1
|
Liu HC, Chan HS, Nargotra P, Shih HD, Kuo CH, Liu YC. Development of Stephania tetrandra S. MOORE hairy root culture process for tetrandrine production. J Biotechnol 2024; 394:11-23. [PMID: 39151800 DOI: 10.1016/j.jbiotec.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Tetrandrine, a bioactive active compound mainly found in the roots of Stephania tetrandra, exhibits various pharmacological properties. In vitro hairy root (HR) culture may serve as a promising solution for the extraction of tetrandrine, overcoming the limitations of natural cultivation. The present study describes the consistent production of tetrandrine from S. tetrandra hairy roots induced by different strains of Agrobacterium rhizogenes. Cultivation in woody plant medium (WPM) resulted in the highest HR biomass (0.056 g/petri-dish) and tetrandrine content (7.28 mg/L) as compared to other media. The maximum HR biomass (6.95 g dw/L) and tetrandrine production (68.69 mg/L) were obtained in the fifth week of cultivation. The presence of ammonium nitrate (800 mg/L), calcium nitrate (1156 mg/L), sucrose (20 g/L) and casein (2 g/L) enhanced the tetrandrine production. Moreover, the fed-batch cultivation demonstrated that the NH4NO3 (1200 mg/L) was an important growth limiting factor that yielded the highest tetrandrine amount (119.59 mg/L). The cultivation of hairy roots in a mist trickling bioreactor for eight weeks was less (26.24 mg/L) than in the flask. Despite a lower tetrandrine yield observed in bioreactors compared to flask cultures, refining the growth medium and fine-tuning bioreactor operations hold promise for boosting tetrandrine yield.
Collapse
Affiliation(s)
- Hsuan-Chieh Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Biomass Materials Technology Department, Agri-Industrial Systems Technology Division, Central Region Campus, Industrial Technology Research Institute, Nantou 54041, Taiwan.
| | - Hsiao-Sung Chan
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan.
| | - Parushi Nargotra
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Hsin-Der Shih
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan.
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Center for Aquatic Products Inspection Service, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Husain Z, Warsi ZI, Khan S, Mahendran G, Afroz S, Chandran A, Kashyap PK, Khatoon K, Parween G, Tandon S, Rahman LU. Metabolic engineering of hairy root cultures in Beta vulgaris for enhanced production of vanillin, 4-hydroxybenzoic acid, and vanillyl alcohol. Front Bioeng Biotechnol 2024; 12:1435190. [PMID: 39416280 PMCID: PMC11480924 DOI: 10.3389/fbioe.2024.1435190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The flavor of vanilla is a complex blend of compounds, with vanillin as the most prominent, along with vanillyl alcohol and 4-hydroxybenzoic acid. Natural vanillin extracted from vanilla beans is expensive, so researchers use heterologous synthesis to produce nature-identical vanillin in plant hosts. Consequently, alternative traditional farming and gathering methods are required to bridge the significant disparity between supply and demand. The current research successfully developed a method to induce hairy root formation from leaves. It integrated the Vanillin synthase (VpVAN) gene into transgenic hairy root lines of Beta vulgaris, synthesizing vanillin-related compounds. The presence of the VpVAN gene in transgenic roots was confirmed using PCR analysis. Additionally, RT-qPCR analysis demonstrated the expression of the VpVAN gene in the transgenic root lines. The transgenic hairy root clones H1, H2, and H5 showed enhanced vanillin production, vanillyl alcohol, and 4-hydroxybenzoic acid. Elicitation with methyl jasmonate (MJ) and salicylic acid (SA) further improved the production of these compounds in B. vulgaris hairy roots. The maximum hairy root biomass was observed after 60 days, with the maximum synthesis of vanillin and 4-hydroxybenzoic acid obtained from hairy root clones H5 and HR2, respectively. Vanillyl alcohol HR2 was obtained on the 45th day of cultivation. Elicitation with wound-associated hormone methyl jasmonate and salicylic acid enhanced the yield of vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid, with a 215-fold increase in vanillin, a 13-fold increase in vanillyl alcohol, and a 21 fold increase in 4-hydroxybenzoic acid. The study results indicate that establishing transgenic hairy root cultures with the VpVAN gene is a promising alternative method for enhancing the production of vanilla flavor compounds such as vanillin, vanillyl alcohol, and 4-hydroxybenzoic acid. A cost-effective protocol has been developed to mass-produce phenolic compounds using a hairy root culture of B. vulgaris. This approach addresses the increasing demand for these substances while reducing the cost of natural vanillin production, making it suitable for industrial-scale applications.
