1
|
Duan Y, Wang Y, Ding W, Wang C, Meng L, Meng J, Chen N, Liu Y, Xing S. Comparative and phylogenetic analysis of the chloroplast genomes of four commonly used medicinal cultivars of Chrysanthemums morifolium. BMC PLANT BIOLOGY 2024; 24:992. [PMID: 39434004 PMCID: PMC11495106 DOI: 10.1186/s12870-024-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
'Boju' and 'Huaiju' are cultivars of the Chrysanthemum (Chrysanthemum morifolium Ramat.) in the family Asteraceae, valued for their medicinal, tea, and ornamental properties, and valued by individuals. However, the yield and quality of medicinal chrysanthemums are limited by the characteristics of the germplasm resources, including the identification at the varieties and cultivation levels. Currently, research characterizing the chloroplast genomes of medicinal Chrysanthemum flowers is relatively limited. This study conducted chloroplast whole-genome sequencing on two cultivars of Chrysanthemum, 'Boju' and 'Huaiju', and compared them with the previously published chloroplast genomes of 'Hangbaiju' and 'Gongju'. The study analyzed the chloroplast genome structures of these four medicinal Chrysanthemums, identifying mutation hotspots and clarifying their phylogenetic relationships. The chloroplast genome sizes of four medicinal Chrysanthemum cultivation products ranged from 151,057 to 151,109 bp, with GC content ranging from 37.45% to 37.76%. A total of 134 genes were identified, including 89 protein-coding genes, 37 ribosomal RNA genes, and 8 transfer RNA genes. Comparative genomic analysis revealed 159 large repeat sequences, 276 simple sequence repeats, 1 gene, and 8 intergenic regions identified as highly variable regions. Nucleotide diversity (Pi) values were high (≥ 0.004) for the petN-psbM, trnR-UCU-trnT-GGU, trnT-GGU-psbD, ndhC-trnV-UCA, ycf1, ndhI-ndhG, trnL-UGA-rpl32, rpl32-ndhF, and ndhF-ycf1 fragments, aiding in variety identification. Phylogenetic analysis revealed consistent results between maximum likelihood and Bayesian inference trees, showing that the four medicinal Chrysanthemum cultivars, along with their wild counterparts and related species, evolved as a monophyletic group, forming a sister clade to Artemisia and Ajania. Among the six Chrysanthemum species, the wild Chrysanthemum diverged first (Posterior probability = 1, bootstrap = 1,000), followed by Ajania, while C. indicum and C. morifolium clustered together (Bootstrap = 100), indicating their closest genetic relationship. The chloroplast whole-genome data and characteristic information provided in this study can be used for variety identification, genetic conservation, and phylogenetic analysis within the family Asteraceae.
Collapse
Affiliation(s)
- Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chun Wang
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ling Meng
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jie Meng
- Jiuzhou Fangyuan Pharmaceutical Co., Ltd., Anhui Modern Industry Research Institute of Traditional Chinese Medicine, Bozhou, 236821, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China.
| |
Collapse
|
2
|
Zhang ZJ, Hu WJ, Yu AQ, Wu LH, Yang DQ, Kuang HX, Wang M. Review of polysaccharides from Chrysanthemum morifolium Ramat.: Extraction, purification, structural characteristics, health benefits, structural-activity relationships and applications. Int J Biol Macromol 2024; 278:134919. [PMID: 39179070 DOI: 10.1016/j.ijbiomac.2024.134919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.
