1
|
Middag-van Spanje M, Nijboer TCW, Schepers J, van Heugten C, Sack AT, Schuhmann T. Alpha transcranial alternating current stimulation as add-on to neglect training: a randomized trial. Brain Commun 2024; 6:fcae287. [PMID: 39301290 PMCID: PMC11411215 DOI: 10.1093/braincomms/fcae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/08/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Visuospatial neglect is a common and debilitating condition following unilateral stroke, significantly impacting cognitive functioning and daily life. There is an urgent need for effective treatments that can provide clinically relevant and sustained benefits. In addition to traditional stroke treatment, non-invasive brain stimulation, such as transcranial alternating current stimulation, shows promise as a complementary approach to enhance stroke recovery. In the current study, we aimed to evaluate the additive effects of multi-session transcranial alternating current stimulation at alpha frequency when combined with visual scanning training in chronic stroke patients with visuospatial neglect. In this double-blind randomized controlled trial, we compared the effects of active transcranial alternating current stimulation at alpha frequency to sham (placebo) transcranial alternating current stimulation, both combined with visual scanning training. Both groups received eighteen 40-minute training sessions over a 6-week period. A total of 22 chronic visuospatial neglect patients participated in the study (active group n = 12, sham group n = 10). The median age was 61.0 years, with a median time since stroke of 36.1 months. We assessed the patients at six time-points: at baseline, after the first, ninth and eighteenth training sessions, as well as 1 week and 3 months following the completion of the combined neuromodulation intervention. The primary outcome measure was the change in performance on a visual search task, specifically the star cancellation task. Secondary outcomes included performance on a visual detection task, two line bisection tasks and three tasks evaluating visuospatial neglect in daily living. We found significantly improved visual search (primary outcome) and visual detection performance in the neglected side in the active transcranial alternating current stimulation group, compared to the sham transcranial alternating current stimulation group. We did not observe stimulation effects on line bisection performance nor in daily living. Time effects were observed on all but one outcome measures. Multi-session transcranial alternating current stimulation combined with visual scanning training may be a more effective treatment for chronic visuospatial neglect than visual scanning training alone. These findings provide valuable insights into novel strategies for stroke recovery, even long after the injury, with the aim of enhancing cognitive rehabilitation outcomes and improving the overall quality of life for individuals affected by this condition. Trial registration: ClinicalTrials.gov; registration number: NCT05466487; https://clinicaltrials.gov/ct2/show/NCT05466487.
Collapse
Affiliation(s)
- Marij Middag-van Spanje
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- InteraktContour, 8070 AC Nunspeet, The Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, 3583 TM Utrecht, The Netherlands
| | - Jan Schepers
- Department of Methodology and Statistics, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Caroline van Heugten
- Limburg Brain Injury Center, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
2
|
Fusco G, Scandola M, Lin H, Inzlicht M, Aglioti SM. Modulating preferences during intertemporal choices through exogenous midfrontal transcranial alternating current stimulation: A registered report. Cortex 2024; 171:435-464. [PMID: 38113613 DOI: 10.1016/j.cortex.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 12/21/2023]
Abstract
Decision conflicts may arise when the costs and benefits of choices are evaluated as a function of outcomes predicted along a temporal dimension. Electrophysiology studies suggest that during performance monitoring a typical oscillatory activity in the theta rhythm, named midfrontal theta, may index conflict processing and resolution. In the present within-subject, sham controlled, cross-over preregistered study, we delivered online midfrontal transcranial Alternating Current Stimulation (tACS) to modulate electrocortical activity during intertemporal decisions. Participants were invited to select choice preference between economic offers at three different intermixed levels of conflict (i.e., low, medium, high) while receiving either theta -, gamma-, or sham tACS in separate blocks and sessions. At the end of each stimulation block, a Letter-Flanker task was also administered to measure behavioural aftereffects. We hypothesized that theta-tACS would have acted on the performance monitoring system inducing behavioural changes (i.e., faster decisions and more impulsive choices) in high conflicting trials, rather than gamma- and sham-tACS. Results very partially confirmed our predictions. Unexpectedly, both theta- and gamma-driven neuromodulation speeded-up decisions compared to sham. However, exploratory analyses revealed that such an effect was stronger in the high-conflict decisions during theta-tACS. These findings were independent from the influence of the sensations induced by the electrical stimulation. Moreover, further analyses highlighted a significant association during theta-tACS between the selection of immediate offers in high-conflict trials and attentional impulsiveness, suggesting that individual factors may account for the tACS effects during intertemporal decisions. Finally, we did not capture long-lasting behavioural changes following tACS in the Flanker task. Our findings may inform scholars to improve experimental designs and boost the knowledge toward a more effective application of tACS.
Collapse
Affiliation(s)
- Gabriele Fusco
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Michele Scandola
- NPSY Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Hause Lin
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Inzlicht
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Salvatore Maria Aglioti
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
3
|
Radecke JO, Fiene M, Misselhorn J, Herrmann CS, Engel AK, Wolters CH, Schneider TR. Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity. Brain Stimul 2023; 16:1047-1061. [PMID: 37353071 DOI: 10.1016/j.brs.2023.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Covert visuo-spatial attention is marked by the anticipatory lateralization of neuronal alpha activity in the posterior parietal cortex. Previous applications of transcranial alternating current stimulation (tACS) at the alpha frequency, however, were inconclusive regarding the causal contribution of oscillatory activity during visuo-spatial attention. OBJECTIVE Attentional shifts of behavior and electroencephalography (EEG) after-effects were assessed in a cued visuo-spatial attention paradigm. We hypothesized that parietal alpha-tACS shifts attention relative to the ipsilateral visual hemifield. Furthermore, we assumed that modulations of behavior and neurophysiology are related to individual electric field simulations. METHODS We applied personalized tACS at alpha and gamma frequencies to elucidate the role of oscillatory neuronal activity for visuo-spatial attention. Personalized tACS montages were algorithmically optimized to target individual left and right parietal regions that were defined by an EEG localizer. RESULTS Behavioral performance in the left hemifield was specifically increased by alpha-tACS compared to gamma-tACS targeting the left parietal cortex. This hemisphere-specific effect was observed despite the symmetry of simulated electric fields. In addition, visual event-related potential (ERP) amplitudes showed a reduced lateralization over posterior sites induced by left alpha-tACS. Neuronal sources of this effect were localized in the left premotor cortex. Interestingly, accuracy modulations induced by left parietal alpha-tACS were directly related to electric field magnitudes in the left premotor cortex. CONCLUSION Overall, results corroborate the notion that alpha lateralization plays a causal role in covert visuo-spatial attention and indicate an increased susceptibility of parietal and premotor brain regions of the left dorsal attention network to subtle tACS-neuromodulation.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, University of Oldenburg, 26111, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
4
|
Hunold A, Haueisen J, Nees F, Moliadze V. Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res 2023; 101:405-423. [PMID: 36537991 DOI: 10.1002/jnr.25154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Khan A, Antonakakis M, Suntrup-Krueger S, Lencer R, Nitsche MA, Paulus W, Groß J, Wolters CH. Can individually targeted and optimized multi-channel tDCS outperform standard bipolar tDCS in stimulating the primary somatosensory cortex? Brain Stimul 2023; 16:1-16. [PMID: 36526154 DOI: 10.1016/j.brs.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a non-invasive neuro-modulation technique. Most studies show that anodal tDCS increases cortical excitability, however, with variable outcomes. Previously, we have shown in computer simulations that our multi-channel tDCS (mc-tDCS) approach, the distributed constrained maximum intensity (D-CMI) method can potentially lead to better controlled tDCS results due to the improved directionality of the injected current at the target side for individually optimized D-CMI montages. OBJECTIVE In this study, we test the application of the D-CMI approach in an experimental study to stimulate the somatosensory P20/N20 target source in Brodmann area 3b and compare it with standard bipolar tDCS and sham conditions. METHODS We applied anodal D-CMI, the standard bipolar and D-CMI based Sham tDCS for 10 min to target the 20 ms post-stimulus somatosensory P20/N20 target brain source in Brodmann area 3b reconstructed using combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis in realistic head models with calibrated skull conductivity in a group-study with 13 subjects. Finger-stimulated somatosensory evoked fields (SEF) were recorded and the component at 20 ms post-stimulus (M20) was analyzed before and after the application of the three tDCS conditions in order to read out the stimulation effect on Brodmann area 3b. RESULTS Analysis of the finger stimulated SEF M20 peak before (baseline) and after tDCS shows a significant increase in source amplitude in Brodmann area 3b for D-CMI (6-16 min after tDCS), while no significant effects are found for standard bipolar (6-16 min after tDCS) and sham (6-16 min after tDCS) stimulation conditions. For the later time courses (16-26 and 27-37 min post-stimulation), we found a significant decrease in M20 peak source amplitude for standard bipolar and sham tDCS, while there was no effect for D-CMI. CONCLUSION Our results indicate that targeted and optimized, and thereby highly individualized, mc-tDCS can outperform standard bipolar stimulation and lead to better control over stimulation outcomes with, however, a considerable amount of additional work compared to standard bipolar tDCS.
