1
|
Kronemer SI, Gobo VE, Japee S, Merriam E, Osborne B, Bandettini PA, Liu T. Eye metrics are a marker of visual conscious awareness and neural processing in cerebral blindness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631506. [PMID: 39829811 PMCID: PMC11741428 DOI: 10.1101/2025.01.06.631506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Damage to the primary visual pathway can cause vision loss. Some cerebrally blind people retain degraded vision or sensations and can perform visually guided behaviors. These cases motivate investigation and debate on blind field conscious awareness and linked residual neural processing. A key challenge in this research is that subjective measures of blind field visual conscious awareness can be misleading. Alternatively, eye metrics, including pupil size and eye movements are promising objective markers of conscious awareness and brain activity. In this study, we examined stimulus-evoked changes in pupil size, blinking, and microsaccades in the sighted and blind field of cerebrally blind participants. Using standard analysis and innovative machine learning methods, our findings support that eye metrics can infer blind field conscious awareness, even when behavioral performance on a visual perception task indicated otherwise. Furthermore, these eye metrics were linked to blind field visual stimulus-evoked occipital cortical field potentials. These findings support recording eye metrics in cerebral blindness and highlight potential clinical applications, including tracking the recovery of conscious vision and visual neural processing.
Collapse
Affiliation(s)
- Sharif I. Kronemer
- Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA
| | - Victoria E. Gobo
- Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA
| | - Shruti Japee
- Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA
| | - Eli Merriam
- Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA
| | - Benjamin Osborne
- Department of Neurology and Ophthalmology, Medstar Georgetown University Hospital, Washington, District of Columbia (DC), USA
| | - Peter A. Bandettini
- Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA
- Functional MRI Facility, NIMH, NIH, Bethesda, MD, USA
| | - Tina Liu
- Laboratory of Brain and Cognition (LBC), National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland (MD), USA
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
2
|
Colombari E, Parisi G, Tafuro A, Mele S, Mazzi C, Savazzi S. Beyond primary visual cortex: The leading role of lateral occipital complex in early conscious visual processing. Neuroimage 2024; 298:120805. [PMID: 39173692 DOI: 10.1016/j.neuroimage.2024.120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.
Collapse
Affiliation(s)
- Elisabetta Colombari
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Giorgia Parisi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Alessandra Tafuro
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Sonia Mele
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy.
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| |
Collapse
|
3
|
Poyo Solanas M, Zhan M, de Gelder B. Ultrahigh Field fMRI Reveals Different Roles of the Temporal and Frontoparietal Cortices in Subjective Awareness. J Neurosci 2024; 44:e0425232023. [PMID: 38531633 PMCID: PMC11097282 DOI: 10.1523/jneurosci.0425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024] Open
Abstract
A central question in consciousness theories is whether one is dealing with a dichotomous ("all-or-none") or a gradual phenomenon. In this 7T fMRI study, we investigated whether dichotomy or gradualness in fact depends on the brain region associated with perceptual awareness reports. Both male and female human subjects performed an emotion discrimination task (fear vs neutral bodies) presented under continuous flash suppression with trial-based perceptual awareness measures. Behaviorally, recognition sensitivity increased linearly with increased stimuli awareness and was at chance level during perceptual unawareness. Physiologically, threat stimuli triggered a slower heart rate than neutral ones during "almost clear" stimulus experience, indicating freezing behavior. Brain results showed that activity in the occipitotemporal, parietal, and frontal regions as well as in the amygdala increased with increased stimulus awareness while early visual areas showed the opposite pattern. The relationship between temporal area activity and perceptual awareness best fitted a gradual model while the activity in frontoparietal areas fitted a dichotomous model. Furthermore, our findings illustrate that specific experimental decisions, such as stimulus type or the approach used to evaluate awareness, play pivotal roles in consciousness studies and warrant careful consideration.
Collapse
Affiliation(s)
- Marta Poyo Solanas
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| |
Collapse
|
4
|
Yang (杨菁艺) J, Saionz EL, Cavanaugh MR, Fahrenthold BK, Melnick MD, Tadin D, Briggs F, Carrasco M, Huxlin KR. Limited restoration of contrast sensitivity with training after V1 damage in humans. eNeuro 2024; 11:ENEURO.0020-24.2024. [PMID: 38395611 PMCID: PMC10941636 DOI: 10.1523/eneuro.0020-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Stroke damage to the primary visual cortex (V1) causes severe visual deficits, which benefit from perceptual retraining. However, whereas training with high-contrast stimuli can locally restore orientation and motion direction discrimination abilities at trained locations, it only partially restores luminance contrast sensitivity (CS). Recent work revealed that high-contrast discrimination abilities may be preserved in the blind field of some patients early after stroke. Here, we asked if CS for orientation and direction discrimination is similarly preserved inside the blind field, to what extent, and whether it could benefit from a visual training intervention. Thirteen subacute patients (<3 months post-V1-stroke) and 12 chronic patients (>6 months post-V1-stroke) were pre-tested, then trained to discriminate either orientation or motion direction of Gabor patches of progressively lower contrasts as their performance improved. At baseline, more subacute than chronic participants could correctly discriminate the orientation of high-contrast Gabors in their blind field, but all failed to perform this task at lower contrasts, even when 10Hz flicker or motion direction were added. Training improved CS in a greater portion of subacute than chronic participants, but no-one attained normal CS, even when stimuli contained flicker or motion. We conclude that, unlike the near-complete training-induced restoration of high-contrast orientation and motion direction discrimination abilities, V1 damage in adulthood may severely limit the residual visual system's ability to regain normal CS. Our results support the notion that CS involves different neural substrates and computations than those required for orientation and direction discrimination in V1-damaged visual systems.Significance statement Stroke-induced V1 damage in adult humans induces a rapid and severe impairment of contrast sensitivity for orientation and motion direction discrimination in the affected hemifield, although discrimination of high-contrast stimuli can persist for several months. Adaptive training with Gabor patches of progressively lower contrasts improves contrast sensitivity for both orientation and motion discriminations in the blind-field of subacute (<3 months post-stroke) and chronic (>6 months post-stroke) participants; however, it fails to restore normal contrast sensitivity. Nonetheless, more subacute than chronic stroke participants benefit from such training, particularly when discriminating the orientation of static, non-flickering targets. Thus, contrast sensitivity appears critically dependent on processing within V1, with perceptual training displaying limited potential to fully restore it after V1 damage.