Collapse
Affiliation(s)
- Zakir Husain
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Zafar Iqbal Warsi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Sana Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Ganesan Mahendran
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Shama Afroz
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Ashish Chandran
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Praveen Kumar Kashyap
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Kahkashan Khatoon
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Gazala Parween
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Sudeep Tandon
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Laiq Ur Rahman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Park C, Sathasivam R, Yeo HJ, Park YJ, Kim JK, Shin SY, Park SU. Comparative Analysis of Primary and Secondary Metabolites in Different In Vitro Tissues of Narcissus tazetta var. chinensis. ACS OMEGA 2024; 9:23761-23771. [PMID: 38854557 PMCID: PMC11154942 DOI: 10.1021/acsomega.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Narcissus tazetta var. chinensis is a perennial monocot plant that is well known for its pharmaceutical and ornamental uses. This study aimed to understand the changes in the primary and secondary metabolites in different in vitro tissues of N. tazetta (callus, adventitious root, and shoot) using high-performance liquid chromatography and gas chromatography time-of-flight mass spectrometry. In addition, to optimize the most efficient in vitro culture methods for primary and secondary metabolite production, N. tazetta bulbs were used as explants and cultivated in Murashige and Skoog (MS) medium containing different hormones at various concentrations. In addition, the present study found suitable hormonal concentrations for callus, adventitious root, and shoot induction and analyzed the primary and secondary metabolites. The MS medium supplemented with 1.0 mg L-1 dicamba, 3.0 mg L-1 indole-3-butyric acid (IBA), and 3.0 mg L-1 6-benzylaminopurine (BAP) was the most efficient media for callus, adventitious root, and shoot induction in N. tazetta. The tissue induced in this medium was subjected to primary (amines, amino acids, organic acids, sugars, and sugar alcohols) and secondary metabolite (galantamine and phenolic acids) analysis. The shoots and roots showed the highest amounts of metabolites. This study showed that bulb in vitro culture can be an efficient micropropagation method for N. tazetta and the production of primary and secondary metabolites, offering implications for the mass production of primary and secondary metabolite compounds from N. tazetta tissues generated in vitro.
Collapse
Affiliation(s)
- Chanung Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ramaraj Sathasivam
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyeon Ji Yeo
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young Jin Park
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Su Young Shin
- Using
Technology Development Department, Bio-resources Research Division, Nakdonggang National Institute of Biological Resources
(NNIBR), 137, Donam 2-gil, Gyeongsangbuk-do, Sangju-si 37242, Republic of Korea
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department
of Bio-AI Convergence, Chungnam National
University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Do TMH, Choi M, Kim JK, Kim YJ, Park C, Park CH, Park NI, Kim C, Sathasivam R, Park SU. Impact of Light and Dark Treatment on Phenylpropanoid Pathway Genes, Primary and Secondary Metabolites in Agastache rugosa Transgenic Hairy Root Cultures by Overexpressing Arabidopsis Transcription Factor AtMYB12. Life (Basel) 2023; 13:life13041042. [PMID: 37109572 PMCID: PMC10142052 DOI: 10.3390/life13041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Agastache rugosa, otherwise called Korean mint, has a wide range of medicinal benefits. In addition, it is a rich source of several medicinally valuable compounds such as acacetin, tilianin, and some phenolic compounds. The present study aimed to investigate how the Tartary buckwheat transcription factor AtMYB12 increased the primary and secondary metabolites in Korean mint hairy roots cultured under light and dark conditions. A total of 50 metabolites were detected by using high-performance liquid chromatography (HPLC) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The result showed that the AtMYB12 transcription factor upregulated the phenylpropanoid biosynthesis pathway genes, which leads to the highest accumulation of primary and secondary metabolites in the AtMYB12-overexpressing hairy root lines (transgenic) than that of the GUS-overexpressing hairy root line (control) when grown under the light and dark conditions. However, when the transgenic hairy root lines were grown under dark conditions, the phenolic and flavone content was not significantly different from that of the control hairy root lines. Similarly, the heat map and hierarchical clustering analysis (HCA) result showed that most of the metabolites were significantly abundant in the transgenic hairy root cultures grown under light conditions. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) showed that the identified metabolites were separated far based on the primary and secondary metabolite contents present in the control and transgenic hairy root lines grown under light and dark conditions. Metabolic pathway analysis of the detected metabolites showed 54 pathways were identified, among these 30 were found to be affected. From these results, the AtMYB12 transcription factor activity might be light-responsive in the transgenic hairy root cultures, triggering the activation of the primary and secondary metabolic pathways in Korean mint.