Collapse
Affiliation(s)
- Asad Khan
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, München, Germany; Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Joachim Groß
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Khatoun A, Asamoah B, Boogers A, Mc Laughlin M. Epicranial Direct Current Stimulation Suppresses Harmaline Tremor in Rats. Neuromodulation 2022:S1094-7159(22)01223-5. [DOI: 10.1016/j.neurom.2022.08.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
7
|
Benwell CSY, Mohr G, Wallberg J, Kouadio A, Ince RAA. Psychiatrically relevant signatures of domain-general decision-making and metacognition in the general population. NPJ MENTAL HEALTH RESEARCH 2022; 1:10. [PMID: 38609460 PMCID: PMC10956036 DOI: 10.1038/s44184-022-00009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/04/2022] [Indexed: 04/14/2024]
Abstract
Human behaviours are guided by how confident we feel in our abilities. When confidence does not reflect objective performance, this can impact critical adaptive functions and impair life quality. Distorted decision-making and confidence have been associated with mental health problems. Here, utilising advances in computational and transdiagnostic psychiatry, we sought to map relationships between psychopathology and both decision-making and confidence in the general population across two online studies (N's = 344 and 473, respectively). The results revealed dissociable decision-making and confidence signatures related to distinct symptom dimensions. A dimension characterised by compulsivity and intrusive thoughts was found to be associated with reduced objective accuracy but, paradoxically, increased absolute confidence, whereas a dimension characterized by anxiety and depression was associated with systematically low confidence in the absence of impairments in objective accuracy. These relationships replicated across both studies and distinct cognitive domains (perception and general knowledge), suggesting that they are reliable and domain general. Additionally, whereas Big-5 personality traits also predicted objective task performance, only symptom dimensions related to subjective confidence. Domain-general signatures of decision-making and metacognition characterise distinct psychological dispositions and psychopathology in the general population and implicate confidence as a central component of mental health.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK.
| | - Greta Mohr
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Jana Wallberg
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Aya Kouadio
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
No effects of prefrontal multichannel tACS at individual alpha frequency on phonological decisions. Clin Neurophysiol 2022; 142:96-108. [DOI: 10.1016/j.clinph.2022.07.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022]
|
9
|
Steinmann I, Williams KA, Wilke M, Antal A. Detection of Transcranial Alternating Current Stimulation Aftereffects Is Improved by Considering the Individual Electric Field Strength and Self-Rated Sleepiness. Front Neurosci 2022; 16:870758. [PMID: 35833087 PMCID: PMC9272587 DOI: 10.3389/fnins.2022.870758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive electrical stimulation methods, such as transcranial alternating current stimulation (tACS), are increasingly used in human neuroscience research and offer potential new avenues to treat neurological and psychiatric disorders. However, their often variable effects have also raised concerns in the scientific and clinical communities. This study aims to investigate the influence of subject-specific factors on the alpha tACS-induced aftereffect on the alpha amplitude (measured with electroencephalography, EEG) as well as on the connectivity strength between nodes of the default mode network (DMN) [measured with functional magnetic resonance imaging (fMRI)]. As subject-specific factors we considered the individual electrical field (EFIELD) strength at target regions in the brain, the frequency mismatch between applied stimulation and individual alpha frequency (IAF) and as a covariate, subject’s changes in mental state, i.e., sleepiness. Eighteen subjects participated in a tACS and a sham session conducted on different days. Each session consisted of three runs (pre/stimulation/). tACS was applied during the second run at each subject’s individual alpha frequency (IAF), applying 1 mA peak-to-peak intensity for 7 min, using an occipital bihemispheric montage. In every run, subjects watched a video designed to increase in-scanner compliance. To investigate the aftereffect of tACS on EEG alpha amplitude and on DMN connectivity strength, EEG data were recorded simultaneously with fMRI data. Self-rated sleepiness was documented using a questionnaire. Conventional statistics (ANOVA) did not show a significant aftereffect of tACS on the alpha amplitude compared to sham stimulation. Including individual EFIELD strengths and self-rated sleepiness scores in a multiple linear regression model, significant tACS-induced aftereffects were observed. However, the subject-wise mismatch between tACS frequency and IAF had no contribution to our model. Neither standard nor extended statistical methods confirmed a tACS-induced aftereffect on DMN functional connectivity. Our results show that it is possible and necessary to disentangle alpha amplitude changes due to intrinsic mechanisms and to external manipulation using tACS on the alpha amplitude that might otherwise be overlooked. Our results suggest that EFIELD is really the most significant factor that explains the alpha amplitude modulation during a tACS session. This knowledge helps to understand the variability of the tACS-induced aftereffects.
