1
|
Hassan MU, Guoqin H, Arif MS, Mubarik MS, Tang H, Xu H, Yang B, Zhou Q, Shakoor A. Can urea-coated fertilizers be an effective means of reducing greenhouse gas emissions and improving crop productivity? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121927. [PMID: 39079497 DOI: 10.1016/j.jenvman.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Given the significance of nitrogen (N) as the most constraining nutrient in agro-ecosystems, it is crucial to develop an updated model for N fertilizers management to achieve higher crop yields while minimizing the negative impacts on the environment. Coated urea is touted as one of the most important controlled-release N fertilizers used in agriculture to reduce cropland emissions and improve nitrogen use efficiency (NUE) for optimal crop yields. The sustainability of coated urea depends on the trade-offs between crop productivity, NUE and greenhouse gas emissions (CO2, CH4 and N2O); however, role of various agro-edaphic factors in influencing these trade-offs remains unclear. To determine the effects of soil properties, climatic conditions, experimental conditions, and type of coated urea on greenhouse gas emissions, NH3 losses, crop productivity, and NUE, we conducted a meta-analysis using data from 76 peer-reviewed studies. Our results showed that the application of coated urea under field conditions contributed to a greater reduction in N2O emissions (-48.67%) and higher NUE (58.72%), but crop yields were not significant. Across different climate regions, subtropical monsoon climate showed a perceptible mitigation for CO2, CH4 and NH3 (-78.38%; -83.33%; -27.46%), while temperate climate reduced N2O emissions by -70.36%. For different crops, only rice demonstrated reduction in CO2, CH4, N2O and NH3 losses. On the other hand, our findings revealed a mitigating trade-off between CO2 and CH4 emissions on medium-textured soils and N2O emissions on fine-textured soils. A significant reduction in N2O and NH3 losses was evident when coated urea was applied to soils with a pH > 5.5. Interestingly, application of coated urea to soils with higher C/N ratios increased NH3 losses but showed a noticeable N2O reduction. We found that polymer-coated urea reduced CH4 and N2O emissions and NH3 losses at the expense of higher CO2 emissions. Moreover, application of a lower dose of coated urea (0-100 kg N ha-1) enhanced CO2 and CH4 mitigation, while N2O mitigation increased linearly with increasing dose of coated urea. Most importantly, our results showed that the application of coated urea leads to a large mismatch between NUE, crop yields and greenhouse gas mitigation. By and large, the application of coated urea did not correspond with higher crop yields despite significant reduction in the emissions and improved NUE. Overall, these results suggest that site-specific agro-edaphic conditions should be considered when applying coated urea to reduce these emissions and N volatilization losses for increasing NUE and crop yields.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Guoqin
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | | | - Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Huifang Xu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Binjuan Yang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Quan Zhou
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
2
|
Dawar K, Dawar A, Tariq M, Mian IA, Muhammad A, Farid L, Khan S, Khan K, Fahad S, Danish S, Al-Ghamdi AA, Elshikh MS, Tahzeeb-Ul-Hassan M. Enhancing nitrogen use efficiency and yield of maize (Zea mays L.) through Ammonia volatilization mitigation and nitrogen management approaches. BMC PLANT BIOLOGY 2024; 24:74. [PMID: 38279107 PMCID: PMC10821210 DOI: 10.1186/s12870-024-04749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Management of nitrogen (N) fertilizer is a critical factor that can improve maize (Zea mays L.) production. On the other hand, high volatilization losses of N also pollute the air. A field experiment was established using a silt clay soil to examine the effect of sulfur-coated urea and sulfur from gypsum on ammonia (NH3) emission, N use efficiency (NUE), and the productivity of maize crop under alkaline calcareous soil. The experimental design was a randomized complete block (RCBD) with seven treatments in three replicates: control with no N, urea150 alone (150 kg N ha-1), urea200 alone (200 kg N ha-1), urea150 + S (60 kg ha-1 S from gypsum), urea200 + S, SCU150 (sulfur-coated urea) and SCU200. The results showed that the urea150 + S and urea200 + S significantly reduced the total NH3 by (58 and 42%) as compared with the sole application urea200. The