1
|
Chen JT, Kan NW, Barquero C, Teo MMJ, Wang CA. Saccade Latency and Metrics in the Interleaved Pro- and Anti-Saccade Task in Open Skill Sports Athletes. Scand J Med Sci Sports 2024; 34:e14713. [PMID: 39155402 DOI: 10.1111/sms.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Evidence has demonstrated that athletes exhibit superior cognitive performance associated with executive control. In the oculomotor system, this function has been examined using the interleaved pro-saccade and anti-saccade task (IPAST), wherein participants, prior to target appearance, are instructed to either automatically look at the peripheral target (pro-saccade) or suppress the automatic response and voluntarily look in the opposite direction (anti-saccade). While the IPAST has provided much insight into sensorimotor and inhibitory processing, it has yet to be performed in athletes. Moreover, limited research has examined saccade metrics in athletes. Here, we examined saccade latency and movement kinematics in the IPAST among athletes (N = 40) and nonathletes (NON) (N = 40). Higher direction error rates were obtained in the anti-saccade compared to the pro-saccade condition, with no differences between athletes and NON noted. Significantly faster saccade latencies were observed in athletes compared to NON in both conditions, in addition to faster pro-saccades compared to anti-saccades. Furthermore, athletes showed significantly higher frequencies and faster latencies of express saccades compared to NON in correct pro-saccades. Additionally, athletes exhibited significantly faster latencies of express saccades compared to NON in erroneous anti-saccades. Differences in saccade metrics between athletes and NON were not seen. Overall, these findings demonstrate that athletes display altered saccade performance likely associated with sensorimotor and preparatory processing, highlighting the potential of using IPAST to objectively investigate sensorimotor and cognitive functions in athletes.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Nai-Wen Kan
- Center of General Education, Taipei Medical University, Taipei City, Taiwan
| | - Cesar Barquero
- Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
| | - Moeka Mong Jia Teo
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei City, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Eye-Tracking Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
2
|
Luis-Del Campo V, Morenas Martín J, León Llamas JL, Ortega Morán JF, Díaz-García J, García-Calvo T. Influence of the time-task constraint on ocular metrics of semi-elite soccer players. SCI MED FOOTBALL 2024; 8:179-186. [PMID: 36695090 DOI: 10.1080/24733938.2023.2172203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
This study novelty aimed to investigate the influence of manipulating the available time to perform the training tasks on soccer players´ ocular metrics, following training. Specifically, pupillary response (pupil diameter) and saccadic features (latency, accuracy, velocity, and number) were measured with a portable eye tracker following training to reflect the mental load accumulated by players during the training sessions. Nine semi-elite soccer players performed two training sessions, based on large-sided games, on an artificial grass field. These two sessions were composed of the same tasks but varying the required time to complete the task goals (Session 1: No time limitations to perform the tasks; Session 2: Limited time to perform the tasks). The participants performed, before (pre-test) and after (post-test) each training session, a prosaccade task in a room near the playing field. Findings revealed a differentiated effect of the available time to complete the training tasks on ocular metrics because significant differences were found in all variables after training (p < .001 for pupil diameter; p < .01 for saccade accuracy and number of saccades; p < .05 for saccade velocity and latency). Ocular metrics could be a promising tool to evaluate mental load following practice because they were sensitive to the time-task constraint, providing researchers a valuable information for a better planning of the mental workload when designed training tasks.
Collapse
Affiliation(s)
- Vicente Luis-Del Campo
- Facultad de Ciencias del Deporte, Laboratorio de Aprendizaje y Control Motor. Universidad de Extremadura. Avda. de la Universidad, Cáceres (Cáceres), Spain
| | - Jesús Morenas Martín
- Facultad de Ciencias del Deporte, Laboratorio de Aprendizaje y Control Motor. Universidad de Extremadura. Avda. de la Universidad, Cáceres (Cáceres), Spain
| | - Juan Luis León Llamas
- Facultad de Ciencias del Deporte, Laboratorio de Aprendizaje y Control Motor. Universidad de Extremadura. Avda. de la Universidad, Cáceres (Cáceres), Spain
| | - Juan Francisco Ortega Morán
- Unidad de Bioingeniería y Tecnologías Sanitarias, Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
| | - Jesús Díaz-García
- Grupo de análisis comportamental de la actividad física y el deporte. Facultad de Ciencias del Deporte Universidad de Extremadura, Avda. de la Universidad, Cáceres (Cáceres), Spain
| | - Tomás García-Calvo
- Grupo de análisis comportamental de la actividad física y el deporte. Facultad de Ciencias del Deporte Universidad de Extremadura, Avda. de la Universidad, Cáceres (Cáceres), Spain
| |
Collapse
|
3
|
Nakazato R, Aoyama C, Komiyama T, Himo R, Shimegi S. Table tennis players use superior saccadic eye movements to track moving visual targets. Front Sports Act Living 2024; 6:1289800. [PMID: 38406764 PMCID: PMC10884183 DOI: 10.3389/fspor.2024.1289800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Table tennis players perform visually guided visuomotor responses countlessly. The exposure of the visual system to frequent and long-term motion stimulation has been known to improve perceptual motion detection and discrimination abilities as a learning effect specific to that stimulus, so may also improve visuo-oculomotor performance. We hypothesized and verified that table tennis players have good spatial accuracy of saccades to moving targets. Methods University table tennis players (TT group) and control participants with no striking-sports experience (Control group) wore a virtual reality headset and performed two ball-tracking tasks to track moving and stationary targets in virtual reality. The ball moved from a predetermined position on the opponent's court toward the participant's court. A total of 54 conditions were examined for the moving targets in combinations of three ball trajectories (familiar parabolic, unfamiliar descent, and unfamiliar horizontal), three courses (left, right, and center), and six speeds. Results and discussion All participants primarily used catch-up saccades to track the moving ball. The TT group had lower mean and inter-trial variability in saccade endpoint error compared to the Control group, showing higher spatial accuracy and precision, respectively. It suggests their improvement of the ability to analyze the direction and speed of the ball's movement and predict its trajectory and future destination. The superiority of the spatial accuracy in the TT group was seen in both the right and the left courses for all trajectories but that of precision was for familiar parabolic only. The trajectory dependence of improved saccade precision in the TT group implies the possibility that the motion vision system is trained by the visual stimuli frequently encountered in table tennis. There was no difference between the two groups in the onset time or spatial accuracy of saccades for stationary targets appearing at various positions on the ping-pong table. Conclusion Table tennis players can obtain high performance (spatial accuracy and precision) of saccades to track moving targets as a result of motion vision ability improved through a vast amount of visual and visuo-ocular experience in their play.
