses a significant risk to the stability of food supplies. In coastal areas of the Mediterranean, brackish water has long been considered a limitation on horticultural production. In this scenario, the use of biochar in agriculture could be considered a valuable tool to cope with the deleterious effects of salt stress. This work aimed to investigate, in a protected environment, the effects of different concentrations of biochar (0, 1, and 2% v/v) obtained from poplar (Populus L.) biomass on the yield and quality of dwarf San Marzano ecotype tomatoes irrigated with saline water at different concentrations of NaCl (0, 40 and 80 mM). The increase in salt concentration from 0 to 80 mM NaCl reduced the total yield (-63%) and the number of fruits (-25%), but improved the main quality parameters such as dry matter (+75%), total soluble solids (+56%), and polyphenol content (+43%). Compared to control conditions, biochar supplementation improved the total yield (+23%) and number of fruits (+26%) without altering the functional and organoleptic characteristics of the fruits. The promising results underscore the potential of biochar as a sustainable solution to amend soils in order to improve tomato production under unfavorable conditions such as high salinity. However, there is a need to clarify which adaptation mechanisms triggered by biochar amending improve production responses even and especially under suboptimal growing conditions.
Collapse
Affiliation(s)
- Matteo Lentini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Letizia Pagliaro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.); (L.P.)
| | - Francesco Primo Vaccari
- Institute of BioEconomy—Biology, Agriculture and Food Sciences Department, National Research Council of Italy, Via Caproni 8, 50144 Firenze, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.L.); (M.C.)
| |
Collapse
|
3
|
Anshori MF, Musa Y, Farid M, Jayadi M, Padjung R, Kaimuddin K, Huang YC, Casimero M, Bogayong I, Suwarno WB, Sembiring H, Purwoko BS, Nur A, Wahyuni W, Wasonga DO, Seleiman MF. A comprehensive multivariate approach for GxE interaction analysis in early maturing rice varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1462981. [PMID: 39411651 PMCID: PMC11473407 DOI: 10.3389/fpls.2024.1462981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The genotype evaluation process requires analysis of GxE interactions to ascertain the responsiveness of a genotype to various environments, including the development of early maturing rice. However, the concept of interaction is relatively specific to grain yield. In contrast, grain yield is highly polygenic, so assessment should be carried out with multivariate approaches. Therefore, multivariate assessment in evaluating GxE interactions should be developed, especially for early maturing rice genotypes. The study aimed to develop a comprehensive multivariate approach to improve the comprehensiveness and responsiveness of GxE interaction analysis. The study was conducted in Bone and Soppeng districts, South Sulawesi, Indonesia, in two seasons. The study used a randomized complete block design, where replications were nested across two seasons and locations. Two check varieties and five early maturing varieties were replicated three times in each environment. Based on this study, a new approach to GxE interaction analysis based on multiple regression index analysis, BLUP analysis, factor analysis, and path analysis was considered adequate, especially for evaluating early maturing rice. This approach combined days to harvest, biological yield, and grain yield in multiple linear regression with weighting based on the combination of all analyses. The effectiveness of the GxE interaction assessment was reflected by high coefficient of determination (R2) and gradient (b) values above 0.8 and 0.9, respectively. Inpari 13 (R2 = 0.9; b=1.05), Cakrabuana (R2 = 0.98; b=0.99), and Padjajaran (R2 = 0.95; b=1.07) also have good grain yield with days to harvesting consideration, namely 7.83 ton ha-1, 98.12 days; 7.37 ton ha-1, 95.52 days; and 7.29 ton ha-1, 97.23 days, respectively. Therefore, this index approach can be recommended in GxE interaction analysis to evaluate early maturing rice genotypes. Furthermore, Inpari 13, Cakrabuana, and Padjajaran are recommended as adaptive early maturing varieties.