Collapse
Affiliation(s)
- Jingyi Yang (杨菁艺)
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Elizabeth L. Saionz
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Matthew R. Cavanaugh
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Berkeley K. Fahrenthold
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Michael D. Melnick
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
| | - Duje Tadin
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
| | - Farran Briggs
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003
| | - Krystel R. Huxlin
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
| |
Collapse
|
5
|
Lane TJ, Liou TH, Kung YC, Tseng P, Wu CW. Functional blindsight and its diagnosis. Front Neurol 2024; 15:1207115. [PMID: 38385044 PMCID: PMC10879618 DOI: 10.3389/fneur.2024.1207115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Even when brain scans fail to detect a striate lesion, functional evidence for blindsight can be adduced. In the aftermath of an automobile accident, JK became blind. Results of ophthalmic exams indicated that the blindness must be cortical. Nevertheless, multiple MRI scans failed to detect structural damage to the striate cortex. Prior to the accident JK had been an athlete; after the accident he retained some athletic abilities, arousing suspicions that he might be engaged in fraud. His residual athletic abilities-e.g., hitting a handball or baseball, or catching a Frisbee-coupled with his experienced blindness, suggested blindsight. But due to the apparent absence of striate lesions, we designed a series of tasks for temporal and spatial dimensions in an attempt to detect functional evidence of his disability. Indeed, test results revealed compelling neural evidence that comport with his subjective reports. This spatiotemporal task-related method that includes contrasts with healthy controls, and detailed understanding of the patient's conscious experience, can be generalized for clinical, scientific and forensic investigations of blindsight.
Collapse
Affiliation(s)
- Timothy Joseph Lane
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre, Taipei Medical University, Taipei City, Taiwan
- Institute of European and American Studies, Academia Sinica, Taipei City, Taiwan
| | - Tsan-Hon Liou
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Physical Medicine and Rehabilitation, TMU Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yi-Chia Kung
- Department of Radiology, National Defense Medical Center, Tri-Service General Hospital, Taipei City, Taiwan
- Taiwan Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Philip Tseng
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre, Taipei Medical University, Taipei City, Taiwan
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei City, Taiwan
| | - Changwei W. Wu
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
6
|
Yang J, Saionz EL, Cavanaugh MR, Fahrenthold BK, Melnick MD, Tadin D, Briggs F, Carrasco M, Huxlin KR. Contrast sensitivity: a fundamental limit to vision restoration after V1 damage. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294827. [PMID: 37693553 PMCID: PMC10491352 DOI: 10.1101/2023.08.31.23294827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Stroke damage to the primary visual cortex (V1) causes severe visual deficits, which benefit from perceptual retraining. However, whereas training with high-contrast stimuli can locally restore orientation and direction discrimination abilities at trained locations, it only partially restores luminance contrast sensitivity (CS). Recent work revealed that high-contrast discrimination abilities may be preserved in the blind field of some patients early after stroke. Here, we asked if CS for orientation and direction discrimination is similarly preserved inside the blind field, to what extent, and whether it could benefit from a visual training intervention. Thirteen subacute (<3 months post-V1-stroke) and 12 chronic (>6 months post-V1-stroke) participants were pre-tested, then trained to discriminate either orientation or motion direction of Gabor patches of progressively lower contrasts. At baseline, more subacute than chronic participants could correctly discriminate the orientation of high-contrast Gabors in their blind field, but all failed to perform this task at lower contrasts, even when 10Hz flicker or motion direction were added. Training improved CS in a greater portion of subacute than chronic participants, but no-one attained normal CS, even when stimuli contained flicker or motion. We conclude that, unlike the near-complete training-induced restoration of high-contrast orientation and direction discrimination, there is limited capacity for restoring CS after V1 damage in adulthood. Our results suggest that CS involves different neural substrates and computations than those required for orientation and direction discrimination in V1-damaged visual systems.