NH3 emission reduced further in the treatment with SCU150 and SCU200 by 74 and 65%, respectively, compared to the treatment with urea200. The maize plant biomass, grain yield, and total N uptake enhanced by 5-14%, 4-17%, and 7-13, respectively, in the treatments with urea150 + s and urea200 + S, relative to the treatment with urea200 alone. Biomass, grain yield, and total N uptake further increased significantly by 22-30%, 25-28%, and 26-31%, respectively, in the treatments with SCU150 and SCU200, relative to the treatment with urea200 alone. The applications of SCU150 enhanced the nitrogen use efficiency (NUE) by (72%) and SCU200 by (62%) respectively, compared with the sole application of urea200 alone. In conclusion, applying S-coated urea at a lower rate of 150 kg N ha-1 compared with a higher rate of 200 kg N ha-1 may be an effective way to reduce N fertilizer application rate and mitigate NH3 emission, improve NUE, and increase maize yield. More investigations are suggested under different soil textures and climatic conditions to declare S-coated urea at 150 kg N ha-1 as the best application rate for maize to enhance maize growth and yield.
Collapse
Affiliation(s)
- Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Atif Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Tariq
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Asim Muhammad
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, 25130, Pakistan
| | - Laiba Farid
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shadman Khan
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Kashif Khan
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Kavitha R, Latifah O, Ahmed OH, Charles PW, Susilawati K. Potential of Rejected Sago Starch as a Coating Material for Urea Encapsulation. Polymers (Basel) 2023; 15:polym15081863. [PMID: 37112010 PMCID: PMC10146585 DOI: 10.3390/polym15081863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Increases in food production to meet global food requirements lead to an increase in the demand for nitrogen (N) fertilizers, especially urea, for soil productivity, crop yield, and food security improvement. To achieve a high yield of food crops, the excessive use of urea has resulted in low urea-N use efficiency and environmental pollution. One promising alternative to increase urea-N use efficiency, improve soil N availability, and lessen the potential environmental effects of the excessive use of urea is to encapsulate urea granules with appropriate coating materials to synchronize the N release with crop assimilation. Chemical additives, such as sulfur-based coatings, mineral-based coatings, and several polymers with different action principles, have been explored and used for coating the urea granule. However, their high material cost, limited resources, and adverse effects on the soil ecosystem limit the widespread application of urea coated with these materials. This paper documents a review of issues related to the materials used for urea coating and the potential of natural polymers, such as rejected sago starch, as a coating material for urea encapsulation. The aim of the review is to unravel an understanding of the potential of rejected sago starch as a coating material for the slow release of N from urea. Rejected sago starch from sago flour processing is a natural polymer that could be used to coat urea because the starch enables a gradual, water-driven mechanism of N release from the urea-polymer interface to the polymer-soil interface. The advantages of rejected sago starch for urea encapsulation over other polymers are that rejected sago starch is one of the most abundant polysaccharide polymers, the cheapest biopolymer, and is fully biodegradable, renewable, and environmentally friendly. This review provides information on the potential of rejected sago starch as a coating material, the advantages of using rejected sago starch as coating material over other polymer materials, a simple coating method, and the mechanisms of N release from urea coated with rejected sago starch.
Collapse
Affiliation(s)
- Rajan Kavitha
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Omar Latifah
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
- Institute of Ecosystem Science Borneo, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Osumanu Haruna Ahmed
- Faculty of Agriculture, University Sultan Sharif Ali Brunei, Kampus Sinaut, Km 33, Jalan Tutong, Kampung Sinaut, Tutong TB1741, Brunei
| | - Primus Walter Charles
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Kasim Susilawati
- Department of Land Management, Faculty of Agriculture, Serdang 43400, Malaysia
| |
Collapse
|