Collapse
Affiliation(s)
- Iris Steinmann
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Iris Steinmann,
| | - Kathleen A. Williams
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Andrea Antal,
| |
Collapse
|
10
|
Moretti J, Marinovic W, Harvey AR, Rodger J, Visser TAW. Offline Parietal Intermittent Theta Burst Stimulation or Alpha Frequency Transcranial Alternating Current Stimulation Has No Effect on Visuospatial or Temporal Attention. Front Neurosci 2022; 16:903977. [PMID: 35774555 PMCID: PMC9237453 DOI: 10.3389/fnins.2022.903977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a growing field with potentially wide-ranging clinical and basic science applications due to its ability to transiently and safely change brain excitability. In this study we include two types of stimulation: repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Single session stimulations with either technique have previously been reported to induce changes in attention. To better understand and compare the effectiveness of each technique and the basis of their effects on cognition we assessed changes to both temporal and visuospatial attention using an attentional blink task and a line bisection task following offline stimulation with an intermittent theta burst (iTBS) rTMS protocol or 10 Hz tACS. Additionally, we included a novel rTMS stimulation technique, low-intensity (LI-)rTMS, also using an iTBS protocol, which uses stimulation intensities an order of magnitude below conventional rTMS. Animal models show that low-intensity rTMS modulates cortical excitability despite sub-action potential threshold stimulation. Stimulation was delivered in healthy participants over the right posterior parietal cortex (rPPC) using a within-subjects design (n = 24). Analyses showed no evidence for an effect of any stimulation technique on spatial biases in the line bisection task or on magnitude of the attentional blink. Our results suggests that rTMS and LI-rTMS using iTBS protocol and 10 Hz tACS over rPPC do not modulate performance in tasks assessing visuospatial or temporal attention.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Troy A. W. Visser
- School of Psychological Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
12
|
Krause MR, Vieira PG, Thivierge JP, Pack CC. Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain. PLoS Biol 2022; 20:e3001650. [PMID: 35613140 PMCID: PMC9132296 DOI: 10.1371/journal.pbio.3001650] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Parietal but not temporoparietal alpha-tACS modulates endogenous visuospatial attention. Cortex 2022; 154:149-166. [DOI: 10.1016/j.cortex.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
|
14
|
Janssens SEW, Oever ST, Sack AT, de Graaf TA. "Broadband Alpha Transcranial Alternating Current Stimulation": Exploring a new biologically calibrated brain stimulation protocol. Neuroimage 2022; 253:119109. [PMID: 35306159 DOI: 10.1016/j.neuroimage.2022.119109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can be used to study causal contributions of oscillatory brain mechanisms to cognition and behavior. For instance, individual alpha frequency (IAF) tACS was reported to enhance alpha power and impact visuospatial attention performance. Unfortunately, such results have been inconsistent and difficult to replicate. In tACS, stimulation generally involves one frequency, sometimes individually calibrated to a peak value observed in an M/EEG power spectrum. Yet, the 'peak' actually observed in such power spectra often contains a broader range of frequencies, raising the question whether a biologically calibrated tACS protocol containing this fuller range of alpha-band frequencies might be more effective. Here, we introduce 'Broadband-alpha-tACS', a complex individually calibrated electrical stimulation protocol. We band-pass filtered left posterior resting-state EEG data around the IAF (± 2 Hz), and converted that time series into an electrical waveform for tACS stimulation of that same left posterior parietal cortex location. In other words, we stimulated a brain region with a 'replay' of its own alpha-band frequency content, based on spontaneous activity. Within-subjects (N = 24), we compared to a sham tACS session the effects of broadband-alpha tACS, power-matched spectral inverse ('alpha-removed') control tACS, and individual alpha frequency (IAF) tACS, on EEG alpha power and performance in an endogenous attention task previously reported to be affected by alpha tACS. Broadband-alpha-tACS significantly modulated attention task performance (i.e., reduced the rightward visuospatial attention bias in trials without distractors, and reduced attention benefits). Alpha-removed tACS also reduced the rightward visuospatial attention bias. IAF-tACS did not significantly modulate attention task performance compared to sham tACS, but also did not statistically significantly differ from broadband-alpha-tACS. This new broadband-alpha-tACS approach seems promising, but should be further explored and validated in future studies.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands.
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Mc Laughlin M, Khatoun A, Asamoah B. Detection of tACS Entrainment Critically Depends on Epoch Length. Front Cell Neurosci 2022; 16:806556. [PMID: 35360495 PMCID: PMC8963722 DOI: 10.3389/fncel.2022.806556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Neural entrainment is the phase synchronization of a population of neurons to an external rhythmic stimulus such as applied in the context of transcranial alternating current stimulation (tACS). tACS can cause profound effects on human behavior. However, there remain a significant number of studies that find no behavioral effect when tACS is applied to human subjects. To investigate this discrepancy, we applied time sensitive phase lock value (PLV) based analysis to single unit data from the rat motor cortex. The analysis revealed that detection of neural entrainment depends critically on the epoch length within which spiking information is accumulated. Increasing the epoch length allowed for detection of progressively weaker levels of neural entrainment. Based on this single unit analysis, we hypothesized that tACS effects on human behavior would be more easily detected in a behavior paradigm which utilizes longer epoch lengths. We tested this by using tACS to entrain tremor in patients and healthy volunteers. When the behavioral data were analyzed using short duration epochs tremor entrainment effects were not detectable. However, as the epoch length was progressively increased, weak tremor entrainment became detectable. These results suggest that tACS behavioral paradigms that rely on the accumulation of information over long epoch lengths will tend to be successful at detecting behavior effects. However, tACS paradigms that rely on short epoch lengths are less likely to detect effects.
Collapse
|
16
|
Preisig BC, Hervais-Adelman A. The Predictive Value of Individual Electric Field Modeling for Transcranial Alternating Current Stimulation Induced Brain Modulation. Front Cell Neurosci 2022; 16:818703. [PMID: 35273479 PMCID: PMC8901488 DOI: 10.3389/fncel.2022.818703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
There is considerable individual variability in the reported effectiveness of non-invasive brain stimulation. This variability has often been ascribed to differences in the neuroanatomy and resulting differences in the induced electric field inside the brain. In this study, we addressed the question whether individual differences in the induced electric field can predict the neurophysiological and behavioral consequences of gamma band tACS. In a within-subject experiment, bi-hemispheric gamma band tACS and sham stimulation was applied in alternating blocks to the participants' superior temporal lobe, while task-evoked auditory brain activity was measured with concurrent functional magnetic resonance imaging (fMRI) and a dichotic listening task. Gamma tACS was applied with different interhemispheric phase lags. In a recent study, we could show that anti-phase tACS (180° interhemispheric phase lag), but not in-phase tACS (0° interhemispheric phase lag), selectively modulates interhemispheric brain connectivity. Using a T1 structural image of each participant's brain, an individual simulation of the induced electric field was computed. From these simulations, we derived two predictor variables: maximal strength (average of the 10,000 voxels with largest electric field values) and precision of the electric field (spatial correlation between the electric field and the task evoked brain activity during sham stimulation). We found considerable variability in the individual strength and precision of the electric fields. Importantly, the strength of the electric field over the right hemisphere predicted individual differences of tACS induced brain connectivity changes. Moreover, we found in both hemispheres a statistical trend for the effect of electric field strength on tACS induced BOLD signal changes. In contrast, the precision of the electric field did not predict any neurophysiological measure. Further, neither strength, nor precision predicted interhemispheric integration. In conclusion, we found evidence for the dose-response relationship between individual differences in electric fields and tACS induced activity and connectivity changes in concurrent fMRI. However, the fact that this relationship was stronger in the right hemisphere suggests that the relationship between the electric field parameters, neurophysiology, and behavior may be more complex for bi-hemispheric tACS.
Collapse
Affiliation(s)
- Basil C. Preisig
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Donders Institute for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Kemmerer SK, Sack AT, de Graaf TA, Ten Oever S, De Weerd P, Schuhmann T. Frequency-specific transcranial neuromodulation of alpha power alters visuospatial attention performance. Brain Res 2022; 1782:147834. [PMID: 35176250 DOI: 10.1016/j.brainres.2022.147834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) at 10Hz has been shown to modulate spatial attention. However, the frequency-specificity and the oscillatory changes underlying this tACS effect are still largely unclear. Here, we applied high-definition tACS at individual alpha frequency (IAF), two control frequencies (IAF+/-2Hz) and sham to the left posterior parietal cortex and measured its effects on visuospatial attention performance and offline alpha power (using electroencephalography, EEG). We revealed a behavioural and electrophysiological stimulation effect relative to sham for IAF but not control frequency stimulation conditions: there was a leftward lateralization of alpha power for IAF tACS, which differed from sham for the first out of three minutes following tACS. At a high value of this EEG effect (moderation effect), we observed a leftward attention bias relative to sham. This effect was task-specific, i.e. it could be found in an endogenous attention but not in a detection task. Only in the IAF tACS condition, we also found a correlation between the magnitude of the alpha lateralization and the attentional bias effect. Our results support a functional role of alpha oscillations in visuospatial attention and the potential of tACS to modulate it. The frequency-specificity of the effects suggests that an individualization of the stimulation frequency is necessary in heterogeneous target groups with a large variation in IAF.