Collapse
Affiliation(s)
- Jingyi Yang
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Elizabeth L. Saionz
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Matthew R. Cavanaugh
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Berkeley K. Fahrenthold
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Michael D. Melnick
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Duje Tadin
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Farran Briggs
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, NY, NY 10003
| | - Krystel R. Huxlin
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York 14627
- Center for Visual Science, University of Rochester, Rochester, New York 14627
| |
Collapse
|
7
|
Olkoniemi H, Hurme M, Railo H. Neurologically Healthy Humans' Ability to Make Saccades Toward Unseen Targets. Neuroscience 2023; 513:111-125. [PMID: 36702371 DOI: 10.1016/j.neuroscience.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Some patients with a visual field loss due to a lesion in the primary visual cortex (V1) can shift their gaze to stimuli presented in their blind visual field. The extent to which a similar "blindsight" capacity is present in neurologically healthy individuals remains unknown. Using retinotopically navigated transcranial magnetic stimulation (TMS) of V1 (Experiment 1) and metacontrast masking (Experiment 2) to suppress conscious vision, we examined neurologically healthy humans' ability to make saccadic eye movements toward visual targets that they reported not seeing. In the TMS experiment, the participants were more likely to initiate a saccade when a stimulus was presented, and they reported not seeing it, than in trials which no stimulus was presented. However, this happened only in a very small proportion (∼8%) of unseen trials, suggesting that saccadic reactions were largely based on conscious perception. In both experiments, saccade landing location was influenced by unconscious information: When the participants denied seeing the target but made a saccade, the saccade was made toward the correct location (TMS: 68%, metacontrast: 63%) more often than predicted by chance. Signal detection theoretic measures suggested that in the TMS experiment, saccades toward unseen targets may have been based on weak conscious experiences. In both experiments, reduced visibility of the target stimulus was associated with slower and less precise gaze shifts. These results suggest that saccades made by neurologically healthy humans may be influenced by unconscious information, although the initiation of saccades is largely based on conscious vision.
Collapse
Affiliation(s)
- Henri Olkoniemi
- Division of Psychology, Faculty of Education and Psychology, University of Oulu, Finland; Department of Psychology and Speech Language Pathology, University of Turku, Finland.
| | - Mikko Hurme
- Department of Psychology and Speech Language Pathology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Henry Railo
- Department of Psychology and Speech Language Pathology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| |
Collapse
|
8
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
9
|
Schmid D, Schneider S, Schenk T. How to test blindsight without light-scatter artefacts? Neuropsychologia 2022; 173:108308. [PMID: 35716799 DOI: 10.1016/j.neuropsychologia.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Light-scatter artefacts are a methodological problem in testing residual visual capacities (RVCs), for instance blindsight, in patients with homonymous visual field defects (HVFDs). The term light-scatter artefact describes the phenomenon that light from targets directed towards the HVFD can stray into the sighted visual field. This might enable an observer to respond correctly to information directed at her blind field despite the fact that she is unable to process that information in the blind field itself. In this manuscript, we present a review of the relevance of light-scatter in visual neuroscience, discuss factors that influence the impact of light-scatter and evaluate means to test for light-scatter artefacts. Furthermore, we present findings from an empirical study that was aimed at developing tests for RVCs that are free of light-scatter artefacts. Previous studies on light scatter only used small sample sizes and equipment that is no longer in use. Hence, their results cannot be generalized to future experiments making it necessary to run laborious light-scatter tests for every new study on RVCs. To avoid this, we hereby start a pool of stimuli and paradigms which demonstrably do not elicit light-scatter artefacts. To this end, we investigated 21 healthy young participants in three frequently used RVC-paradigms: (1) temporal 2AFC task, (2) movement direction discrimination, and (3) redundant target paradigm. For each paradigm, we applied the blind-spot method. But first, we had to establish that our testing paradigm was sufficiently sensitive to detect light-scatter artefacts. For this, we used conditions that are known to produce strong light scatter and a paradigm that is very sensitive to such effects. Specifically, we presented white targets on a black background in a dark room. The stimuli were presented to observers' blind spot. To check for light-scatter artefacts, we used a target-detection task in a temporal 2AFC format. We obtained clear light-scatter artefacts. Participants produced reliably above-chance detection performance under these conditions. The other two luminance conditions, measured in an illuminated room, did not produce light-scatter artefacts. Accuracy in the temporal 2AFC task was at chance level for white targets on a grey background at the blind-spot position. Additionally, black targets on a grey background avoided light-scatter artefacts in all three RVC-paradigms. In future, researchers can apply these stimulus and illumination conditions when using one of the three above paradigms in their studies. Using these conditions, they will be able to avoid light-scatter artefacts without having to perform their own blind-spot tests.
Collapse
Affiliation(s)
- Doris Schmid
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Sebastian Schneider
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| | - Thomas Schenk
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802, Munich, Germany.
| |
Collapse
|
10
|
Derrien D, Garric C, Sergent C, Chokron S. The nature of blindsight: implications for current theories of consciousness. Neurosci Conscious 2022; 2022:niab043. [PMID: 35237447 PMCID: PMC8884361 DOI: 10.1093/nc/niab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Blindsight regroups the different manifestations of preserved discriminatory visual capacities following the damage to the primary visual cortex. Blindsight types differentially impact objective and subjective perception, patients can report having no visual awareness whilst their behaviour suggests visual processing still occurs at some cortical level. This phenomenon hence presents a unique opportunity to study consciousness and perceptual consciousness, and for this reason, it has had an historical importance for the development of this field of research. From these studies, two main opposing models of the underlying mechanisms have been established: (a) blindsight is perception without consciousness or (b) blindsight is in fact degraded vision, two views that mirror more general theoretical options about whether unconscious cognition truly exists or whether it is only a degraded form of conscious processing. In this article, we want to re-examine this debate in the light of recent advances in the characterization of blindsight and associated phenomena. We first provide an in-depth definition of blindsight and its subtypes, mainly blindsight type I, blindsight type II and the more recently described blindsense. We emphasize the necessity of sensitive and robust methodology to uncover the dissociations between perception and awareness that can be observed in brain-damaged patients with visual field defects at different cognitive levels. We discuss these different profiles of dissociation in the light of both contending models. We propose that the different types of dissociations reveal a pattern of relationship between perception, awareness and metacognition that is actually richer than what is proposed by either of the existing models. Finally, we consider this in the framework of current theories of consciousness and touch on the implications the findings of blindsight have on these.