Collapse
Affiliation(s)
- Muhammad Fuad Anshori
- Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia
| | - Yunus Musa
- Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia
| | - Muh Farid
- Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia
| | - Muh Jayadi
- Department of Soil Science, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia
| | - Rusnadi Padjung
- Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia
| | - Kaimuddin Kaimuddin
- Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia
| | - Yi Cheng Huang
- Taiwan International Cooperation and Development Fund (TaiwanICDF), Taipei, Taiwan
| | - Madonna Casimero
- International Rice Research Institute, University of the Philippines Los Baños, Los Baños, Philippines
| | - Iris Bogayong
- International Rice Research Institute, University of the Philippines Los Baños, Los Baños, Philippines
| | - Willy Bayuardi Suwarno
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Hasil Sembiring
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Indonesia
| | - Bambang Sapta Purwoko
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Amin Nur
- Indonesian Cereal Testing Instrument Standard Institute, Maros, South Sulawesi, Indonesia
| | - Wahyuni Wahyuni
- Food Crops, Horticulture, Plantation and Food Security Office of Soppeng, Soppeng, Indonesia
| | - Daniel O. Wasonga
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Prokisch J, Ferroudj A, Labidi S, El-Ramady H, Brevik EC. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1253. [PMID: 39120358 PMCID: PMC11314061 DOI: 10.3390/nano14151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
Collapse
Affiliation(s)
- József Prokisch
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Aya Ferroudj
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Safa Labidi
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Hassan El-Ramady
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
5
|
Abhijith Shankar PS, Parida P, Bhardwaj R, Yadav A, Swapnil P, Seth CS, Meena M. Deciphering molecular regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) signalling networks in Oryza genus amid environmental stress. PLANT CELL REPORTS 2024; 43:185. [PMID: 38951279 DOI: 10.1007/s00299-024-03264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.
Collapse
Affiliation(s)
- P S Abhijith Shankar
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Pallabi Parida
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| |
Collapse
|
6
|
Malwattage NR, Wone B, Wone BWM. A CAM-Related NF-YB Transcription Factor Enhances Multiple Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7107. [PMID: 39000218 PMCID: PMC11241642 DOI: 10.3390/ijms25137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stresses often occur simultaneously, and the tolerance mechanisms of plants to combined multiple abiotic stresses remain poorly studied. Extremophytes, adapted to abiotic stressors, might possess stress-adaptive or -responsive regulators that could enhance multiple abiotic stress resistance in crop plants. We identified an NF-YB transcription factor (TF) from the heat-tolerant obligate Crassulacean acid metabolism (CAM) plant, Kalanchoe fedtschenkoi, as a potential regulator of multiple abiotic stresses. The KfNF-YB3 gene was overexpressed in Arabidopsis to determine its role in multiple abiotic stress responses. Transgenic lines exhibited accelerated flowering time, increased biomass, larger rosette size, higher seed yield, and more leaves. Transgenic lines had higher germination rates under combined NaCl, osmotic, and water-deficit stress treatments compared to control plants. They also showed enhanced root growth and survival under simultaneous NaCl, osmotic, water-deficit, and heat stress conditions in vitro. Interestingly, potted transgenic lines had higher survival rates, yield, and biomass under simultaneous heat, water-deficit, and light stresses compared to control plants. Altogether, these results provide initial insights into the functions of a CAM-related TF and its potential roles in regulating multiple abiotic stress responses. The CAM abiotic stress-responsive TF-based approach appears to be an ideal strategy to enhance multi-stress resilience in crop plants.