Collapse
Affiliation(s)
- Thi Minh Hanh Do
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minsol Choi
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Chanung Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Nam Il Park
- Division of Plant Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Zheleznichenko T, Voronkova M, Asbaganov S, Kukushkina T, Filippova E, Protsenko M, Mazurkova N, Novikova T. Impact of different Agrobacterium rhizogenes strains on secondary metabolites accumulation in Nitraria schoberi L. hairy roots and antiviral activity of their extracts against influenza virus of subtypes A (H5N1) and A (H3N2). IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2023; 59:1-15. [PMID: 37363438 PMCID: PMC10101541 DOI: 10.1007/s11627-023-10343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
To optimize protocol for obtaining hairy roots of Nitraria schoberi L. with high antiviral activities, factors such as four strain types of Agrobacterium rhizogenes (A4, ATCC15834, R-1601, 8196), two explant types, namely cotyledonous and primary leaves of seedlings, and different cultivation durations (30 and 90 d) were studied. The formation of hairy roots was observed after 2 to 4 wk of incubation, depending on the type of explant and the strain of A. rhizogenes used. The maximum transformation frequency (85.7%) was observed in the cotyledons genetically modified with the strain ATCC15834. The transgenic nature of hairy roots was revealed by PCR with primers to the Agrobacterium oncogenes rolB and rolC. The absence of contamination of the culture by A. rhizogenes was confirmed by primers to the virC and virD1 genes. Phytochemical analysis showed that accumulation of individual metabolites in the line samples exceeded their levels in the native Nitraria roots. Catechin content in the cultures of long-term cultivation (90 d) was found 1.4 to 2.2 times higher than the same samples of short cultivation (30 d) and 4.8 to 10.8 times higher in comparison with the native roots. The most productive in terms of catechin level were hairy roots of long-term cultivation obtained during the transformation of primary leaves of N. schoberi seedlings with ATCC15834 strain. These data were consistent with the highest antiviral activities against influenza viruses of A (H5N1) and A (H3N2) subtypes with neutralization indexes 6.5 to 6.75 log10, and selectivity index values were in the range 15.4 to 16.4.
Collapse
Affiliation(s)
- Tatiana Zheleznichenko
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaya, 101, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russian Federation
| | - Mariya Voronkova
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaya, 101, 630090 Novosibirsk, Russian Federation
| | - Sergey Asbaganov
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaya, 101, 630090 Novosibirsk, Russian Federation
| | - Tatyana Kukushkina
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaya, 101, 630090 Novosibirsk, Russian Federation
| | - Ekaterina Filippova
- State Research Center of Virology and Biotechnology “VECTOR” 630559, Koltsovo, Novosibirsk Region, Russian Federation
| | - Mariya Protsenko
- State Research Center of Virology and Biotechnology “VECTOR” 630559, Koltsovo, Novosibirsk Region, Russian Federation
| | - Natalya Mazurkova
- State Research Center of Virology and Biotechnology “VECTOR” 630559, Koltsovo, Novosibirsk Region, Russian Federation
| | - Tatyana Novikova
- Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaya, 101, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
6
|
Sathasivam R, Park SU, Kim JK, Park YJ, Kim MC, Nguyen BV, Lee SY. Metabolic Profiling of Primary and Secondary Metabolites in Kohlrabi ( Brassica oleracea var. gongylodes) Sprouts Exposed to Different Light-Emitting Diodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061296. [PMID: 36986982 PMCID: PMC10057582 DOI: 10.3390/plants12061296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 05/27/2023]
Abstract
Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts.
Collapse
Affiliation(s)
- Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Young Jin Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Min Cheol Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Bao Van Nguyen
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun 59146, Republic of Korea
| |
Collapse
|