Collapse
Affiliation(s)
- S K Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands.
| | - A T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - T A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - S Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - P De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - T Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| |
Collapse
|
18
|
Individually optimized multi-channel tDCS for targeting somatosensory cortex. Clin Neurophysiol 2021; 134:9-26. [PMID: 34923283 DOI: 10.1016/j.clinph.2021.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive neuro-modulation technique that delivers current through the scalp by a pair of patch electrodes (2-Patch). This study proposes a new multi-channel tDCS (mc-tDCS) optimization method, the distributed constrained maximum intensity (D-CMI) approach. For targeting the P20/N20 somatosensory source at Brodmann area 3b, an integrated combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis is used with individualized skull conductivity calibrated realistic head modeling. METHODS Simulated electric fields (EF) for our new D-CMI method and the already known maximum intensity (MI), alternating direction method of multipliers (ADMM) and 2-Patch methods were produced and compared for the individualized P20/N20 somatosensory target for 10 subjects. RESULTS D-CMI and MI showed highest intensities parallel to the P20/N20 target compared to ADMM and 2-Patch, with ADMM achieving highest focality. D-CMI showed a slight reduction in intensity compared to MI while reducing side effects and skin level sensations by current distribution over multiple stimulation electrodes. CONCLUSION Individualized D-CMI montages are preferred for our follow up somatosensory experiment to provide a good balance between high current intensities at the target and reduced side effects and skin sensations. SIGNIFICANCE An integrated combined MEG and EEG source analysis with D-CMI montages for mc-tDCS stimulation potentially can improve control, reproducibility and reduce sensitivity differences between sham and real stimulations.
Collapse
|
19
|
Lobo T, Brookes MJ, Bauer M. Can the causal role of brain oscillations be studied through rhythmic brain stimulation? J Vis 2021; 21:2. [PMID: 34727165 PMCID: PMC8572434 DOI: 10.1167/jov.21.12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated the causal relevance of brain oscillations using rhythmic stimulation, either through direct-brain or sensory stimulation. Yet, how intrinsic rhythms interact with the externally generated rhythm is largely unknown. We presented a flickered (60 Hz) visual grating or its correspondent unflickered stimulus in a psychophysical change detection task during simultaneous magnetoencephalography recordings to humans to test the effect of visual entrainment on induced gamma oscillations. Notably, we generally observed the coexistence of the broadband induced gamma rhythm with the entrained flicker rhythm (reliably measured in each participant), with the peak frequency of the induced response remaining unaltered in approximately half of participants—relatively independently of their native frequency. However, flicker increased broadband induced gamma power, and this was stronger in participants with a native frequency closer to the flicker frequency (resonance) and led to strong phase entrainment. Presence of flicker did not change behavior itself but profoundly altered brain behavior correlates across the sample: While broadband induced gamma oscillations correlated with reaction times for unflickered stimuli (as known previously), for the flicker, the amplitude of the entrained flicker rhythm (but no more the induced oscillation) correlated with reaction times. This, however, strongly depended on whether a participant's peak frequency shifted to the entrained rhythm. Our results suggests that rhythmic brain stimulation leads to a coexistence of two partially independent oscillations with heterogeneous effects across participants on the downstream relevance of these rhythms for behavior. This may explain the inconsistency of findings related to external entrainment of brain oscillations and poses further questions toward causal manipulations of brain oscillations in general.
Collapse
Affiliation(s)
- Tanya Lobo
- School of Psychology, University of Nottingham, University Park, Nottingham, UK.,
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham, UK.,
| | - Markus Bauer
- School of Psychology, University of Nottingham, University Park, Nottingham, UK.,
| |
Collapse
|
20
|
van der Plas M, Braun V, Stauch BJ, Hanslmayr S. Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation. PLoS Biol 2021; 19:e3001363. [PMID: 34582432 PMCID: PMC8478201 DOI: 10.1371/journal.pbio.3001363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions. Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. An incidental finding from a simultaneous EEG-TMS experiment reveals that applying 1-Hz repetitive transcranial magnetic stimulation to this area of the brain improves memory performance by modulating neural activity in parietal regions.
Collapse
Affiliation(s)
- Mircea van der Plas
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Verena Braun
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Benjamin Johannes Stauch
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Fehér KD, Nakataki M, Morishima Y. Phase-Synchronized Transcranial Alternating Current Stimulation-Induced Neural Oscillations Modulate Cortico-Cortical Signaling Efficacy. Brain Connect 2021; 12:443-453. [PMID: 34210152 DOI: 10.1089/brain.2021.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Synchronized oscillatory brain activity is considered a basis for flexible neuronal network communication. However, the causal role of inter-regional oscillatory phase relations in modulating signaling efficacy in cortical networks has not been directly demonstrated in humans so far. Aim: The current study addresses the causal role of transcranial alternating current stimulation (tACS)-induced oscillatory cross-network phase relations in modulating signaling efficacy across human cortical networks. Methods: To this end, concurrent tACS, transcranial magnetic stimulation (TMS), and electroencephalography (EEG) were employed to measure the modulation of excitability and signaling efficacy across cortical networks during externally induced neural oscillations. Theta oscillatory activity was introduced through tACS in two nodes of the human frontoparietal network: the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Six Hertz tACS was applied to the DLPFC and PPC simultaneously in an in-phase or antiphase manner. In addition, single-pulse TMS was administered over the DLPFC at four different phases of tACS and the propagation of TMS-evoked neuronal activity was measured with EEG. Results: We show that tACS-induced theta oscillations modulate TMS-evoked potentials (TEPs) in a phase-dependent manner, and that the induced oscillatory phase relation across the frontoparietal network affects the propagation of phase-dependent TEPs within as well as beyond the frontoparietal network. Conclusion: We show that the effect of tACS-induced phase relation across the frontoparietal network on signal transmission extends beyond the frontoparietal network. The results support a causal role of inter-nodal oscillatory phase synchrony in routing cortico-cortical information flow.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Masahito Nakataki
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.,Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
22
|
Coldea A, Morand S, Veniero D, Harvey M, Thut G. Parietal alpha tACS shows inconsistent effects on visuospatial attention. PLoS One 2021; 16:e0255424. [PMID: 34351972 PMCID: PMC8341497 DOI: 10.1371/journal.pone.0255424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a popular technique that has been used for manipulating brain oscillations and inferring causality regarding the brain-behaviour relationship. Although it is a promising tool, the variability of tACS results has raised questions regarding the robustness and reproducibility of its effects. Building on recent research using tACS to modulate visuospatial attention, we here attempted to replicate findings of lateralized parietal tACS at alpha frequency to induce a change in attention bias away from the contra- towards the ipsilateral visual hemifield. 40 healthy participants underwent tACS in two separate sessions where either 10 Hz tACS or sham was applied via a high-density montage over the left parietal cortex at 1.5 mA for 20 min, while performance was assessed in an endogenous attention task. Task and tACS parameters were chosen to match those of previous studies reporting positive effects. Unlike these studies, we did not observe lateralized parietal alpha tACS to affect attention deployment or visual processing across the hemifields as compared to sham. Likewise, additional resting electroencephalography immediately offline to tACS did not reveal any notable effects on individual alpha power or frequency. Our study emphasizes the need for more replication studies and systematic investigations of the factors that drive tACS effects.