Collapse
Affiliation(s)
- Diane Derrien
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Rothschild, Paris 75019, France
| | - Clémentine Garric
- Inserm, CHU Lille, U1172—LilNCog (JPARC)—Lille Neuroscience & Cognition, University of Lille, Lille 59000, France
| | - Claire Sergent
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center, UMR 8002, CNRS & Université de Paris, Paris 75006, France
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Rothschild, Paris 75019, France
| |
Collapse
|
11
|
Overgaard M, Sandberg K. The Perceptual Awareness Scale-recent controversies and debates. Neurosci Conscious 2021; 2021:niab044. [PMID: 34925909 PMCID: PMC8672240 DOI: 10.1093/nc/niab044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Accurate insight into subjective experience is crucial for the science of consciousness. The Perceptual Awareness Scale (PAS) was created in 2004 as a method for obtaining precise introspective reports for participants in research projects, and since then, the scale has become increasingly popular. This does not mean, of course, that no critiques have been voiced. Here, we briefly recapitulate our main thoughts on the intended PAS usage and the findings of the first decade, and we update this with the latest empirical and theoretical developments. We focus specifically on findings with relevance to whether consciousness is gradual or all-or-none phenomenon, to what should be considered conscious/unconscious, and to whether PAS is preferable to alternative measures of awareness. We respond in detail to some recent, selected articles.
Collapse
Affiliation(s)
- Morten Overgaard
- Aarhus Institute of Advanced Studies, Aarhus University, Nørrebrogade 1A, Aarhus 8000, Denmark
- Department of Clinical Medicine, Center for Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, Building 1710, Aarhus 8000, Denmark
| | - Kristian Sandberg
- Department of Clinical Medicine, Center for Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, Building 1710, Aarhus 8000, Denmark
| |
Collapse
|
12
|
Koivisto M, Leino K, Pekkarinen A, Karttunen J, Railo H, Hurme M. Transcranial magnetic stimulation (TMS)-induced Blindsight of Orientation is Degraded Conscious Vision. Neuroscience 2021; 475:206-219. [PMID: 34480985 DOI: 10.1016/j.neuroscience.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Patients with blindsight are blind due to an early visual cortical lesion, but they can discriminate stimuli presented to the blind visual field better than chance. Studies using transcranial magnetic stimulation (TMS) of early visual cortex have tried to induce blindsight-like behaviour in neurologically healthy individuals, but the studies have yielded varied results. We hypothesized that previous demonstrations of TMS-induced blindsight may result from degraded awareness of the stimuli due to the use of dichotomous visibility scales in measuring awareness. In the present study, TMS was applied to early visual cortex during an orientation discrimination task and the subjective scale measuring awareness was manipulated: The participants reported their conscious perception either using a dichotomous scale or a 4-point Perceptual Awareness Scale. Although the results with the dichotomous scale replicated previous reports of blindsight-like behaviour, there was no evidence of TMS-induced blindsight for orientation when the participants used the lowest rating of the 4-point graded scale to indicate that they were not aware of the presence of the stimulus. Moreover, signal detection analyses indicated that across participants, the individual's sensitivity to consciously discriminate orientation predicted behaviour on reportedly unconscious trials. These results suggest that blindsight-like discrimination of orientation in neurologically healthy individuals does not occur for completely invisible stimuli, that is, when the observers do not report any kind of consciousness of the stimulus. TMS-induced blindsight for orientation is likely degraded conscious vision.
Collapse
Affiliation(s)
- Mika Koivisto
- Department of Psychology, University of Turku, 20014 Turku, Finland.
| | - Kalle Leino
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Aino Pekkarinen
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Jaakko Karttunen
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Henry Railo
- Department of Psychology, University of Turku, 20014 Turku, Finland
| | - Mikko Hurme
- Department of Psychology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
13
|
Is the primary visual cortex necessary for blindsight-like behavior? Review of transcranial magnetic stimulation studies in neurologically healthy individuals. Neurosci Biobehav Rev 2021; 127:353-364. [PMID: 33965459 DOI: 10.1016/j.neubiorev.2021.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The visual pathways that bypass the primary visual cortex (V1) are often assumed to support visually guided behavior in humans in the absence of conscious vision. This conclusion is largely based on findings on patients: V1 lesions cause blindness but sometimes leave some visually guided behaviors intact-this is known as blindsight. With the aim of examining how well the findings on blindsight patients generalize to neurologically healthy individuals, we review studies which have tried to uncover transcranial magnetic stimulation (TMS) induced blindsight. In general, these studies have failed to demonstrate a completely unconscious blindsight-like capacity in neurologically healthy individuals. A possible exception to this is TMS-induced blindsight of stimulus presence or location. Because blindsight in patients is often associated with some form of introspective access to the visual stimulus, and blindsight may be associated with neural reorganization, we suggest that rather than revealing a dissociation between visually guided behavior and conscious seeing, blindsight may reflect preservation or partial recovery of conscious visual perception after the lesion.