Collapse
Affiliation(s)
- Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
3
|
Chen N, Fan J, Li G, Guo X, Meng X, Wang Y, Duan Y, Ding W, Liu K, Liu Y, Xing S. Comparative Analysis of the Chemical Constituents of Chrysanthemum morifolium with Different Drying Processes Integrating LC/GC-MS-Based, Non-Targeted Metabolomics. Metabolites 2024; 14:481. [PMID: 39330488 PMCID: PMC11434334 DOI: 10.3390/metabo14090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Chrysanthemum morifolium is a perennial herbaceous plant in the Asteraceae family that is used as a medicine and food owing to its superior pharmacological properties. Irrespective of its application, C. morifolium must be dried before use. Shade drying (YG) and heat drying (HG) are the two drying methods used in most origins. Given the abundance of flavonoids, phenolic acids, and terpenoids, the primary medicinal active constituents of C. morifolium, it is important to determine whether the composition and content of these compounds are altered during the drying processes. To test this, the changes in the chemical composition of C. morifolium flowers after YG and HG using full-spectrum, non-targeted LC/GC-MS-based metabolomics and, subsequently, the three indicator components of C. morifolium-chlorogenic acid, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside-were accurately quantified by HPLC. The results of the non-targeted metabolomics analysis revealed that YG- and HG-processed C. morifolium differed significantly with respect to chemical contents, especially flavonoids, phenolic acids, and terpenoids. The levels of the indicator components and their precursors also differed significantly between the YG and HG treatments. The contents of most of the flavonoids and key phenolic acids, terpenoids, and carbohydrates were higher with YG than with HG pre-treatment. These results revealed the changes in the chemical composition of C. morifolium during the YG and HG processes, thus providing a reference for the further optimization of the production and processing of chrysanthemums.
Collapse
Affiliation(s)
- Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Gang Li
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Xuanxuan Guo
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Xiao Meng
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Yuqing Wang
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingying Duan
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Kai Liu
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
| | - Shihai Xing
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Bozhou Vocational and Technical College, Bozhou 236800, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
4
|
Liu Y, Lu C, Zhou J, Zhou F, Gui A, Chu H, Shao Q. Chrysanthemum morifolium as a traditional herb: A review of historical development, classification, phytochemistry, pharmacology and application. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118198. [PMID: 38621465 DOI: 10.1016/j.jep.2024.118198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In recent years, Chinese herbal medicine has gained more and more recognition in disease prevention and control due to its low toxicity and comprehensive treatment. C. morifolium (Chrysanthemum morifolium Ramat.), as the medicine food homology plant with the bioactivity of anti-oxidation, anti-inflammatory, neuroprotection and cardiovascular protection, has important therapeutic effects and health benefits for colds, inflammation, cardiovascular diseases and various chronic diseases. AIM OF THE STUDY By reviewing the historical development, classification and distribution of germplasm resources, phytochemistry, pharmacology, and modern application of C. morifolium, the paper provides a reliable basis for the further research and application of chrysanthemum as therapeutic agents and functional additives. MATERIALS AND METHODS The literature and information about C. morifolium published in the last ten years were collected from various platforms, including Google Scholar, PubMed, ScienceDirect, Web of Science and China Knowledge Network. RESULTS A comprehensive analysis confirmed that C. morifolium originated in China, and it went through the development process from food and tea to medicine for more than 3000 years. During this period, different cultivars emerged through several breeding techniques and were distributed throughout the world. Moreover, A variety of chemical components such as flavonoids, phenolic acids, volatile oils, and terpenes in chrysanthemum have been proven they possess various pharmacology of anti-inflammatory, anti-oxidant, and prevention of chronic diseases by regulating inflammatory cytokines, oxidative stress responses and signaling pathways, which are the essential conditions to play a role in TCM, nutraceuticals and diet. CONCLUSION This paper provides a comprehensive review of historical development, classification, phytochemistry, pharmacology, and modern application of C. morifolium. However, future studies should continue to focus on the bioactive compounds and the synergistic mechanism of the "multi-component, multi-target, and multi-pathway" of chrysanthemum, and it is necessary to develop more innovative products with therapeutic effects.