Collapse
Affiliation(s)
- Andra Coldea
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Stephanie Morand
- School of Life Sciences, MVLS College, University of Glasgow, Glasgow, United Kingdom
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Monika Harvey
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Stecher HI, Notbohm A, Kasten FH, Herrmann CS. A Comparison of Closed Loop vs. Fixed Frequency tACS on Modulating Brain Oscillations and Visual Detection. Front Hum Neurosci 2021; 15:661432. [PMID: 34248524 PMCID: PMC8261289 DOI: 10.3389/fnhum.2021.661432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022] Open
Abstract
Transcranial alternating current stimulation has emerged as an effective tool for the exploration of brain oscillations. By applying a weak alternating current between electrodes placed on the scalp matched to the endogenous frequency, tACS enables the specific modulation of targeted brain oscillations This results in alterations in cognitive functions or persistent physiological changes. Most studies that utilize tACS determine a fixed stimulation frequency prior to the stimulation that is kept constant throughout the experiment. Yet it is known that brain rhythms can encounter shifts in their endogenous frequency. This could potentially move the ongoing brain oscillations into a frequency region where it is no longer affected by the stimulation, thereby decreasing or negating the effect of tACS. Such an effect of a mismatch between stimulation frequency and endogenous frequency on the outcome of stimulation has been shown before for the parietal alpha-activity. In this study, we employed an intermittent closed loop stimulation protocol, where the stimulation is divided into short epochs, between which an EEG is recorded and rapidly analyzed to determine a new stimulation frequency for the next stimulation epoch. This stimulation protocol was tested in a three-group study against a classical fixed stimulation protocol and a sham-treatment. We targeted the parietal alpha rhythm and hypothesized that this setup will ensure a constant close match between the frequencies of tACS and alpha activity. This closer match should lead to an increased modulation of detection of visual luminance changes depending on the phase of the tACS and an increased rise in alpha peak power post stimulation when compared to a protocol with fixed pre-determined stimulation frequency. Contrary to our hypothesis, our results show that only a fixed stimulation protocol leads to a persistent increase in post-stimulation alpha power as compared to sham. Furthermore, in none of the stimulated groups significant modulation of detection performance occurred. While the lack of behavioral effects is inconclusive due to the short selection of different phase bins and trials, the physiological results suggest that a constant stimulation with a fixed frequency is actually beneficial, when the goal is to produce persistent synaptic changes.
Collapse
Affiliation(s)
- Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4all", Carl von Ossietzky University, Oldenburg, Germany
| | - Annika Notbohm
- Department of Neurological Rehabilitation, Municipal Hospital of Bremen, Bremen, Germany
| | - Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4all", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4all", Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
24
|
Hosseinian T, Yavari F, Biagi MC, Kuo MF, Ruffini G, Nitsche MA, Jamil A. External induction and stabilization of brain oscillations in the human. Brain Stimul 2021; 14:579-587. [PMID: 33781955 PMCID: PMC8144019 DOI: 10.1016/j.brs.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Neural oscillations in the cerebral cortex are associated with a range of cognitive processes and neuropsychiatric disorders. However, non-invasively modulating oscillatory activity remains technically challenging, due to limited strength, duration, or non-synchronization of stimulation waveforms with endogenous rhythms. Objective We hypothesized that applying controllable phase-synchronized repetitive transcranial magnetic stimulation pulses (rTMS) with alternating currents (tACS) may induce and stabilize neuro-oscillatory resting-state activity at targeted frequencies. Methods Using a novel circuit to precisely synchronize rTMS pulses with phase of tACS, we empirically tested whether combined, 10-Hz prefrontal bilateral stimulation could induce and stabilize 10-Hz oscillations in the bilateral prefrontal cortex (PFC). 25 healthy participants took part in a repeated-measures design. Whole-brain resting-state EEG in eyes-open (EO) and eyes-closed (EC) was recorded before (baseline), immediately (1-min), and 15- and 30-min after stimulation. Bilateral, phase-synchronized rTMS aligned to the positive tACS peak was compared with rTMS at tACS trough, with bilateral tACS or rTMS on its own, and to sham. Results 10-Hz resting-state PFC power increased significantly with peak-synchronized rTMS + tACS (EO: 44.64%, EC: 46.30%, p < 0.05) compared to each stimulation protocol on its own, and sham, with effects spanning between prefrontal and parietal regions and sustaining throughout 30-min. No effects were observed with the sham protocol. Moreover, rTMS timed to the negative tACS trough did not induce local or global changes in oscillations. Conclusion Phase-synchronizing rTMS with tACS may be a viable approach for inducing and stabilizing neuro-oscillatory activity, particularly in scenarios where endogenous oscillatory tone is attenuated, such as disorders of consciousness or major depression. Non-invasively inducing and stabilizing neural oscillations remains challenging. We develop a controllable phase-synchronized circuit to combine rTMS and tACS. This circuit was tested for inducing 10 Hz oscillations in healthy prefrontal cortex. 10 Hz rTMS synchronized to the positive 10 Hz tACS peak induced stable after-effects. Phase-synchronized stimulation is a viable approach for oscillatory neuromodulation.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | - Fatemeh Yavari
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | | | - Min-Fang Kuo
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | | | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany; Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany; Laboratory for Neuropsychiatry & Neuromodulation, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Kasten FH, Herrmann CS. Discrete sampling in perception via neuronal oscillations-Evidence from rhythmic, non-invasive brain stimulation. Eur J Neurosci 2020; 55:3402-3417. [PMID: 33048382 DOI: 10.1111/ejn.15006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/26/2022]
Abstract
A variety of perceptual phenomena suggest that, in contrast to our everyday experience, our perception may be discrete rather than continuous. The possibility of such discrete sampling processes inevitably prompts the question of how such discretization is implemented in the brain. Evidence from neurophysiological measurements suggest that neural oscillations, particularly in the lower frequencies, may provide a mechanism by which such discretization can be implemented. It is hypothesized that cortical excitability is rhythmically enhanced or reduced along the positive and negative half-cycle of such oscillations. In recent years, rhythmic non-invasive brain stimulation approaches such as rhythmic transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are increasingly used to test this hypothesis. Both methods are thought to entrain endogenous brain oscillations, allowing them to alter their power, frequency, and phase in order to study their roles in perception. After a brief introduction to the core mechanisms of both methods, we will provide an overview of rTMS and tACS studies probing the role of brain oscillations for discretized perception in different domains and will contrast these results with unsuccessful attempts. Further, we will discuss methodological pitfalls and challenges associated with the methods.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
26
|
Conscious perception of flickering stimuli in binocular rivalry and continuous flash suppression is not affected by tACS-induced SSR modulation. Conscious Cogn 2020; 82:102953. [PMID: 32450496 DOI: 10.1016/j.concog.2020.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
The content of conscious perception is known to correlate with steady-state responses (SSRs), yet their causal relationship remains unclear. Can we manipulate conscious perception by directly interfering with SSRs through transcranial alternating current stimulation (tACS)? Here, we directly addressed this question in three experiments involving binocular rivalry and continuous flash suppression (CFS). Specifically, while participants (N = 24) viewed either binocular rivalry or tried to detect stimuli masked by CFS, we applied sham or real tACS across parieto-occipital cortex at either the same or a different frequency and phase as an SSR eliciting flicker stimulus. We found that tACS did not differentially affect conscious perception in the forms of predominance, CFS detection accuracy, reaction time, or metacognitive sensitivity, confirmed by Bayesian statistics. We conclude that tACS application at frequencies of stimulus-induced SSRs does not have perceptual effects and that SSRs may be epiphenomenal to conscious perception.