Collapse
Affiliation(s)
| | | | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
7
|
Liu L, Gong Y, Yahaya BS, Chen Y, Shi D, Liu F, Gou J, Zhou Z, Lu Y, Wu F. Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:75. [PMID: 38878261 DOI: 10.1007/s11103-024-01470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/12/2024] [Indexed: 06/29/2024]
Abstract
Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Gong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yushu Chen
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Dengke Shi
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Fangyuan Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Junlin Gou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Zhang Y, Worthy SJ, Xu S, He Y, Wang X, Song X, Cao M, Yang J. Phytochemical diversity and their adaptations to abiotic and biotic pressures in fine roots across a climatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172051. [PMID: 38565347 DOI: 10.1016/j.scitotenv.2024.172051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Shijia Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| |
Collapse
|
9
|
Fu Y, Li P, Si Z, Ma S, Gao Y. Seeds Priming with Melatonin Improves Root Hydraulic Conductivity of Wheat Varieties under Drought, Salinity, and Combined Stress. Int J Mol Sci 2024; 25:5055. [PMID: 38732273 PMCID: PMC11084420 DOI: 10.3390/ijms25095055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 μM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
| | - Zhuanyun Si
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Shoutian Ma
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.F.); (Z.S.); (S.M.)
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
10
|
Jangra A, Kumar K, Maikhuri S, Bhandari MS, Pandey S, Singh H, Barthwal S. Unveiling stress-adapted endophytic bacteria: Characterizing plant growth-promoting traits and assessing cross-inoculation effects on Populus deltoides under abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108610. [PMID: 38615447 DOI: 10.1016/j.plaphy.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
In the face of the formidable environmental challenges precipitated by the ongoing climate change, Plant Growth-Promoting Bacteria (PGPB) are gaining widespread acknowledgement for their potential as biofertilizers, biocontrol agents, and microbial inoculants. However, a knowledge gap pertains to the ability of PGPB to improve stress tolerance in forestry species via cross-inoculation. To address this gap, the current investigation centres on PGPBs, namely, Acinetobacter johnsonii, Cronobacter muytjensii, and Priestia endophytica, selected from the phyllosphere of robust and healthy plants thriving in the face of stress-inducing conditions. These strains were selected based on their demonstrated adaptability to saline, arid, and nitrogen-deficient environments. The utilization of PGPB treatment resulted in an improvement of stomatal conductance (gs) and transpiration rate (E) in poplar plants exposed to both salt and drought stress. It also induced an increase in essential biochemical components such as proline (PRO), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). These reactions were accompanied by a decrease in leaf malonaldehyde (MDA) content and electrolyte leakage (EL). Furthermore, the PGPB treatment demonstrated a notable enhancement in nutrient absorption, particularly nitrogen and carbon, achieved through the solubilization of nutrients. The estimation of canopy temperature via thermal imaging proved to be an efficient method for distinguishing stress reactions in poplar than conventional temperature recording techniques. In summation, the utilization of PGPB especially Cronobacter muytjensii in this study, yielded profound improvements in the stress tolerance of poplar plants, manifesting in reduced membrane lipid peroxidation, enhanced photosynthesis, and bolstered antioxidant capacity within the leaves.
Collapse
Affiliation(s)
- Anamika Jangra
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Kishan Kumar
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Sandeep Maikhuri
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 195, Uttarakhand, India.
| | - Shailesh Pandey
- Forest Pathology Discipline, Division of Forest Protection, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Hukum Singh
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| | - Santan Barthwal
- Plant Physiology Discipline, Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, 248 006, Uttarakhand, India.
| |
Collapse
|
11
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
12
|
Wang H, Chen B, Shen X. Extreme rainfall, farmer vulnerability, and labor mobility-Evidence from rural China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170866. [PMID: 38340843 DOI: 10.1016/j.scitotenv.2024.170866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The recurrent occurrence of extreme weather events poses a significant threat to agricultural production, food security, and sustainable economic development. Understanding farmers' adaptive responses to cope with these challenges is pivotal for informing and implementing effective climate resilience policies. This study utilizes the Spatial Precipitation Index (SPI) to assess rainfall patterns and applies fixed effects methods to analyze extreme rainfall shocks' impact on rural households, using panel data from China's 2006-2015 National Rural Fixed Point Survey. Below are the results. Firstly, both drought and rainstorm shocks negatively affect agricultural yield and income, highlighting farmers' vulnerability to extreme rainfall events. Secondly, farmers respond to these shocks by reallocating labor from agriculture to non-agricultural sectors or migrating to urban areas, with these labor mobility patterns typically being temporary. Thirdly, there's notable heterogeneity linked to household affluence. Less affluent rural households experienced more pronounced declines in yield and income, compelling higher migration rates. Collectively, our findings shed light on how Chinese rural households strategically adjust their labor decisions to respond to extreme rainfall shocks through inter-sectoral and inter-regional labor mobility.
