1
|
Rauf A, Subhani MN, Siddique M, Shahid H, Chattha MB, Alrefaei AF, Hasan Naqvi SA, Ali H, Lucas RS. Cultivating a greener future: Exploiting trichoderma derived secondary metabolites for fusarium wilt management in peas. Heliyon 2024; 10:e29031. [PMID: 38601549 PMCID: PMC11004880 DOI: 10.1016/j.heliyon.2024.e29031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
This study aimed to identify efficient Trichoderma isolate(s) for the management of Fusarium wilt in peas. Four different pea germplasms (Sarsabz, Pea-09, Meteor and Supreme) were evaluated for resistance against Fusarium oxysporum in pot assay. Resistant germplasm exhibits a varying range of disease severity (23%) and percent disease index (21%), whereas susceptible and highly susceptible germplasm exhibit maximum disease severity (44-79%) and percent disease index (47-82%). The susceptible germplasm Meteor was selected for in vivo experiment. Five different Trichoderma spp. (Trichoderma koningii, T. hamatum, T. longibrachiatum, T. viride, and T. harzianum) were screened for the production of hydrolytic extracellular enzymes under in vitro. In-vitro biocontrol potential of Trichoderma spp. was assayed by percentage inhibition of dry mass of Fusarium oxysporum pisi (FOP) with Trichoderma spp. metabolite filtrate concentrations. Maximum growth inhibition was observed by T. harzianum (50-89%). T. harzianum metabolites in filtrate conc. (40%, 50%, and 60%) exhibited maximum reduction in biomass and were thus used for in vivo management of the disease. The pot experiment for in-vivo management also confirmed the maximum inhibition of FOP by T. harzianum metabolites filtrate at 60% by reducing disease parameters and enhancing growth, yield, and physiochemical and stress markers. Trichoderma strains led to an increase in chlorophyll and carotenoids (34-26%), Total phenolic 55%, Total protein content 60%, Total Flavonoid content 36%, and the increasing order of enzyme activities were as follows: CAT > POX > PPO > PAL in all treatments. These strains demonstrate excellent bio-control of Fusarium wilt in pea via induction of defense-related enzymes. The present work will help use Trichoderma species in disease management programme as an effective biocontrol agent against plant pathogens.
Collapse
Affiliation(s)
- Amna Rauf
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Nasir Subhani
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Maroof Siddique
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Habiba Shahid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Rosa Sanchez Lucas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
2
|
Lokesh J, Siriyappagouder P, Fernandes JMO. Unravelling the temporal and spatial variation of fungal phylotypes from embryo to adult stages in Atlantic salmon. Sci Rep 2024; 14:981. [PMID: 38200059 PMCID: PMC10781754 DOI: 10.1038/s41598-023-50883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Early microbial colonization has a profound impact on host physiology during different stages of ontogeny. Although several studies have focused on early bacterial colonization and succession, the composition and role of fungal communities are poorly known in fish. Here, we sequenced the internal transcribed spacer 2 (ITS2) region of fungi to profile the mycobiome associated with the eggs, hatchlings and intestine of Atlantic salmon at various freshwater and marine stages. In most of the stages studied, fungal diversity was lower than bacterial diversity. There were several stage-specific fungal phylotypes belonging to different stages of ontogeny but some groups, such as Candida tropicalis, Saccharomyces cerevisiae, Alternaria metachromatica, Davidiella tassiana and Humicola nigrescens, persisted during successive stages of ontogeny. We observed significant changes in the intestinal fungal communities during the first feeding. Prior to first feeding, Humicola nigrescens dominated, but Saccharomyces cerevisiae (10 weeks post hatch) and Candida tropicalis (12 weeks post hatch) became dominant subsequently. Seawater transfer resulted in a decrease in alpha diversity and an increase in Candida tropicalis abundance. We also observed notable variations in beta diversity and composition between the different farms. Overall, the present study sheds light on the fungal communities of Atlantic salmon from early ontogeny to adulthood. These novel findings will also be useful in future studies investigating host-microbiota interactions in the context of developing better nutritional and health management strategies for Atlantic salmon farming.