Collapse
|
27
|
Deng Y, Reinhart RMG, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. eLife 2019; 8:e51184. [PMID: 31782732 PMCID: PMC6904218 DOI: 10.7554/elife.51184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. However, there is no evidence that parietal alpha controls auditory spatial attention. Here, we performed high definition transcranial alternating current stimulation (HD-tACS) on human subjects performing an auditory task in which they directed attention based on either spatial or nonspatial features. Alpha (10 Hz) but not theta (6 Hz) HD-tACS of right parietal cortex interfered with attending left but not right auditory space. Parietal stimulation had no effect for nonspatial auditory attention. Moreover, performance in post-stimulation trials returned rapidly to baseline. These results demonstrate a causal, frequency-, hemispheric-, and task-specific effect of parietal alpha brain stimulation on top-down control of auditory spatial attention.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical EngineeringBoston UniversityBostonUnited States
| | | | - Inyong Choi
- Communication Sciences and DisordersUniversity of IowaIowa CityUnited States
| | - Barbara G Shinn-Cunningham
- Biomedical EngineeringBoston UniversityBostonUnited States
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
28
|
Kasten FH, Duecker K, Maack MC, Meiser A, Herrmann CS. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat Commun 2019; 10:5427. [PMID: 31780668 PMCID: PMC6882891 DOI: 10.1038/s41467-019-13417-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
Transcranial electrical stimulation (tES) of the brain can have variable effects, plausibly driven by individual differences in neuroanatomy and resulting differences of the electric fields inside the brain. Here, we integrated individual simulations of electric fields during tES with source localization to predict variability of transcranial alternating current stimulation (tACS) aftereffects on α-oscillations. In two experiments, participants received 20-min of either α-tACS (1 mA) or sham stimulation. Magnetoencephalogram (MEG) was recorded for 10-min before and after stimulation. tACS caused a larger power increase in the α-band compared to sham. The variability of this effect was significantly predicted by measures derived from individual electric field modeling. Our results directly link electric field variability to variability of tACS outcomes, underline the importance of individualizing stimulation protocols, and provide a novel approach to analyze tACS effects in terms of dose-response relationships.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Katharina Duecker
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Marike C Maack
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Arnd Meiser
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany. .,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany. .,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
29
|
Schuhmann T, Kemmerer SK, Duecker F, de Graaf TA, ten Oever S, De Weerd P, Sack AT. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS One 2019; 14:e0217729. [PMID: 31774818 PMCID: PMC6881009 DOI: 10.1371/journal.pone.0217729] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Voluntary shifts of visuospatial attention are associated with a lateralization of parieto-occipital alpha power (7-13Hz), i.e. higher power in the hemisphere ipsilateral and lower power contralateral to the locus of attention. Recent noninvasive neuromodulation studies demonstrated that alpha power can be experimentally increased using transcranial alternating current stimulation (tACS). OBJECTIVE/HYPOTHESIS We hypothesized that tACS at alpha frequency over the left parietal cortex induces shifts of attention to the left hemifield. However, spatial attention shifts not only occur voluntarily (endogenous/ top-down), but also stimulus-driven (exogenous/ bottom-up). To study the task-specificity of the potential effects of tACS on attentional processes, we administered three conceptually different spatial attention tasks. METHODS 36 healthy volunteers were recruited from an academic environment. In two separate sessions, we applied either high-density tACS at 10Hz, or sham tACS, for 35-40 minutes to their left parietal cortex. We systematically compared performance on endogenous attention, exogenous attention, and stimulus detection tasks. RESULTS In the endogenous attention task, a greater leftward bias in reaction times was induced during left parietal 10Hz tACS as compared to sham. There were no stimulation effects in either the exogenous attention or the stimulus detection task. CONCLUSION The study demonstrates that high-density tACS at 10Hz can be used to modulate visuospatial attention performance. The tACS effect is task-specific, indicating that not all forms of attention are equally susceptible to the stimulation.
Collapse
Affiliation(s)
- Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Selma K. Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Tom A. de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Sanne ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
30
|
Distinct Montages of Slow Oscillatory Transcranial Direct Current Stimulation (so-tDCS) Constitute Different Mechanisms during Quiet Wakefulness. Brain Sci 2019; 9:brainsci9110324. [PMID: 31739576 PMCID: PMC6896026 DOI: 10.3390/brainsci9110324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Slow oscillatory- (so-) tDCS has been applied in many sleep studies aimed to modulate brain rhythms of slow wave sleep and memory consolidation. Yet, so-tDCS may also modify coupled oscillatory networks. Efficacy of weak electric brain stimulation is however variable and dependent upon the brain state at the time of stimulation (subject and/or task-related) as well as on stimulation parameters (e.g., electrode placement and applied current. Anodal so-tDCS was applied during wakefulness with eyes-closed to examine efficacy when deviating from the dominant brain rhythm. Additionally, montages of different electrodes size and applied current strength were used. During a period of quiet wakefulness bilateral frontolateral stimulation (F3, F4; return electrodes at ipsilateral mastoids) was applied to two groups: ‘Group small’ (n = 16, f:8; small electrodes: 0.50 cm2; maximal current per electrode pair: 0.26 mA) and ‘Group Large’ (n = 16, f:8; 35 cm2; 0.35 mA). Anodal so-tDCS (0.75 Hz) was applied in five blocks of 5 min epochs with 1 min stimulation-free epochs between the blocks. A finger sequence tapping task (FSTT) was used to induce comparable cortical activity across sessions and subject groups. So-tDCS resulted in a suppression of alpha power over the parietal cortex. Interestingly, in Group Small alpha suppression occurred over the standard band (8–12 Hz), whereas for Group Large power of individual alpha frequency was suppressed. Group Small also revealed a decrease in FSTT performance at retest after stimulation. It is essential to include concordant measures of behavioral and brain activity to help understand variability and poor reproducibility in oscillatory-tDCS studies.
Collapse
|
31
|
Modulation of Conflict Processing by Theta-Range tACS over the Dorsolateral Prefrontal Cortex. Neural Plast 2019; 2019:6747049. [PMID: 31360162 PMCID: PMC6644240 DOI: 10.1155/2019/6747049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/16/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Behavioral response conflict arises in the color-word Stroop task and triggers the cognitive control network. Midfrontal theta-band oscillations correlate with adaptive control mechanisms during and after conflict resolution. In order to prove causality, in two experiments, we applied transcranial alternating current stimulation (tACS) at 6 Hz to the dorsolateral prefrontal cortex (DLPFC) during Stroop task performance. Sham stimulation served as a control in both experiments; 9.7 Hz tACS served as a nonharmonic alpha band control in the second experiment. We employed generalized linear mixed models for analysis of behavioral data. Accuracy remained unchanged by any type of active stimulation. Over both experiments, the Stroop effect (response time difference between congruent and incongruent trials) was reduced by 6 Hz stimulation as compared to sham, mainly in trials without prior conflict adaptation. Alpha tACS did not modify the Stroop effect. Theta tACS can both reduce the Stroop effect and modulate adaptive mechanisms of the cognitive control network, suggesting midfrontal theta oscillations as causally involved in cognitive control.