Collapse
|
14
|
Abstract
Studies utilizing continuous flash suppression (CFS) provide valuable information regarding conscious and nonconscious perception. There are, however, crucial unanswered questions regarding the mechanisms of suppression and the level of visual processing in the absence of consciousness with CFS. Research suggests that the answers to these questions depend on the experimental configuration and how we assess consciousness in these studies. The aim of this review is to evaluate the impact of different experimental configurations and the assessment of consciousness on the results of the previous CFS studies. We review studies that evaluated the influence of different experimental configuration on the depth of suppression with CFS and discuss how different assessments of consciousness may impact the results of CFS studies. Finally, we review behavioral and brain recording studies of CFS. In conclusion, previous studies provide evidence for survival of low-level visual information and complete impairment of high-level visual information under the influence of CFS. That is, studies suggest that nonconscious perception of lower-level visual information happens with CFS, but there is no evidence for nonconscious high-level recognition with CFS.
Collapse
|
15
|
Danckert J, Striemer C, Rossetti Y. Blindsight. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:297-310. [PMID: 33832682 DOI: 10.1016/b978-0-12-821377-3.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For over a century, research has demonstrated that damage to primary visual cortex does not eliminate all capacity for visual processing in the brain. From Riddoch's (1917) early demonstration of intact motion processing for blind field stimuli, to the iconic work of Weiskrantz et al. (1974) showing reliable spatial localization, it is clear that secondary visual pathways that bypass V1 carry information to the visual brain that in turn influences behavior. In this chapter, we briefly outline the history and phenomena associated with blindsight, before discussing the nature of the secondary visual pathways that support residual visual processing in the absence of V1. We finish with some speculation as to the functional characteristics of these secondary pathways.
Collapse
Affiliation(s)
- James Danckert
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada.
| | | | - Yves Rossetti
- Trajectoires, Centre de Recherche en Neurosciences de Lyon, Inserm, CNRS, Université Lyon 1, Bron, France; Plateforme "Mouvement et Handicap", Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France
| |
Collapse
|
16
|
Chang AYC, Biehl M, Yu Y, Kanai R. Information Closure Theory of Consciousness. Front Psychol 2020; 11:1504. [PMID: 32760320 PMCID: PMC7374725 DOI: 10.3389/fpsyg.2020.01504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Information processing in neural systems can be described and analyzed at multiple spatiotemporal scales. Generally, information at lower levels is more fine-grained but can be coarse-grained at higher levels. However, only information processed at specific scales of coarse-graining appears to be available for conscious awareness. We do not have direct experience of information available at the scale of individual neurons, which is noisy and highly stochastic. Neither do we have experience of more macro-scale interactions, such as interpersonal communications. Neurophysiological evidence suggests that conscious experiences co-vary with information encoded in coarse-grained neural states such as the firing pattern of a population of neurons. In this article, we introduce a new informational theory of consciousness: Information Closure Theory of Consciousness (ICT). We hypothesize that conscious processes are processes which form non-trivial informational closure (NTIC) with respect to the environment at certain coarse-grained scales. This hypothesis implies that conscious experience is confined due to informational closure from conscious processing to other coarse-grained scales. Information Closure Theory of Consciousness (ICT) proposes new quantitative definitions of both conscious content and conscious level. With the parsimonious definitions and a hypothesize, ICT provides explanations and predictions of various phenomena associated with consciousness. The implications of ICT naturally reconcile issues in many existing theories of consciousness and provides explanations for many of our intuitions about consciousness. Most importantly, ICT demonstrates that information can be the common language between consciousness and physical reality.
Collapse
|
17
|
Phillips I. Making sense of blindsense: A commentary on Garric et al., 2019. Cortex 2020; 127:388-392. [PMID: 31898946 DOI: 10.1016/j.cortex.2019.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Ian Phillips
- Department of Philosophy, and Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Masked blindsight in normal observers: Measuring subjective and objective responses to two features of each stimulus. Conscious Cogn 2020; 81:102929. [PMID: 32334354 DOI: 10.1016/j.concog.2020.102929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023]
Abstract
Recent visual masking studies that have measured visual awareness with graded subjective scales have often failed the show any evidence for unconscious visual processing in normal observers in a paradigm similar to that used in studies on blindsight patients. Without any reported awareness of the target, normal observers typically cannot discriminate target's features better than chance. The present study examined processing of color and orientation by measuring graded awareness and forced-choice discriminations for both features in each trial. When no awareness for either feature was reported, discrimination of each feature succeed better than expected by chance, even when the other feature was incorrectly discriminated in the same trial. However, the characteristics of the mask determined whether or not masked blindsight was observed. We conclude that when the processing channels are free from intra-channel interference, unbound or weakly bound features can guide behaviour without any reported awareness in normal observers.
Collapse
|
19
|
Fox DM, Goodale MA, Bourne JA. The Age-Dependent Neural Substrates of Blindsight. Trends Neurosci 2020; 43:242-252. [PMID: 32209455 DOI: 10.1016/j.tins.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Some patients who are considered cortically blind due to the loss of their primary visual cortex (V1) show a remarkable ability to act upon or discriminate between visual stimuli presented to their blind field, without any awareness of those stimuli. This phenomenon is often referred to as blindsight. Despite the range of spared visual abilities, the identification of the pathways mediating blindsight remains an active and contentious topic in the field. In this review, we discuss recent findings of the candidate pathways and their relative contributions to different forms of blindsight across the lifespan to illustrate the varied nature of unconscious visual processing.