Collapse
Affiliation(s)
- Yuchen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jing Zhou
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fenfen Zhou
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China; Wenzhou Forestry Extension and Wildlife Conservation Station, Wenzhou, 325027, China
| | - Aijun Gui
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hongli Chu
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China; College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Lu YH, Wang M, Lin JQ, Wang MY, Zhou LY, He SH, Yi YT, Wei X, Huang QJ, Su ZH, Yang J, Guo HW, He RR, Luo Z. Fufang Luohanguo Qingfei granules reduces influenza virus susceptibility via MAVS-dependent type I interferon antiviral signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117780. [PMID: 38278377 DOI: 10.1016/j.jep.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Luohanguo Qingfei granules (LQG) is a Chinese patent medicine, clinically used to treat flu-like symptoms including cough with yellow phlegm, impeded phlegm, dry throat and tongue. However, the protective activity of LQG against influenza infection is indeterminate. AIM OF THE STUDY This study is to investigate the therapeutic effect of LQG on influenza infection and elucidate its underlying mechanism. MATERIALS AND METHODS In vivo: A viral susceptible mouse model induced by restraint stress was established to investigate LQG's beneficial effects on influenza susceptibility. MAVS knockout (Mavs-/-) mice were used to verify the potential mechanism of LQG. In vitro: Corticosteroid (CORT)-treated A549 cells were employed to identify the active ingredients in LQG. Mice morbidity and mortality were monitored daily for 21 days. Histopathologic changes and inflammatory cytokines in lung tissues were examined by H&E staining and ELISA. RNA-seq was used to explore the signaling pathway influenced by LQG and further confirmed by qPCR. Immunoblotting and immunohistochemistry (IHC) were used to determine the protein levels. CO-IP and DARTS were applied to detect protein-protein interaction and compound-protein interaction, respectively. RESULTS LQG effectively attenuated the susceptibility of restrained mice to H1N1 infection. LQG significantly boosted the production of IFN-β transduced by mitochondrial antiviral-signaling protein (MAVS), while MAVS deficiency abrogated its protective effects on restrained mice infected with H1N1. Moreover, in vitro studies further revealed that mogroside Ⅱ B, amygdalin, and luteolin are potentially active components of LQG. CONCLUSION These results suggested that LQG inhibited the mitofusin 2 (Mfn2)-mediated ubiquitination of MAVS by impeding the E3 ligase synoviolin 1 (SYVN1) recruitment, thereby enhancing IFN-β antiviral response. Overall, our work elaborates a potential regimen for influenza treatment through reduction of stress-induced susceptibility.
Collapse
Affiliation(s)
- Yu-Hui Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, China
| | - Min Wang
- Hainan General Hospital, Department of Pharmacy, Haikou, 570311, China
| | - Jin-Quan Lin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Mu-Yang Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Li-Ying Zhou
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Song-Hua He
- Guangxi Institute for Food and Drug Control, Nanning, 530021, China
| | - Yu-Ting Yi
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xia Wei
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Qiu-Ju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, China
| | - Zhi-Heng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Jie Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Hong-Wei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, 612505, China.
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, China.
| |
Collapse
|
6
|
Deng Y, Yang P, Zhang Q, Wu Q, Feng L, Shi W, Peng Q, Ding L, Tan X, Zhan R, Ma D. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum. Cell Rep 2024; 43:113725. [PMID: 38300800 DOI: 10.1016/j.celrep.2024.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4'-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4'-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone.
Collapse
Affiliation(s)
- Yinai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peng Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qianle Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingwen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingfang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenjing Shi
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Ding
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xukai Tan
- Grandomics Biosciences, Beijing 102200, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
7
|
Zhao Z, Cao M, Wei D, Li X, Wang M, Zhai W. Constructing graphene oxide/Au nanoparticle cellulose membranes for SERS detection of mixed pesticide residues in edible chrysanthemum. Analyst 2024; 149:1151-1159. [PMID: 38259149 DOI: 10.1039/d3an02030d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Edible chrysanthemum is widely cultivated and used as an important ingredient of medicine, tea and multifunctional food. During the planting of chrysanthemum, pesticides are extensively used for preventing plant diseases and insect pests. To ensure the food safety of edible chrysanthemum, rapid detection methods are urgently needed for on-site inspection. In this study, a graphene oxide/Au nanoparticle (GO/Au NP) cellulose substrate was prepared through layer-by-layer assembly of GO and Au NPs on a mixed cellulose ester membrane. Surface-enhanced Raman spectroscopy (SERS) detection of four types of organophosphorus and organosulfur pesticides was achieved by filtering the extracting solution through the substrate and analysing SERS spectra. Qualitative and semi-quantitative detection of fenthion, phoxim, isocarbophos and thiram was accomplished with the detection limits of 38.01, 8.13, 48.97 and 8.74 ng mL-1, respectively. A spiking experiment further demonstrated the feasibility of this method for rapid and on-site detection of mixed pesticides in chrysanthemum. This study provides a new approach for rapid detection of multiple hazardous substances in flowering and herbal plants.