Collapse
Affiliation(s)
- Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-Sur-Nivelle, France.
| | | | | |
Collapse
|
3
|
Zaid DS, Li W, Yang S, Li Y. Identification of bioactive compounds of Bacillus velezensis HNA3 that contribute to its dual effects as plant growth promoter and biocontrol against post-harvested fungi. Microbiol Spectr 2023; 11:e0051923. [PMID: 37811935 PMCID: PMC10715170 DOI: 10.1128/spectrum.00519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The current study is an extension to our previous work on the plant growth-promoting rhizobacteria (PGPR) Bacillus velezensis HNA3 strain, which comes to confirm and reveals the huge stock of active secondary metabolites produced by HNA3. HNA3-emitted volatile organic compounds (VOCs) have demonstrated the capacity to impede the growth of phytopathogens affecting some fruits and vegetables, even in the absence of direct contact. Additionally, these volatiles enhanced soybean seed germination by breaking seed dormancy and inducing root system development. Furthermore, they promoted seedling growth, giving it prominence in soybean cultivation. The relevance of active volatiles derives from the fact that they can be developed as natural-safe biocontrol agents and plant promoters. This research validates the remarkable bioactivities exhibited by the Bacillus velezensis HNA3 and their potential applications in agriculture as an inoculant, encompassing biocontrol, plant growth promotion, and seed germination activities, thereby offering a safer alternative to hazardous chemicals.
Collapse
Affiliation(s)
- Doaa S. Zaid
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Desert Research Center, Ain Shams, Egypt
| | - Wenya Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Siyu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Mukhopadhyay A, Chaudhary S, Antil J, Somvanshi VS, Nebapure SM, Patanjali N, Dutta A, Babu S, Bharadwaj C, Sudhishri S, Singh M, Banerjee T, Kumar A, Singh A. Novel moisture retaining dustable powder containing Steinernema abbasi effectively controls damage of subterranean termite in wheat and chickpea. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:679-688. [PMID: 37807607 DOI: 10.1080/03601234.2023.2264743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The application of biocontrol agents in farm operations for pest control programs is gaining priority and preference globally. Effective delivery, infectivity of the biocontrol agents, and quality shelf-life products containing these bioagents are vital parameters responsible for the success of biopesticides under field conditions. In the present study, moisture-retaining bio-insecticidal dustable powder formulation (SaP) of Steinernema abbasi (Sa) infective juveniles (IJs) was developed and assessed for its shelf life, physicochemical profile, and bio-efficacy against subterranean termite under field conditions. Formulation exhibited free-flowing character, with pH of 6.50-7.50, and apparent density in the range 0.50-0.70 g cm-3. The bioefficacy study for two rabi seasons (2020-2021, and 2021-2022) in wheat and chickpea grown in an experimental farm heavily infested with subterranean termites (Odontotermes obesus) revealed a significant reduction in plant damage due to pest attack in formulation-treated plots, monitored in terms of relative number of infested tillers in wheat and infested plants in chickpea fields. The reduced damage to the crop caused by termite was reflected in the relative differences in the growth and yield attributes as well. The study establishes the potential of the developed product as a biopesticide suitable for organic farming and integrated pest management operations.
Collapse
Affiliation(s)
- Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shubham Chaudhary
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Antil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh M Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Susama Sudhishri
- Water Technology Centre, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Man Singh
- Water Technology Centre, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Indian Council of Agricultural Research, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Turkan S, Mierek-Adamska A, Kulasek M, Konieczna WB, Dąbrowska GB. New seed coating containing Trichoderma viride with anti-pathogenic properties. PeerJ 2023; 11:e15392. [PMID: 37283892 PMCID: PMC10239620 DOI: 10.7717/peerj.15392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Background To ensure food security in the face of climate change and the growing world population, multi-pronged measures should be taken. One promising approach uses plant growth-promoting fungi (PGPF), such as Trichoderma, to reduce the usage of agrochemicals and increase plant yield, stress tolerance, and nutritional value. However, large-scale applications of PGPF have been hampered by several constraints, and, consequently, usage on a large scale is still limited. Seed coating, a process that consists of covering seeds with low quantities of exogenous materials, is gaining attention as an efficient and feasible delivery system for PGPF. Methods We have designed a new seed coating composed of chitin, methylcellulose, and Trichoderma viride spores and assessed its effect on canola (Brassica napus L.) growth and development. For this purpose, we analyzed the antifungal activity of T. viride against common canola pathogenic fungi (Botrytis cinerea, Fusarium culmorum, and Colletotrichum sp.). Moreover, the effect of seed coating on germination ratio and seedling growth was evaluated. To verify the effect of seed coating on plant metabolism, we determined superoxide dismutase (SOD) activity and expression of the stress-related RSH (RelA/SpoT homologs). Results Our results showed that the T. viride strains used for seed coating significantly restricted the growth of all three pathogens, especially F. culmorum, for which the growth was inhibited by over 40%. Additionally, the new seed coating did not negatively affect the ability of the seeds to complete germination, increased seedling growth, and did not induce the plant stress response. To summarize, we have successfully developed a cost-effective and environmentally responsible seed coating, which will also be easy to exploit on an industrial scale.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Milena Kulasek
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiktoria B. Konieczna
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|