1
|
Diaz MT, Zhang H, Cosgrove AL, Gertel VH, Troutman SBW, Karimi H. Neural sensitivity to semantic neighbors is stable across the adult lifespan. Neuropsychologia 2022; 171:108237. [PMID: 35413304 PMCID: PMC10022434 DOI: 10.1016/j.neuropsychologia.2022.108237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
As we age, language reflects patterns of both stability and change. On the one hand, vocabulary and semantic abilities are largely stable across the adult lifespan, yet lexical retrieval is often slower and less successful (i.e., slower picture naming times, increased tip of the tongue incidents). Although the behavioral bases of these effects have been well established, less is known about the brain regions that support these age-related differences. We used functional Magnetic Resonance Imaging (fMRI) to examine the neural basis of picture naming. Specifically, we were interested in whether older adults would be equally sensitive to semantic characteristics, specifically the number of semantic near neighbors. Near neighbors, defined here as items with a high degree of semantic feature overlap, were of interest as these are thought to elicit competition among potential candidates and increase naming difficulty. Consistent with prior reports, pictures with more semantic near neighbors were named more slowly and less accurately for all adults. Additionally, this interference for naming times was larger as age increased, starting around 30 years old. In contrast to the age-related behavioral slowing, the neural basis of these effects was stable across adulthood. Across all adults, a number of language-relevant regions including left posterior middle temporal gyrus and left inferior frontal gyrus, pars triangularis were sensitive to the number of near neighbors. Our results suggest that although middle-aged and older adults' picture naming is more slowed by increased semantic competition, the brain regions supporting semantic processes remain stable across the adult lifespan.
Collapse
Affiliation(s)
- Michele T Diaz
- Department of Psychology, The Pennsylvania State University, USA; Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, USA.
| | - Haoyun Zhang
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, USA
| | | | | | | | - Hossein Karimi
- Department of Psychology, The Pennsylvania State University, USA
| |
Collapse
|
2
|
Nakagawa E, Koike T, Sumiya M, Shimada K, Makita K, Yoshida H, Yokokawa H, Sadato N. The Neural Correlates of Semantic and Grammatical Encoding During Sentence Production in a Second Language: Evidence From an fMRI Study Using Structural Priming. Front Hum Neurosci 2022; 15:753245. [PMID: 35111005 PMCID: PMC8801494 DOI: 10.3389/fnhum.2021.753245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Japanese English learners have difficulty speaking Double Object (DO; give B A) than Prepositional Object (PO; give A to B) structures which neural underpinning is unknown. In speaking, syntactic and phonological processing follow semantic encoding, conversion of non-verbal mental representation into a structure suitable for expression. To test whether DO difficulty lies in linguistic or prelinguistic process, we conducted functional magnetic resonance imaging. Thirty participants described cartoons using DO or PO, or simply named them. Greater reaction times and error rates indicated DO difficulty. DO compared with PO showed parieto-frontal activation including left inferior frontal gyrus, reflecting linguistic process. Psychological priming in PO produced immediately after DO and vice versa compared to after control, indicated shared process between PO and DO. Cross-structural neural repetition suppression was observed in occipito-parietal regions, overlapping the linguistic system in pre-SMA. Thus DO and PO share prelinguistic process, whereas linguistic process imposes overload in DO.
Collapse
Affiliation(s)
- Eri Nakagawa
- Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Takahiko Koike
- Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Motofumi Sumiya
- Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Haruyo Yoshida
- Department of English Education, Osaka Kyoiku University, Osaka, Japan
| | - Hirokazu Yokokawa
- School of Languages and Communication, Kobe University, Hyogo, Japan
| | - Norihiro Sadato
- Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
- Biomedical Imaging Research Center (BIRC), University of Fukui, Fukui, Japan
| |
Collapse
|
3
|
Jedidi Z, Manard M, Balteau E, Degueldre C, Luxen A, Philips C, Collette F, Maquet P, Majerus S. Incidental Verbal Semantic Processing Recruits the Fronto-temporal Semantic Control Network. Cereb Cortex 2021; 31:5449-5459. [PMID: 34180511 DOI: 10.1093/cercor/bhab169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
The frontoparietal semantic network, encompassing the inferior frontal gyrus and the posterior middle temporal cortex, is considered to be involved in semantic control processes. The explicit versus implicit nature of these control processes remains however poorly understood. The present study examined this question by assessing regional brain responses to the semantic attributes of an unattended stream of auditory words while participants' top-down attentional control processes were absorbed by a demanding visual search task. Response selectivity to semantic aspects of verbal stimuli was assessed via a functional magnetic resonance imaging response adaptation paradigm. We observed that implicit semantic processing of an unattended verbal stream recruited not only unimodal and amodal cortices in posterior supporting semantic knowledge areas, but also inferior frontal and posterior middle temporal areas considered to be part of the semantic control network. These results indicate that frontotemporal semantic networks support incidental semantic (control) processes.