Collapse
Affiliation(s)
- Heer Wang
- School of Economics, Zhejiang University, Hangzhou 310058, PR China.
| | - Bo Chen
- School of Economics, Jinan University, Guangzhou 510632, PR China
| | - Xuhang Shen
- School of Economics, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
13
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Sherstneva O, Abdullaev F, Kior D, Yudina L, Gromova E, Vodeneev V. Prediction of biomass accumulation and tolerance of wheat seedlings to drought and elevated temperatures using hyperspectral imaging. FRONTIERS IN PLANT SCIENCE 2024; 15:1344826. [PMID: 38371404 PMCID: PMC10869465 DOI: 10.3389/fpls.2024.1344826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Early prediction of important agricultural traits in wheat opens up broad prospects for the development of approaches to accelerate the selection of genotypes for further breeding trials. This study is devoted to the search for predictors of biomass accumulation and tolerance of wheat to abiotic stressors. Hyperspectral (HS) and chlorophyll fluorescence (ChlF) parameters were analyzed as predictors under laboratory conditions. The predictive ability of reflectance and normalized difference indices (NDIs), as well as their relationship with parameters of photosynthetic activity, which is a key process influencing organic matter production and crop yields, were analyzed. HS parameters calculated using the wavelengths in Red (R) band and the spectral range next to the red edge (FR-NIR) were found to be correlated with biomass accumulation. The same ranges showed potential for predicting wheat tolerance to elevated temperatures. The relationship of HS predictors with biomass accumulation and heat tolerance were of opposite sign. A number of ChlF parameters also showed statistically significant correlation with biomass accumulation and heat tolerance. A correlation between HS and ChlF parameters, that demonstrated potential for predicting biomass accumulation and tolerance, has been shown. No predictors of drought tolerance were found among the HS and ChlF parameters analyzed.
Collapse
Affiliation(s)
- Oksana Sherstneva
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Knapp SJ, Cole GS, Pincot DDA, Dilla-Ermita CJ, Bjornson M, Famula RA, Gordon TR, Harshman JM, Henry PM, Feldmann MJ. Transgressive segregation, hopeful monsters, and phenotypic selection drove rapid genetic gains and breakthroughs in predictive breeding for quantitative resistance to Macrophomina in strawberry. HORTICULTURE RESEARCH 2024; 11:uhad289. [PMID: 38487295 PMCID: PMC10939388 DOI: 10.1093/hr/uhad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024]
Abstract
Two decades have passed since the strawberry (Fragaria x ananassa) disease caused by Macrophomina phaseolina, a necrotrophic soilborne fungal pathogen, began surfacing in California, Florida, and elsewhere. This disease has since become one of the most common causes of plant death and yield losses in strawberry. The Macrophomina problem emerged and expanded in the wake of the global phase-out of soil fumigation with methyl bromide and appears to have been aggravated by an increase in climate change-associated abiotic stresses. Here we show that sources of resistance to this pathogen are rare in gene banks and that the favorable alleles they carry are phenotypically unobvious. The latter were exposed by transgressive segregation and selection in populations phenotyped for resistance to Macrophomina under heat and drought stress. The genetic gains were immediate and dramatic. The frequency of highly resistant individuals increased from 1% in selection cycle 0 to 74% in selection cycle 2. Using GWAS and survival analysis, we found that phenotypic selection had increased the frequencies of favorable alleles among 10 loci associated with resistance and that favorable alleles had to be accumulated among four or more of these loci for an individual to acquire resistance. An unexpectedly straightforward solution to the Macrophomina disease resistance breeding problem emerged from our studies, which showed that highly resistant cultivars can be developed by genomic selection per se or marker-assisted stacking of favorable alleles among a comparatively small number of large-effect loci.