Collapse
Affiliation(s)
- Dylan M Fox
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, Western Interdisciplinary Research Building, London, Ontario, Canada
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
20
|
Chokron S, Dubourg L, Garric C, Martinelli F, Perez C. Dissociations between perception and awareness in hemianopia. Restor Neurol Neurosci 2020; 38:189-201. [PMID: 31929128 DOI: 10.3233/rnn-190951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most common visual defect to follow a lesion of the retrochiasmal pathways is homonymous hemianopia (HH), whereby patients are blind to the contralesional visual field of each eye. Homonymous hemianopia has been studied in terms of its deleterious consequences on perceptual, cognitive and motor tasks as well as because it represents an interesting model of vision loss after a unilateral lesion of the occipital lobe. From a behavioral perspective, in addition to exhibiting a severe deficit in their contralesional visual field, HH patients can also exhibit dissociations between perception and awareness. Firstly, HH patients suffering from anosognosia may be unaware of their visual field defect. Secondly, HH patients can present with unconscious visual abilities in the blind hemifield, a phenomenon referred to as blindsight. Thirdly, recent reports demonstrate that HH patients can suffer from a subtle deficit in their ipsilesional visual field that they are unaware of, a condition called sightblindness (i.e. the reverse case of 'blindsight'). Finally, HH patients may also exhibit visual hallucinations in their blind field; however, such patients are not systematically aware that their perceptions are unreal. In this review, we provide an overview of the visual-field losses in HH patients after a left or right unilateral occipital lesion. Furthermore, we explore the implications of these four phenomena for models of visual processing and rehabilitation of visual field defects in HH patients. Finally, in contrast to the traditional view that HH is solely a visual-field defect, we discuss why this deficit is an interesting model for studying the dissociation between perception and awareness.
Collapse
Affiliation(s)
- Sylvie Chokron
- Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Lucas Dubourg
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Clémentine Garric
- Laboratoire de Sciences Cognitives et Affectives, SCALab, CNRS UMR, Faculté de Médecine, Pôle Recherche et Université de Lille, Lille, France
| | - Fiora Martinelli
- Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| | - Céline Perez
- Institut de Neuropsychologie, Neurovision, NeuroCognition, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Integrative Neuroscience and Cognition Center, CNRS, UMR 8242 et Université Paris-Descartes, Paris, France
| |
Collapse
|
21
|
Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli. Neuropsychologia 2020; 136:107266. [DOI: 10.1016/j.neuropsychologia.2019.107266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
|
22
|
Garric C, Sebaa A, Caetta F, Perez C, Savatovsky J, Sergent C, Chokron S. Dissociation between objective and subjective perceptual experiences in a population of hemianopic patients: A new form of blindsight? Cortex 2019; 117:299-310. [PMID: 31181393 DOI: 10.1016/j.cortex.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/06/2019] [Accepted: 05/05/2019] [Indexed: 01/05/2023]
Abstract
After a post-chiasmatic lesion, some patients may retain unconscious visual function, known as blindsight, in their contralesional visual field. Despite the importance of blindsight in the study of consciousness, little is known about the nature of patients' experience in their hemianopic field. To address this knowledge gap, we measured blindsight, and assessed the perceptual experience in the contralesional visual field, of seventeen homonymous hemianopic (HH) patients. To ensure that the stimuli were shown in a "blind" sector of the visual field, we selected a subgroup of eight complete-HH patients, as determined by automatic perimetry. Firstly, we measured blindsight through a forced-choice task in which the patients had to identify letters displayed on a screen. Secondly, we compared the patients' binary responses ("Something was presented" vs "Nothing was presented") to responses on a new, five-level scale, the Sensation Awareness Scale (SAS), which we designed to include visual as well as non-visual answers (e.g., "I felt something"). Interestingly, only one of the eight complete-HH patients met the criteria for blindsight. More importantly, our SAS enabled us to identify a previously unreported dissociation, which we have named blindsense, in four of the eight complete-HH patients. Specifically, these four patients exhibited better-than-chance sensitivity to the presence of a stimulus on the subjective scale, despite being unable to identify the stimulus during the forced-choice task. Our findings highlight the importance of awareness-assessment methods to investigate perceptual experiences in the contralesional visual field and suggest a low incidence of blindsight in post-stroke HH patients.
Collapse
Affiliation(s)
- Clémentine Garric
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France; Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France
| | - Aïda Sebaa
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France
| | - Florent Caetta
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France
| | - Céline Perez
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France; Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France
| | - Julien Savatovsky
- Service d'Imagerie, Fondation Ophtalmologique Rothschild, Paris, France
| | - Claire Sergent
- Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France
| | - Sylvie Chokron
- Unité Vision et Cognition, Fondation Ophtalmologique de Rothschild, Paris, France; Laboratoire de Psychologie de la Perception, UMR 8242, CNRS & Université Paris-Descartes, Paris, France; Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France.
| |
Collapse
|
23
|
Mazzi C, Tagliabue CF, Mazzeo G, Savazzi S. Reliability in reporting perceptual experience: Behaviour and electrophysiology in hemianopic patients. Neuropsychologia 2019; 128:119-126. [PMID: 29355647 PMCID: PMC6562273 DOI: 10.1016/j.neuropsychologia.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 12/02/2022]
Abstract
Patients with hemianopia can present with the so called blindsight phenomenon: the ability to perform above chance in the absence of acknowledged awareness. Proper awareness reports are, thus, crucial to distinguish pure forms of blindsight from forms of conscious, yet degraded, vision. It has, in fact, been recently shown that 1) dichotomous and graded measures to assess awareness can lead to different behavioural results in patients with hemianopia and that 2) different grades of perceptual clarity show different electrophysiological correlates in healthy participants. Here, in hemianopic patients, we assessed awareness by means of the four-point Perceptual Awareness Scale (PAS) and investigated its neural correlates with Event Related Potentials (ERPs). Results showed that patients, in most of the cases, can rate the clarity of their perceptual experience in a graded manner. Moreover, graded perceptual experiences correlated with the amplitude of deflections in ERPs. These results call for the need to assess perceptual awareness with graded measures and for the importance to use electrophysiological data to correlate behaviour with neural processing.