Collapse
|
32
|
Benwell CSY, London RE, Tagliabue CF, Veniero D, Gross J, Keitel C, Thut G. Frequency and power of human alpha oscillations drift systematically with time-on-task. Neuroimage 2019; 192:101-114. [PMID: 30844505 PMCID: PMC6503153 DOI: 10.1016/j.neuroimage.2019.02.067] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/12/2019] [Accepted: 02/27/2019] [Indexed: 11/11/2022] Open
Abstract
Oscillatory neural activity is a fundamental characteristic of the mammalian brain spanning multiple levels of spatial and temporal scale. Current theories of neural oscillations and analysis techniques employed to investigate their functional significance are based on an often implicit assumption: In the absence of experimental manipulation, the spectral content of any given EEG- or MEG-recorded neural oscillator remains approximately stationary over the course of a typical experimental session (∼1 h), spontaneously fluctuating only around its dominant frequency. Here, we examined this assumption for ongoing neural oscillations in the alpha-band (8-13 Hz). We found that alpha peak frequency systematically decreased over time, while alpha-power increased. Intriguingly, these systematic changes showed partial independence of each other: Statistical source separation (independent component analysis) revealed that while some alpha components displayed concomitant power increases and peak frequency decreases, other components showed either unique power increases or frequency decreases. Interestingly, we also found these components to differ in frequency. Components that showed mixed frequency/power changes oscillated primarily in the lower alpha-band (∼8-10 Hz), while components with unique changes oscillated primarily in the higher alpha-band (∼9-13 Hz). Our findings provide novel clues on the time-varying intrinsic properties of large-scale neural networks as measured by M/EEG, with implications for the analysis and interpretation of studies that aim at identifying functionally relevant oscillatory networks or at driving them through external stimulation.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Psychology, School of Social Sciences, University of Dundee, Dundee, UK; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Raquel E London
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Chiara F Tagliabue
- CIMEC - Center for Mind/Brain Sciences, Università degli Studi di Trento, Trento, Italy
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität, Malmedyweg 15, 48149, Münster, Germany
| | - Christian Keitel
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
33
|
Wittenberg MA, Morr M, Schnitzler A, Lange J. 10 Hz tACS Over Somatosensory Cortex Does Not Modulate Supra-Threshold Tactile Temporal Discrimination in Humans. Front Neurosci 2019; 13:311. [PMID: 31001078 PMCID: PMC6456678 DOI: 10.3389/fnins.2019.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Perception of physical identical stimuli can differ over time depending on the brain state. One marker of this brain state can be neuronal oscillations in the alpha band (8–12 Hz). A previous study showed that the power of prestimulus alpha oscillations in the contralateral somatosensory area negatively correlate with the ability to temporally discriminate between two subsequent tactile suprathreshold stimuli. That is, with high alpha power subjects were impaired in discriminating two stimuli and more frequently reported to perceive only one stimulus. While this previous study found correlative evidence for a role of alpha oscillations on tactile temporal discrimination, here, we aimed to study the causal influence of alpha power on tactile temporal discrimination by using transcranial alternating current stimulation (tACS). We hypothesized that tACS in the alpha frequency should entrain alpha oscillations and thus modulate alpha power. This modulated alpha power should alter temporal discrimination ability compared to a control frequency or sham. To this end, 17 subjects received one or two electrical stimuli to their left index finger with different stimulus onset asynchronies (SOAs). They reported whether they perceived one or two stimuli. Subjects performed the paradigm before (pre), during (peri), and 25 min after tACS (post). tACS was applied to the contralateral somatosensory-parietal area with either 10, 5 Hz or sham on three different days. We found no significant difference in discrimination abilities between 10 Hz tACS and the control conditions, independent of SOAs. In addition to choosing all SOAs as the independent variable, we chose individually different SOAs, for which we expected the strongest effects of tACS. Again, we found no significant effects of 10 Hz tACS on temporal discrimination abilities. We discuss potential reasons for the inability to modulate tactile temporal discrimination abilities with tACS.
Collapse
Affiliation(s)
- Marc A Wittenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mitjan Morr
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
van Schouwenburg MR, Sörensen LKA, de Klerk R, Reteig LC, Slagter HA. No Differential Effects of Two Different Alpha-Band Electrical Stimulation Protocols Over Fronto-Parietal Regions on Spatial Attention. Front Neurosci 2018; 12:433. [PMID: 30018530 PMCID: PMC6037819 DOI: 10.3389/fnins.2018.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
In a previous study using transcranial alternating current stimulation (tACS), we found preliminary evidence that phase coherence in the alpha band (8–12 Hz) within the fronto-parietal network may critically support top-down control of spatial attention (van Schouwenburg et al., 2017). Specifically, synchronous alpha-band stimulation over the right frontal and parietal cortex (0° relative phase) was associated with changes in performance and fronto-parietal coherence during a spatial attention task as compared to sham stimulation. In the current study, we firstly aimed to replicate these findings with synchronous tACS. Second, we extended our previous protocol by adding a second tACS condition in which the right frontal and parietal cortex were stimulated in a desynchronous fashion (180° relative phase), to test the specificity of the changes observed in our previous study. Participants (n = 23) were tested in three different sessions in which they received either synchronous, desynchronous, or sham stimulation over the right frontal and parietal cortex. In contrast to our previous study, we found no spatially selective effects of stimulation on behavior or coherence in either stimulation protocol compared to sham. We highlight some of the differences in study design that may have contributed to this discrepancy in findings and more generally may determine the effectiveness of tACS.
Collapse
Affiliation(s)
- Martine R van Schouwenburg
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Lynn K A Sörensen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Raza de Klerk
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Leon C Reteig
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Stecher HI, Herrmann CS. Absence of Alpha-tACS Aftereffects in Darkness Reveals Importance of Taking Derivations of Stimulation Frequency and Individual Alpha Variability Into Account. Front Psychol 2018; 9:984. [PMID: 29973896 PMCID: PMC6019480 DOI: 10.3389/fpsyg.2018.00984] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/28/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) has found widespread use as a basic tool in the exploration of the role of brain oscillations. Many studies have shown that frequency-specific tACS is able to not only alter cognitive processes during stimulation, but also cause specific physiological aftereffects visible in the electroencephalogram (EEG). The relationship between the emergence of these aftereffects and the necessary duration of stimulation is inconclusive. Our goal in this study was to narrow down the crucial length of tACS-blocks, by which aftereffects can be elicited. We stimulated participants with α-tACS in four blocks of 1-, 3-, 5-, and 10-min length, once in increasing and once in decreasing order. After each block, we measured the resting EEG for 10 min during a visual vigilance task. We could not find lasting enhancement of α-power following any stimulation block, when comparing the stimulated groups to the sham group. These findings offer no information regarding the crucial stimulation duration. In addition, this conflicts with previous findings, showing a power increase following 10 min of tACS in the alpha range. We performed additional explorative analyses, based on known confounds of (1) mismatches between stimulation frequency and individual alpha frequency and (2) abnormalities in baseline α-activity. The results of an ANCOVA suggested that both factor explain variance, but could not resolve how exactly both factors interfere with the stimulation effect. Employing a linear mixed model, we found a significant effect of stimulation following 10 min of α-tACS in the increasing sequence and a significant effect of the mismatch between stimulated frequency and individual alpha frequency. The implications of these findings for future research are discussed.