Collapse
Affiliation(s)
- Steven J Knapp
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine Jade Dilla-Ermita
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal Street, CA 93905, USA
| | - Marta Bjornson
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Julia M Harshman
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter M Henry
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal Street, CA 93905, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
16
|
Kumar V, Srivastava AK, Sytar O, Penna S. Editorial: Plants for future climate: responses and adaptations to combined, multifactorial, and sequential stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1290649. [PMID: 37900745 PMCID: PMC10613039 DOI: 10.3389/fpls.2023.1290649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Oksana Sytar
- Department of Plant Biology, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai, India
| |
Collapse
|
17
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Sadvakasova AK, Bauenova MO, Kossalbayev BD, Zayadan BK, Huang Z, Wang J, Balouch H, Alharby HF, Chang JS, Allakhverdiev SI. Synthetic algocyanobacterial consortium as an alternative to chemical fertilizers. ENVIRONMENTAL RESEARCH 2023; 233:116418. [PMID: 37321341 DOI: 10.1016/j.envres.2023.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy. This entails developing the biotechnology market and maximizing the use of renewable and eco-friendly resources, including organic fertilizers and biofertilizers. Phototrophic microorganisms capable of oxygenic photosynthesis and assimilation of molecular nitrogen play a crucial role in soil microbiota, interacting with diverse microflora. This suggests the potential for creating artificial consortia based on them. Microbial consortia offer advantages over individual organisms as they can perform complex functions and adapt to variable conditions, making them a frontier in synthetic biology. Multifunctional consortia overcome the limitations of monocultures and produce biological products with a wide range of enzymatic activities. Biofertilizers based on such consortia present a viable alternative to chemical fertilizers, addressing the issues associated with their usage. The described capabilities of phototrophic and heterotrophic microbial consortia enable effective and environmentally safe restoration and preservation of soil properties, fertility of disturbed lands, and promotion of plant growth. Hence, the utilization of algo-cyano-bacterial consortia biomass can serve as a sustainable and practical substitute for chemical fertilizers, pesticides, and growth promoters. Furthermore, employing these bio-based organisms is a significant stride towards enhancing agricultural productivity, which is an essential requirement to meet the escalating food demands of the growing global population. Utilizing domestic and livestock wastewater, as well as CO2 flue gases, for cultivating this consortium not only helps reduce agricultural waste but also enables the creation of a novel bioproduct within a closed production cycle.
Collapse
Affiliation(s)
- Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bekzhan D Kossalbayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Satpaev 22, Almaty, 050043, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Huma Balouch
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Turkey.