Collapse
Affiliation(s)
- Zhilei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Mingshuo Cao
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residue in Agricultural Product, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
8
|
Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117229. [PMID: 37788786 DOI: 10.1016/j.jep.2023.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Crataegus (hawthorn), a member of the Rosaceae family, encompasses several species with broad geographical distribution across the Northern Hemisphere, including Asia, Europe, and the Americas. Hawthorn is recognized as an edible medicinal plant with applications related to strengthening the digestive system, promoting blood circulation, and resolving blood stasis. AIM OF THE REVIEW This study critically summarized the traditional uses, phytochemistry, and pharmacological properties to provide a theoretical basis for further studies on hawthorn and its applications in medicine and food. MATERIALS AND METHODS The available information on hawthorn was gathered from scientific databases (including Google Scholar, Web of Science, PubMed, ScienceDirect, Baidu Scholar, CNKI, online ethnobotanical databases, and ethnobotanical monographs, and considered data from 1952 to 2023). Information about traditional uses, phytochemistry, pharmacology, and safety concerns of the collected data is comprehensively summarized in this paper. RESULTS The literature review revealed that hawthorn includes more than 1000 species primarily distributed in the northern temperate zone. Traditional uses of hawthorn have lasted for millennia in Asia, Europe, and the Americas. Within the past decade, 337 chemical compounds, including flavonoids, lignans, fatty acids and organic acids, monoterpenoids and sesquiterpenoids, terpenoids and steroids, have been identified from hawthorn. Modern pharmacological studies have confirmed numerous bioactivities, such as cardiovascular system influence, antitumor activity, hepatoprotective activity, antimicrobial properties, immunomodulatory functions, and anti-inflammatory activities. Additionally, evaluations have indicated that hawthorn lacks toxicity. CONCLUSIONS Based on its traditional uses, chemical composition, and pharmacological studies, hawthorn has significant potential as a medicinal and edible plant with a diverse range of pharmacological activities. Traditional uses of the hawthorn include the treatment of indigestion, dysmenorrhea, and osteoporosis. However, modern pharmacological research primarily focuses on its cardiovascular and cerebrovascular system effects, antitumor effects, and liver protection properties. Currently, there is a lack of correlative research involving its traditional uses and pharmacological activities. Moreover, phytochemical and pharmacological research has yet to focus on many types of hawthorn with traditional applications. Therefore, it is imperative to research the genus Crataegus extensively.
Collapse
Affiliation(s)
- Meng Cui
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Min Fan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| |
Collapse
|
9
|
Cheng L, Yang Q, Li C, Zheng J, Wang Y, Duan B. Preparation, structural characterization, bioactivities, and applications of Crataegus spp. polysaccharides: A review. Int J Biol Macromol 2023; 253:126671. [PMID: 37689285 DOI: 10.1016/j.ijbiomac.2023.126671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Crataegus, is a genus within the Rosaceae family. It is recognized as a valuable plant with both medicinal and edible qualities, earning it the epithet of the "nutritious fruit" owing to its abundant bioactive compounds. Polysaccharides are carbohydrate polymers linked by glycosidic bonds, one of the crucial bioactive ingredients of Crataegus spp. Recently, Crataegus spp. polysaccharides (CPs) have garnered considerable attention due to their diverse range of bioactivities, including prebiotic, hypolipidemic, anticancer, antibacterial, antioxidant, and immunobiological properties. Herein, we provide a comprehensive overview of recent research on CPs. The analysis revealed that CPs exhibited a broad molecular weight distribution, ranging from 5.70 Da to 4.76 × 108 Da, and are composed of various monosaccharide constituents such as mannose, rhamnose, and arabinose. Structure-activity relationships demonstrated that the biological function of CPs is closely associated with their molecular weight, galacturonic acid content, and chemical modifications. Additionally, CPs have excellent bioavailability, biocompatibility, and biodegradability, which make them promising candidates for applications in the food, medicine, and cosmetic industries. The article also scrutinized the potential development and future research directions of CPs. Overall, this article provides comprehensive knowledge and underpinnings of CPs for future research and development as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Qiuli Yang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | | | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