Collapse
Affiliation(s)
- Z Jedidi
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium.,Department of Neurology, CHU Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | - M Manard
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium
| | - E Balteau
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium
| | - C Degueldre
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium
| | - A Luxen
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium
| | - C Philips
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium
| | - F Collette
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium
| | - P Maquet
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium.,Department of Neurology, CHU Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | - S Majerus
- GIGA - Cyclotron Research Centre in vivo imaging, University of Liège, 4000 Liège, Belgium.,Psychology & Neuroscience of Cognition Research Unit, University of Liège, 4000 Liège, Belgium.,Fund for Scientific Research - FNRS, 1000 Brussels, Belgium
| |
Collapse
|
4
|
Fedorenko E, Blank IA, Siegelman M, Mineroff Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 2020; 203:104348. [PMID: 32569894 DOI: 10.1101/477851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 05/25/2023]
Abstract
To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Siegelman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Eberly Center for Teaching Excellence & Educational Innovation, CMU, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Fedorenko E, Blank IA, Siegelman M, Mineroff Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 2020; 203:104348. [PMID: 32569894 PMCID: PMC7483589 DOI: 10.1016/j.cognition.2020.104348] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
| | - Idan Asher Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Siegelman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Eberly Center for Teaching Excellence & Educational Innovation, CMU, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
7
|
Chan LWC, Pang B, Shyu CR, Chan T, Khong PL. Genetic algorithm supported by graphical processing unit improves the exploration of effective connectivity in functional brain imaging. Front Comput Neurosci 2015; 9:50. [PMID: 25999846 PMCID: PMC4419833 DOI: 10.3389/fncom.2015.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
Brain regions of human subjects exhibit certain levels of associated activation upon specific environmental stimuli. Functional Magnetic Resonance Imaging (fMRI) detects regional signals, based on which we could infer the direct or indirect neuronal connectivity between the regions. Structural Equation Modeling (SEM) is an appropriate mathematical approach for analyzing the effective connectivity using fMRI data. A maximum likelihood (ML) discrepancy function is minimized against some constrained coefficients of a path model. The minimization is an iterative process. The computing time is very long as the number of iterations increases geometrically with the number of path coefficients. Using regular Quad-Core Central Processing Unit (CPU) platform, duration up to 3 months is required for the iterations from 0 to 30 path coefficients. This study demonstrates the application of Graphical Processing Unit (GPU) with the parallel Genetic Algorithm (GA) that replaces the Powell minimization in the standard program code of the analysis software package. It was found in the same example that GA under GPU reduced the duration to 20 h and provided more accurate solution when compared with standard program code under CPU.
Collapse
Affiliation(s)
- Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University Hong Kong, China
| | - Bin Pang
- Informatics Institute, University of Missouri Columbia, MO, USA
| | - Chi-Ren Shyu
- Informatics Institute, University of Missouri Columbia, MO, USA
| | - Tao Chan
- Department of Diagnostic Radiology, University of Hong Kong Hong Kong, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, University of Hong Kong Hong Kong, China
| |
Collapse
|
8
|
O'Donnell MB, Falk EB. Linking Neuroimaging with Functional Linguistic Analysis to Understand Processes of Successful Communication. COMMUNICATION METHODS AND MEASURES 2015; 9:55-77. [PMID: 30034564 PMCID: PMC6052875 DOI: 10.1080/19312458.2014.999751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Functional linguistic models posit a systematic link between language FORM and the FUNCTIONS for which language is used. This is a systematic (and therefore quantifiable) relationship. Yet, many open questions remain about the mechanisms that link form, function and communication relevant outcomes. Neuroimaging methods can provide insight into such processes that are not apparent from other methods. We argue that the combination of neural and linguistic measures will allow insight into both individual and population-level communication processes that would not be possible using either method in isolation. We present examples illustrating this methodological integration and notes regarding the most amenable linguistic tools. We summarize a framework in which language presented to and produced by participants undergoing neuroimaging is correlated with the resulting neural data and other proximal communication outcomes allowing the triangulation of individual experimental with population level outcomes, thereby linking between micro and macro levels of analysis.