| |
Collapse
|
19
|
Ali S, Tyagi A, Mir RA, Rather IA, Anwar Y, Mahmoudi H. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1266182. [PMID: 37767298 PMCID: PMC10520250 DOI: 10.3389/fpls.2023.1266182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Beneficial microbes or their products have been key drivers for improving adaptive and growth features in plants under biotic and abiotic stress conditions. However, the majority of these studies so far have been utilized against individual stressors. In comparison to individual stressors, the combination of many environmental stresses that plants experience has a greater detrimental effect on them and poses a threat to their existence. Therefore, there is a need to explore the beneficial microbiota against combined stressors or multiple stressors, as this will offer new possibilities for improving plant growth and multiple adaptive traits. However, recognition of the multifaceted core beneficial microbiota from plant microbiome under stress combinations will require a thorough understanding of the functional and mechanistic facets of plant microbiome interactions under different environmental conditions in addition to agronomic management practices. Also, the development of tailored beneficial multiple stress tolerant microbiota in sustainable agriculture necessitates new model systems and prioritizes agricultural microbiome research. In this review, we provided an update on the effect of combined stressors on plants and their microbiome structure. Next, we discussed the role of beneficial microbes in plant growth promotion and stress adaptation. We also discussed how plant-beneficial microbes can be utilized for mitigating multiple stresses in plants. Finally, we have highlighted some key points that warrant future investigation for exploring plant microbiome interactions under multiple stressors.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| |
Collapse
|
20
|
Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, Lyudmila A, Perveen K, Khan F, Bukhari NA, Mudgal G, Gururani MA. Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3081. [PMID: 37687328 PMCID: PMC10490547 DOI: 10.3390/plants12173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Euphorbiaceae is a highly diverse family of plants ranging from trees to ground-dwelling minute plants. Many of these have multi-faceted attributes like ornamental, medicinal, industrial, and food-relevant values. In addition, they have been regarded as keystone resources for investigating plant-specific resilience mechanisms that grant them the dexterity to withstand harsh climates. In the present study, we isolated two co-culturable bacterial endophytes, EP1-AS and EP1-BM, from the stem internodal segments of the prostate spurge, Euphorbia prostrata, a plant member of the succulent family Euphorbiaceae. We characterized them using morphological, biochemical, and molecular techniques which revealed them as novel strains of Enterobacteriaceae, Lelliotia amnigena. Both the isolates significantly were qualified during the assaying of their plant growth promotion potentials. BM formed fast-growing swarms while AS showed growth as rounded colonies over nutrient agar. We validated the PGP effects of AS and BM isolates through in vitro and ex vitro seed-priming treatments with wheat and tomato, both of which resulted in significantly enhanced seed germination and morphometric and physiological plant growth profiles. In extended field trials, both AS and BM could remarkably also exhibit productive yields in wheat grain and tomato fruit harvests. This is probably the first-ever study in the context of PGPB endophytes in Euphorbia prostrata. We discuss our results in the context of promising agribiotechnology translations of the endophyte community associated with the otherwise neglected ground-dwelling spurges of Euphorbiaceae.
Collapse
Affiliation(s)
- Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Sanjoy Kumar Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Jeewan Tamang
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Gajendra Bahadur Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Asyakina Lyudmila
- Laboratory for Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Krasnaya Street, 6, 65000 Kemerovo, Russia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Faheema Khan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Najat A. Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Mayank Anand Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
21
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Boter M, Pozas J, Jarillo JA, Piñeiro M, Pernas M. Brassica napus Roots Use Different Strategies to Respond to Warm Temperatures. Int J Mol Sci 2023; 24:ijms24021143. [PMID: 36674684 PMCID: PMC9863162 DOI: 10.3390/ijms24021143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Elevated growth temperatures are negatively affecting crop productivity by increasing yield losses. The modulation of root traits associated with improved response to rising temperatures is a promising approach to generate new varieties better suited to face the environmental constraints caused by climate change. In this study, we identified several Brassica napus root traits altered in response to warm ambient temperatures. Different combinations of changes in specific root traits result in an extended and deeper root system. This overall root growth expansion facilitates root response by maximizing root-soil surface interaction and increasing roots' ability to explore extended soil areas. We associated these traits with coordinated cellular events, including changes in cell division and elongation rates that drive root growth increases triggered by warm temperatures. Comparative transcriptomic analysis revealed the main genetic determinants of these root system architecture (RSA) changes and uncovered the necessity of a tight regulation of the heat-shock stress response to adjusting root growth to warm temperatures. Our work provides a phenotypic, cellular, and genetic framework of root response to warming temperatures that will help to harness root response mechanisms for crop yield improvement under the future climatic scenario.
Collapse
|
23
|
Sandalio LM. Editorial: Insights in plant abiotic stress: 2021. FRONTIERS IN PLANT SCIENCE 2022; 13:1085150. [PMID: 36561461 PMCID: PMC9763930 DOI: 10.3389/fpls.2022.1085150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
|