Collapse
Affiliation(s)
- Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for all", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for all", Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
36
|
Fuscà M, Ruhnau P, Neuling T, Weisz N. Local Network-Level Integration Mediates Effects of Transcranial Alternating Current Stimulation. Brain Connect 2018; 8:212-219. [DOI: 10.1089/brain.2017.0564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Marco Fuscà
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Philipp Ruhnau
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Toralf Neuling
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
37
|
|
38
|
Wöstmann M, Vosskuhl J, Obleser J, Herrmann CS. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimul 2018; 11:752-758. [PMID: 29656907 DOI: 10.1016/j.brs.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spatial attention relatively increases the power of neural 10-Hz alpha oscillations in the hemisphere ipsilateral to attention, and decreases alpha power in the contralateral hemisphere. For gamma oscillations (>40 Hz), the opposite effect has been observed. The functional roles of lateralised oscillations for attention are currently unclear. HYPOTHESIS If lateralised oscillations are functionally relevant for attention, transcranial stimulation of alpha versus gamma oscillations in one hemisphere should differentially modulate the accuracy of spatial attention to the ipsi-versus contralateral side. METHODS 20 human participants performed a dichotic listening task under continuous transcranial alternating current stimulation (tACS, vs sham) at alpha (10 Hz) or gamma (47 Hz) frequency. On each trial, participants attended to four spoken numbers on the left or right ear, while ignoring numbers on the other ear. In order to stimulate a left temporo-parietal cortex region, which is known to show marked modulations of alpha power during auditory spatial attention, tACS (1 mA peak-to-peak amplitude) was applied at electrode positions TP7 and FC5 over the left hemisphere. RESULTS As predicted, unihemispheric alpha-tACS relatively decreased the recall of targets contralateral to stimulation, but increased recall of ipsilateral targets. Importantly, this spatial pattern of results was reversed for gamma-tACS. CONCLUSIONS Results provide a proof of concept that transcranially stimulated oscillations can enhance spatial attention and facilitate attentional selection of speech. Furthermore, opposite effects of alpha versus gamma stimulation support the view that states of high alpha are incommensurate with active neural processing as reflected by states of high gamma.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany.
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
39
|
Sheldon SS, Mathewson KE. Does 10-Hz Cathodal Oscillating Current of the Parieto-Occipital Lobe Modulate Target Detection? Front Neurosci 2018. [PMID: 29520215 PMCID: PMC5827548 DOI: 10.3389/fnins.2018.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phase of alpha (8–12 Hz) brain oscillations have been associated with moment to moment changes in visual attention and awareness. Previous work has demonstrated that endogenous oscillations and subsequent behavior can be modulated by oscillating transcranial current stimulation (otCS). The purpose of the current study is to establish the efficacy of cathodal otCS for modulation of the ongoing alpha brain oscillations, allowing for modulation of individual's visual perception. Thirty-six participants performed a target detection with sham and 10-Hz cathodal otCS. Each participant had two practice and two experimental sets composed of three blocks of 128 trials per block. Stimulating electrodes were placed on the participant's head with the anode electrode at Cz and the cathode electrode at Oz. A 0.5 mA current was applied every 100 ms (10 Hz frequency) during the otCS condition. The same current and frequency was applied for the first 10–20 s of the sham condition, after which the current was turned off. Target detection rates were compared between the sham and otCS experimental conditions in order to test for effects of otCS phase on target detection. We found no significant difference in target detection rates between the sham and otCS conditions, and discuss potential reasons for the apparent inability of cathodal otCS to effectively modulate visual perception.
Collapse
Affiliation(s)
- Sarah S Sheldon
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Learmonth G, Felisatti F, Siriwardena N, Checketts M, Benwell CSY, Märker G, Thut G, Harvey M. No Interaction between tDCS Current Strength and Baseline Performance: A Conceptual Replication. Front Neurosci 2017; 11:664. [PMID: 29249932 PMCID: PMC5717015 DOI: 10.3389/fnins.2017.00664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 01/05/2023] Open
Abstract
Several recent studies have reported non-linear effects of transcranial direct current stimulation (tDCS), which has been attributed to an interaction between the stimulation parameters (e.g., current strength, duration) and the neural state of the cortex being stimulated (e.g., indexed by baseline performance ability, age) (see Fertonani and Miniussi, 2016). We have recently described one such non-linear interaction between current strength and baseline performance on a visuospatial attention (landmark) task (Benwell et al., 2015). In this previous study, we induced a small overall rightward shift of spatial attention across 38 participants using bi-hemispheric tDCS applied for 20 min (concurrent left posterior parietal (P5) anode and right posterior parietal (P6) cathode) relative to a sham protocol. Importantly, this shift in bias was driven by a state-dependent interaction between current intensity and the discrimination sensitivity of the participant at baseline (pre-stimulation) for the landmark task. Individuals with high discrimination sensitivity (HDS) shifted rightward in response to low- (1 mA) but not high-intensity (2 mA) tDCS, whereas individuals with low discrimination sensitivity (LDS) shifted rightward with high- but not low-intensity stimulation. However, in Benwell et al. (2015) current strength was applied as a between-groups factor, where half of the participants received 1 mA and half received 2 mA tDCS, thus we were unable to compare high and low-intensity tDCS directly within each individual. Here we aimed to replicate these findings using a within-group design. Thirty young adults received 15 min of 1 and 2 mA tDCS, and a sham protocol, each on different days, to test the concept of an interaction between baseline performance and current strength. We found no overall rightward shift of spatial attention with either current strength, and no interaction between performance and current strength. These results provide further evidence of low replicability of non-invasive brain stimulation protocols, and the need for further attempts to replicate the key experimental findings within this field.
Collapse
Affiliation(s)
- Gemma Learmonth
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Matthew Checketts
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Christopher S Y Benwell
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gesine Märker
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom.,School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
41
|
Benwell CSY, Keitel C, Harvey M, Gross J, Thut G. Trial-by-trial co-variation of pre-stimulus EEG alpha power and visuospatial bias reflects a mixture of stochastic and deterministic effects. Eur J Neurosci 2017; 48:2566-2584. [PMID: 28887893 PMCID: PMC6221168 DOI: 10.1111/ejn.13688] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 11/28/2022]
Abstract
Human perception of perithreshold stimuli critically depends on oscillatory EEG activity prior to stimulus onset. However, it remains unclear exactly which aspects of perception are shaped by this pre‐stimulus activity and what role stochastic (trial‐by‐trial) variability plays in driving these relationships. We employed a novel jackknife approach to link single‐trial variability in oscillatory activity to psychometric measures from a task that requires judgement of the relative length of two line segments (the landmark task). The results provide evidence that pre‐stimulus alpha fluctuations influence perceptual bias. Importantly, a mediation analysis showed that this relationship is partially driven by long‐term (deterministic) alpha changes over time, highlighting the need to account for sources of trial‐by‐trial variability when interpreting EEG predictors of perception. These results provide fundamental insight into the nature of the effects of ongoing oscillatory activity on perception. The jackknife approach we implemented may serve to identify and investigate neural signatures of perceptual relevance in more detail.
Collapse
Affiliation(s)
- Christopher S Y Benwell
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, UK
| | - Christian Keitel
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, UK
| | - Monika Harvey
- School of Psychology, University of Glasgow, Glasgow, UK
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, UK
| |
Collapse
|