10
|
Muthamil S, Muthuramalingam P, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Shin H, Park JH. Unlocking Prognostic Genes and Multi-Targeted Therapeutic Bioactives from Herbal Medicines to Combat Cancer-Associated Cachexia: A Transcriptomics and Network Pharmacology Approach. Int J Mol Sci 2023; 25:156. [PMID: 38203330 PMCID: PMC10778733 DOI: 10.3390/ijms25010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cachexia is a devastating fat tissue and muscle wasting syndrome associated with every major chronic illness, including cancer, chronic obstructive pulmonary disease, kidney disease, AIDS, and heart failure. Despite two decades of intense research, cachexia remains under-recognized by oncologists. While numerous drug candidates have been proposed for cachexia treatment, none have achieved clinical success. Only a few drugs are approved by the FDA for cachexia therapy, but a very low success rate is observed among patients. Currently, the identification of drugs from herbal medicines is a frontier research area for many diseases. In this milieu, network pharmacology, transcriptomics, cheminformatics, and molecular docking approaches were used to identify potential bioactive compounds from herbal medicines for the treatment of cancer-related cachexia. The network pharmacology approach is used to select the 32 unique genes from 238 genes involved in cachexia-related pathways, which are targeted by 34 phytocompounds identified from 12 different herbal medicines used for the treatment of muscle wasting in many countries. Gene expression profiling and functional enrichment analysis are applied to decipher the role of unique genes in cancer-associated cachexia pathways. In addition, the pharmacological properties and molecular interactions of the phytocompounds were analyzed to find the target compounds for cachexia therapy. Altogether, combined omics and network pharmacology approaches were used in the current study to untangle the complex prognostic genes involved in cachexia and phytocompounds with anti-cachectic efficacy. However, further functional and experimental validations are required to confirm the efficacy of these phytocompounds as commercial drug candidates for cancer-associated cachexia.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (H.S.)
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Younghoon Go
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea;
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (H.S.)
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon 34054, Republic of Korea
| |
Collapse
|
11
|
Sha H, Liu X, Xiao X, Zhang H, Gu X, Chen W, Mao B. Nigrospora oryzae Causing Leaf Spot Disease on Chrysanthemum × morifolium Ramat and Screening of Its Potential Antagonistic Bacteria. Microorganisms 2023; 11:2224. [PMID: 37764068 PMCID: PMC10537370 DOI: 10.3390/microorganisms11092224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Chrysanthemum × morifolium Ramat. is a famous perennial herb with medicinal, edible, and ornamental purposes, but the occurrence of plant diseases can reduce its value. A serious disease that caused leaf spots in C. morifolium appeared in 2022 in Tongxiang City, Zhejiang Province, China. The C. morifolium leaves with brown spots were collected and used for pathogen isolation. By completing Koch's postulates, it was proven that the isolate had pathogenicity to infect C. morifolium. It was determined that the pathogen isolated from chrysanthemum leaves was Nigrospora oryzae, through morphology and a multilocus sequence analysis method using a combination of the internal transcribed spacer gene (ITS), beta-tubulin gene (TUB2), and translation elongation factor 1-alpha gene (TEF1-α). This is the first report of C. morifolium disease caused by N. oryzae in the world. Through dual culture assay on PDA plates, 12 strains of bacteria with antagonistic effects were selected from 231 strains from the C. morifolium phyllosphere, among which Bacillus siamensis D65 had the best inhibitory effect on N. oryzae growth. In addition, the components of a strain D65 fermentation broth were profiled by SPME-GC-Q-TOF analysis, providing a foundation for further application and research of biological control.