Collapse
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Chiara Francesca Tagliabue
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Gaetano Mazzeo
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
24
|
Unconscious fearful body perception enhances discrimination of conscious anger expressions under continuous flash suppression. Neuropsychologia 2019; 128:325-331. [DOI: 10.1016/j.neuropsychologia.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 02/09/2023]
|
25
|
Mazzi C, Savazzi S. The Glamor of Old-Style Single-Case Studies in the Neuroimaging Era: Insights From a Patient With Hemianopia. Front Psychol 2019; 10:965. [PMID: 31114532 PMCID: PMC6502964 DOI: 10.3389/fpsyg.2019.00965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/11/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
26
|
Hurme M, Koivisto M, Revonsuo A, Railo H. V1 activity during feedforward and early feedback processing is necessary for both conscious and unconscious motion perception. Neuroimage 2019; 185:313-321. [DOI: 10.1016/j.neuroimage.2018.10.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022] Open
|
27
|
Persuh M. The Fata Morgana of Unconscious Perception. Front Hum Neurosci 2018; 12:120. [PMID: 29692714 PMCID: PMC5902557 DOI: 10.3389/fnhum.2018.00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/12/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Marjan Persuh
- Department of Social Sciences, Human Services and Criminal Justice, Borough of Manhattan Community College, City University of New York, New York, NY, United States
| |
Collapse
|
28
|
Emotional priming depends on the degree of conscious experience. Neuropsychologia 2017; 128:96-102. [PMID: 29129593 PMCID: PMC6562235 DOI: 10.1016/j.neuropsychologia.2017.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 11/23/2022]
Abstract
Most experiments in consciousness research assume that awareness is a dichotomous 'either/or' phenomenon. However, participants can distinguish multiple levels of subjective experience of simple features (colour, shape etc.), which correlate with their performance in different tasks. As experiments showing multiple levels of perceptual awareness question the widespread idea that many forms of perception can occur unconsciously, we investigated emotional priming combined with methods able to measure small variations in subjective experience. We show awareness of emotional faces is gradual rather than dichotomous, and that the effects of emotional priming are predicted by the level of perceptual awareness of emotional faces, with no effects when reported unseen. The results question how much unconscious perceptions can influence behaviour. As priming is one of the most well-established phenomena believed to occur unconsciously, the results expand the growing body of evidence that questions the contributions of unconscious processing on behaviour. Emotional priming is considered fundamental evidence for unconscious perception. Emotional priming strength is predicted by graded perceptual awareness levels. Emotional priming with faces is not effective when faces are reported as unseen. Facial expression recognition increases gradually with perceptual awareness levels. Perceptual awareness of faces increases gradually with duration of face stimuli.
Collapse
|
29
|
Marvan T, Polák M. Unitary and dual models of phenomenal consciousness. Conscious Cogn 2017; 56:1-12. [PMID: 29024889 DOI: 10.1016/j.concog.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
There is almost unanimous consensus among the theorists of consciousness that the phenomenal character of a mental state cannot exist without consciousness. We argue for a reappraisal of this consensus. We distinguish two models of phenomenal consciousness: unitary and dual. Unitary model takes the production of a phenomenal quality and it's becoming conscious to be one and the same thing. The dual model, which we advocate in this paper, distinguishes the process in which the phenomenal quality is formed from the process that makes this quality conscious. We put forward a conceptual, methodological, neuropsychological and neural argument for the dual model. These arguments are independent but provide mutual support to each other. Together, they strongly support the dual model of phenomenal consciousness and the concomitant idea of unconscious mental qualities. The dual view is thus, we submit, a hypothesis worthy of further probing and development.
Collapse
Affiliation(s)
- Tomáš Marvan
- Institute of Philosophy of the Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic.
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Pilsen, Czech Republic
| |
Collapse
|
30
|
Hadid V, Lepore F. From Cortical Blindness to Conscious Visual Perception: Theories on Neuronal Networks and Visual Training Strategies. Front Syst Neurosci 2017; 11:64. [PMID: 28912694 PMCID: PMC5583595 DOI: 10.3389/fnsys.2017.00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Homonymous hemianopia (HH) is the most common cortical visual impairment leading to blindness in the contralateral hemifield. It is associated with many inconveniences and daily restrictions such as exploration and visual orientation difficulties. However, patients with HH can preserve the remarkable ability to unconsciously perceive visual stimuli presented in their blindfield, a phenomenon known as blindsight. Unfortunately, the nature of this captivating residual ability is still misunderstood and the rehabilitation strategies in terms of visual training have been insufficiently exploited. This article discusses type I and type II blindsight in a neuronal framework of altered global workspace, resulting from inefficient perception, attention and conscious networks. To enhance synchronization and create global availability for residual abilities to reach visual consciousness, rehabilitation tools need to stimulate subcortical extrastriate pathways through V5/MT. Multisensory bottom-up compensation combined with top-down restitution training could target pre-existing and new neuronal mechanisms to recreate a framework for potential functionality.