Collapse
Affiliation(s)
- Matthew Brook O'Donnell
- Communication Neuroscience Lab, Annenberg School for Communication, University of Pennsylvania
| | - Emily B Falk
- Communication Neuroscience Lab, Annenberg School for Communication, University of Pennsylvania
| |
Collapse
|
9
|
Hultén A, Karvonen L, Laine M, Salmelin R. Producing Speech with a Newly Learned Morphosyntax and Vocabulary: An Magnetoencephalography Study. J Cogn Neurosci 2014; 26:1721-35. [DOI: 10.1162/jocn_a_00558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Ten participants learned a miniature language (Anigram), which they later employed to verbally describe a pictured event. Using magnetoencephalography, the cortical dynamics of sentence production in Anigram was compared with that in the native tongue from the preparation phase up to the production of the final word. At the preparation phase, a cartoon image with two animals prompted the participants to plan either the corresponding simple sentence (e.g., “the bear hits the lion”) or a grammar-free list of the two nouns (“the bear, the lion”). For the newly learned language, this stage induced stronger left angular and adjacent inferior parietal activations than for the native language, likely reflecting a higher load on lexical retrieval and STM storage. The preparation phase was followed by a cloze task where the participants were prompted to produce the last word of the sentence or word sequence. Production of the sentence-final word required retrieval of rule-based inflectional morphology and was accompanied by increased activation of the left middle superior temporal cortex that did not differ between the two languages. Activation of the right temporal cortex during the cloze task suggested that this area plays a role in integrating word meanings into the sentence frame. The present results indicate that, after just a few days of exposure, the newly learned language harnesses the neural resources for multiword production much the same way as the native tongue and that the left and right temporal cortices seem to have functionally different roles in this processing.
Collapse
|
10
|
Myachykov A, Scheepers C, Shtyrov YY. Interfaces between language and cognition. Front Psychol 2013; 4:258. [PMID: 23653620 PMCID: PMC3644674 DOI: 10.3389/fpsyg.2013.00258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andriy Myachykov
- Department of Psychology, Northumbria University Newcastle upon Tyne, UK
| | | | | |
Collapse
|
11
|
Menenti L, Segaert K, Hagoort P. The neuronal infrastructure of speaking. BRAIN AND LANGUAGE 2012; 122:71-80. [PMID: 22717280 DOI: 10.1016/j.bandl.2012.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain's integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we manipulated repetition of sentence meaning, words, and syntax separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these processes. We demonstrate that semantic, lexical and syntactic processes are carried out in partly overlapping and partly distinct brain networks and show that the classic left-hemispheric dominance for language is present for syntax but not semantics.
Collapse
Affiliation(s)
- Laura Menenti
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
12
|
Menenti L, Pickering MJ, Garrod SC. Toward a neural basis of interactive alignment in conversation. Front Hum Neurosci 2012; 6:185. [PMID: 22754517 PMCID: PMC3384290 DOI: 10.3389/fnhum.2012.00185] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/02/2012] [Indexed: 11/13/2022] Open
Abstract
The interactive-alignment account of dialogue proposes that interlocutors achieve conversational success by aligning their understanding of the situation under discussion. Such alignment occurs because they prime each other at different levels of representation (e.g., phonology, syntax, semantics), and this is possible because these representations are shared across production and comprehension. In this paper, we briefly review the behavioral evidence, and then consider how findings from cognitive neuroscience might lend support to this account, on the assumption that alignment of neural activity corresponds to alignment of mental states. We first review work supporting representational parity between production and comprehension, and suggest that neural activity associated with phonological, lexical, and syntactic aspects of production and comprehension are closely related. We next consider evidence for the neural bases of the activation and use of situation models during production and comprehension, and how these demonstrate the activation of non-linguistic conceptual representations associated with language use. We then review evidence for alignment of neural mechanisms that are specific to the act of communication. Finally, we suggest some avenues of further research that need to be explored to test crucial predictions of the interactive alignment account.
Collapse
Affiliation(s)
- Laura Menenti
- Institute for Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|