Collapse
Affiliation(s)
- Haodong Sha
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xinyi Liu
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xiaoe Xiao
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
| | - Han Zhang
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Xueting Gu
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Weiliang Chen
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| | - Bizeng Mao
- Institute of Biotechnology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310058, China
- Zhejiang Tongxiang Hangbaiju Technology Academy, Tongxiang 314500, China
| |
Collapse
|
12
|
Dussarrat T, Schweiger R, Ziaja D, Nguyen TTN, Krause L, Jakobs R, Eilers EJ, Müller C. Influences of chemotype and parental genotype on metabolic fingerprints of tansy plants uncovered by predictive metabolomics. Sci Rep 2023; 13:11645. [PMID: 37468576 DOI: 10.1038/s41598-023-38790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Intraspecific plant chemodiversity shapes plant-environment interactions. Within species, chemotypes can be defined according to variation in dominant specialised metabolites belonging to certain classes. Different ecological functions could be assigned to these distinct chemotypes. However, the roles of other metabolic variation and the parental origin (or genotype) of the chemotypes remain poorly explored. Here, we first compared the capacity of terpenoid profiles and metabolic fingerprints to distinguish five chemotypes of common tansy (Tanacetum vulgare) and depict metabolic differences. Metabolic fingerprints captured higher variation in metabolites while preserving the ability to define chemotypes. These differences might influence plant performance and interactions with the environment. Next, to characterise the influence of the maternal origin on chemodiversity, we performed variation partitioning and generalised linear modelling. Our findings revealed that maternal origin was a higher source of chemical variation than chemotype. Predictive metabolomics unveiled 184 markers predicting maternal origin with 89% accuracy. These markers included, among others, phenolics, whose functions in plant-environment interactions are well established. Hence, these findings place parental genotype at the forefront of intraspecific chemodiversity. We recommend considering this factor when comparing the ecology of various chemotypes. Additionally, the combined inclusion of inherited variation in main terpenoids and other metabolites in computational models may help connect chemodiversity and evolutionary principles.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Thuan T N Nguyen
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Liv Krause
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
13
|
Jasprica N, Lupis VB, Dolina K. Botanical Analysis of the Baroque Art on the Eastern Adriatic Coast, South Croatia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112080. [PMID: 37299059 DOI: 10.3390/plants12112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The analysis of plants featured in Baroque artworks on the eastern Adriatic coast has not previously been the subject of an in-depth study. The study of plant iconography in Baroque sacred artworks, which are mostly paintings, was carried out in eight churches and monasteries on the Pelješac peninsula in southern Croatia. Taxonomic interpretation of the painted flora on 15 artworks led to the identification of 23 different plant taxa (species or genera) belonging to 17 families. One additional plant was identified only by family taxonomic rank. The number of plants was relatively high, and most species were considered non-native (71%, "exotic" flora) phanerophytes. In terms of geographic origin, the Palaearctic region (Eurasia) and the American continent were identified as the main areas of plant origin. Lilium candidum, Acanthus mollis, and Chrysanthemum cf. morifolium, were the most common species. We think that the plants were selected for decorative and aesthetic reasons, as well as for their symbolic significance.
Collapse
Affiliation(s)
- Nenad Jasprica
- Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, HR 20000 Dubrovnik, Croatia
| | - Vinicije B Lupis
- Institute of Social Sciences Ivo Pilar, Regional Center in Dubrovnik, HR 20000 Dubrovnik, Croatia
| | - Katija Dolina
- Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, HR 20000 Dubrovnik, Croatia
| |
Collapse
|
14
|
Feng L, Lin Y, Cai Y, Wei W, Yang J, Zhan R, Ma D. Terpenoid VOC profiles and functional characterization of terpene synthases in diploid and tetraploid cytotypes of Chrysanthemum indicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107766. [PMID: 37220674 DOI: 10.1016/j.plaphy.2023.107766] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/27/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Chrysanthemum indicum L. is a valuable medicinal plant with diploid and tetraploid forms that are widely distributed in central and southern China, and it contains abundant volatile organic compounds (VOCs). Despite the discovery of some terpene synthase (TPS) in C. indicum (i.e., CiTPS) in previous studies, many TPSs and their corresponding terpene biosynthesis pathways have yet to be discovered. In the present study, terpenoid VOCs in different tissues from two cytotypes of C. indicum were analyzed. We identified 52 types of terpenoid VOCs and systematically investigated the content and distribution of these compounds in various tissues. The two cytotypes of C. indicum exhibited different volatile terpenoid profiles. The content of monoterpenes and sesquiterpenes in the two cytotypes showed an opposite trend. In addition, four full-length candidate TPSs (named CiTPS5-8) were cloned from Ci-GD4x, and their homologous TPS genes were screened based on the genome data of Ci-HB2x. These eight TPSs displayed various tissue expression patterns and were discovered to produce 22 terpenoids, 5 of which are monoterpenes and 17 are sesquiterpenes. We further proposed corresponding terpene synthesis pathways, which can enable the establishment of an understanding of the volatile terpenoid profiles of C. indicum with different cytotypes. This knowledge may provide a further understanding of germplasm in C. indicum and may be useful for biotechnology applications of Chrysanthemum plants.