Collapse
Affiliation(s)
- Vanessa Hadid
- Département de Sciences Biomédicales, Université de MontréalMontréal, QC, Canada
| | - Franco Lepore
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC), Département de Psychologie, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
31
|
Bollini A, Sanchez-Lopez J, Savazzi S, Marzi CA. Lights from the Dark: Neural Responses from a Blind Visual Hemifield. Front Neurosci 2017; 11:290. [PMID: 28588445 PMCID: PMC5440595 DOI: 10.3389/fnins.2017.00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Here we present evidence that a hemianopic patient with a lesion of the left primary visual cortex (V1) showed an unconscious above-chance orientation discrimination with moving rather than static visual gratings presented to the blind hemifield. The patient did not report any perceptual experience of the stimulus features except for a feeling that something appeared in the blind hemifield. Interestingly, in the lesioned left hemisphere, following stimulus presentation to the blind hemifield, we found an event-related potential (ERP) N1 component at a post-stimulus onset latency of 180-260 ms and a source generator in the left BA 19. In contrast, we did not find evidence of the early visual components C1 and P1 and of the later component P300. A positive component (P2a) was recorded between 250 and 320 ms after stimulus onset frontally in both hemispheres. Finally, in the time range 320-440 ms there was a negative peak in right posterior electrodes that was present only for the moving condition. In sum, there were two noteworthy results: Behaviorally, we found evidence of above chance unconscious (blindsight) orientation discrimination with moving but not static stimuli. Physiologically, in contrast to previous studies, we found reliable ERP components elicited by stimuli presented to the blind hemifield at various electrode locations and latencies that are likely to index either the perceptual report of the patient (N1 and P2a) or, the above-chance unconscious performance with moving stimuli as is the case of the posterior ERP negative component. This late component can be considered as the neural correlate of a kind of blindsight enabling feature discrimination only when stimuli are moving and that is subserved by the intact right hemisphere through interhemispheric transfer.
Collapse
Affiliation(s)
- Alice Bollini
- Department of Neuroscience, Biomedicine and Movement, University of VeronaVerona, Italy
| | - Javier Sanchez-Lopez
- Department of Neuroscience, Biomedicine and Movement, University of VeronaVerona, Italy.,National Institute of NeuroscienceVerona, Italy
| | - Silvia Savazzi
- Department of Neuroscience, Biomedicine and Movement, University of VeronaVerona, Italy.,National Institute of NeuroscienceVerona, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of VeronaVerona, Italy.,National Institute of NeuroscienceVerona, Italy
| |
Collapse
|
32
|
Brogaard B, Gatzia DE. Unconscious Imagination and the Mental Imagery Debate. Front Psychol 2017; 8:799. [PMID: 28588527 PMCID: PMC5440590 DOI: 10.3389/fpsyg.2017.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn's model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.
Collapse
Affiliation(s)
- Berit Brogaard
- The Brogaard Lab for Multisensory Research, University of Miami, MiamiFL, United States.,Department of Philosophy, University of OsloOslo, Norway
| | - Dimitria Electra Gatzia
- Department of Philosophy, University of Akron Wayne College, AkronOH, United States.,Centre for Philosophical Psychology, University of AntwerpAntwerp, Belgium
| |
Collapse
|
33
|
Hurme M, Koivisto M, Revonsuo A, Railo H. Early processing in primary visual cortex is necessary for conscious and unconscious vision while late processing is necessary only for conscious vision in neurologically healthy humans. Neuroimage 2017; 150:230-238. [DOI: 10.1016/j.neuroimage.2017.02.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022] Open
|
34
|
Jonkisz J, Wierzchoń M, Binder M. Four-Dimensional Graded Consciousness. Front Psychol 2017; 8:420. [PMID: 28377738 PMCID: PMC5359253 DOI: 10.3389/fpsyg.2017.00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/06/2017] [Indexed: 11/24/2022] Open
Abstract
Both the multidimensional phenomenon and the polysemous notion of consciousness continue to prove resistant to consistent measurement and unambiguous definition. This is hardly surprising, given that there is no agreement even as regards the most fundamental issues they involve. One of the basic disagreements present in the continuing debate about consciousness pertains to its gradational nature. The general aim of this article is to show how consciousness might be graded and multidimensional at the same time. We therefore focus on the question of what it is, exactly, that is or could be graded in cases of consciousness, and how we can measure it. Ultimately, four different gradable aspects of consciousness will be described: quality, abstractness, complexity and usefulness, which belong to four different dimensions, these being understood, respectively, as phenomenal, semantic, physiological, and functional. Consequently, consciousness may be said to vary with respect to phenomenal quality, semantic abstraction, physiological complexity, and functional usefulness. It is hoped that such a four-dimensional approach will help to clarify and justify claims about the hierarchical nature of consciousness. The approach also proves explanatorily advantageous, as it enables us not only to draw attention to certain new and important differences in respect of subjective measures of awareness and to justify how a given creature may be ranked higher in one dimension of consciousness and lower in terms of another, but also allows for innovative explanations of a variety of well-known phenomena (amongst these, the interpretations of blindsight and locked-in syndrome will be briefly outlined here). Moreover, a 4D framework makes possible many predictions and hypotheses that may be experimentally tested (We point out a few such possibilities pertaining to interdimensional dependencies).
Collapse
Affiliation(s)
- Jakub Jonkisz
- Department of Management, Institute of Sociology, University of Bielsko-BialaBielsko-Biala, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian UniversityKrakow, Poland
| | - Marek Binder
- Psychophysiology Lab, Institute of Psychology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|