Collapse
Affiliation(s)
- Lingfang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanjiao Cai
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wuke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinfen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Li MY, Zhang YZ, Zhang ZY, Zhang YH, Ren QQ, Jin S. Differences in transcriptomic and metabolomic analyses of metabolites of shoots on tea plants of different ages and relevant regulatory network. FRONTIERS IN PLANT SCIENCE 2023; 13:910895. [PMID: 36937142 PMCID: PMC10019279 DOI: 10.3389/fpls.2022.910895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/29/2022] [Indexed: 06/18/2023]
Abstract
To investigate differences in fresh leaves of tea plants at different ages in gene expression, metabolism, and dried tea quality, and to provide references to a deep exploration on metabolite differential accumulation of fresh leaves of tea plants at different ages as well as the regulation mechanism, two groups of fresh leaves from tea plants at different ages (group JP: 20-, 200-, and 1,200-year tea plants; group YX: 50-, 100-, and 400-year tea plants) were chosen as materials, and their differences in gene expression, metabolites, and metabolic regulatory network were investigated by transcriptomics and metabolomics. A total of 12,706 differentially expressed genes (DEGs) were screened from the fresh tea leaves in the JP group, of which tea-20 vs. tea-200 had the largest number of DEGs, up to 9,041 (4,459 down-regulated genes, 4,582 up-regulated genes). A total of 644 common genes in the fresh leaves of three different ages of tea plants in the JP group were differentially expressed. A total of 8,971 DEGs were screened from the fresh leaf samples of tea plants in the YX group, of which the number of DEGs obtained in the tea-50 vs. tea-400 comparison combination was the largest with a total of 3,723 (1,722 up-regulated genes and 2,001 down-regulated genes). A total of 147 common genes were differentially expressed in the fresh leaves of three different tree ages in the YX group. The pathway enrichment analysis showed that most up-regulated DEGs and their related metabolic pathways were similar in the two groups, and that the metabolic pathways of common significant enrichment included flavonoid biosynthesis, phenylpropane biosynthesis, carbon metabolism, amino acid biosynthesis, and plant pathogen interaction. The metabolomics results showed that 72 and 117 different metabolites were screened from the JP and YX groups, respectively. Most of the different metabolites in the two groups were flavonoids, phenolic acids, amino acids, and their derivatives. Among them, the number of down-regulated flavonoids in older tea plants is generally higher than the number of up-regulated flavonoids. Moreover, according to the sensory evaluation results of dried tea of fresh leaves from tea plants of different ages, tea-1200 and tea-400 showed the highest sensory evaluation scores in their groups. With increase in plant age, the fragrance of the tea was more elegant, and it changed from a dense scent to a faint scent; the tea tasted sweet and its freshness increased, while the sense of astringency was weakened and the concentration declined. Therefore, the quality difference of tea of different tree ages is mainly related to secondary metabolic pathways such as the flavonoid biosynthesis pathway. With increase in tea age, a large number of gene expression in the flavonoid biosynthesis pathway is down-regulated, which reduces the content of bitter flavonoid substances in fresh leaves and makes tea soup more mellow.
Collapse
Affiliation(s)
- Meng Yuan Li
- Fujian Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Zhi Zhang
- Fujian Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Qian Qian Ren
- Fujian Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan Jin
- Fujian Key Laboratory of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|