Collapse
Affiliation(s)
- Riku Nakazato
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryoto Himo
- Faculty of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satoshi Shimegi
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
4
|
Song A, Gabriel R, Mohiuddin O, Whitaker D, Wisely CE, Kim T. Automated Eye Tracking Enables Saccade Performance Evaluation of Patients with Concussion History. Optom Vis Sci 2023; 100:855-860. [PMID: 38033013 DOI: 10.1097/opx.0000000000002090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
SIGNIFICANCE Automated eye tracking could be used to evaluate saccade performance of patients with concussion history, providing quantitative insights about the degree of oculomotor impairment and potential vision rehabilitation strategies for this patient population. PURPOSE To evaluate the saccade performance of patients with concussion history based on automated eye-tracking test results. METHODS We conducted a retrospective study of patients with concussion history, primarily from sports participation, who underwent oculomotor testing based on an eye-tracking technology at the Duke Eye Center vision rehabilitation clinic between June 30, 2017, and January 10, 2022. Patients' saccade test results were reviewed, including saccade fixation and saccade speed/accuracy ratio. The outcomes were compared with age-matched normative population data derived from healthy individuals. Multiple linear regression analyses were performed to identify factors associated with saccade performance among patients with concussion history. RESULTS On hundred fifteen patients with concussion history were included in the study. Patients with concussion, on average, had fewer fixations on self-paced horizontal and vertical saccade tests and lower horizontal and vertical saccade speed/accuracy ratios compared with normative ranges. Among patients with concussion history, multiple linear regression analyses showed that older age was associated with fewer fixations on horizontal and vertical saccade tests, whereas male sex was associated with more fixations on horizontal and vertical saccade tests (all P < .01). In addition, older age was associated with lower horizontal saccade speed/accuracy ratio, after adjusting for sex, number of concussion(s), and time from most recent concussion to oculomotor testing ( P < .001). CONCLUSIONS Patients with concussion history had lower saccade performance based on eye tracking compared with healthy individuals. We additionally identified risk factors for lower saccade performance among patients with concussion history. These findings support the use of saccade test results as biomarkers for concussion and have implications for post-concussion rehabilitation strategies.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, North Carolina
| | - Rami Gabriel
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Omar Mohiuddin
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Diane Whitaker
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | - Terry Kim
- Department of Ophthalmology, Duke University, Durham, North Carolina
| |
Collapse
|
5
|
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, Heath M, Kuwamizu R, Soya H, Hillman CH, Ando S, Alderman BL, Cheval B, Kramer AF. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:568-591. [PMID: 37148971 PMCID: PMC10466196 DOI: 10.1016/j.jshs.2023.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise, and Health, University of Basel, Basel 4052, Switzerland
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Notger G Müller
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08854, USA
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva 1205, Switzerland; Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva 1205, Switzerland
| | - Arthur F Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
6
|
Kunita K, Fujiwara K. Influence of sports experience on distribution of pro-saccade reaction time under gap condition. J Physiol Anthropol 2022; 41:4. [PMID: 35081976 PMCID: PMC8793195 DOI: 10.1186/s40101-022-00277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies indicated that substantial individual variation exists in the distribution of pro-saccade reaction times under gap condition. To investigate the influence of sports experience on the distribution, we examined distribution of the pro-saccade reaction time under overlap and gap conditions, for the basketball club, table tennis club, and non-sporting control groups. Methods Subjects performed pro-saccade tasks under the overlap and gap conditions, in which the intentional and reflexive disengagement of fixation are important, respectively. Under the overlap condition, the central fixation point was illuminated for a random duration of 1–3 s, then the fixation point was turned off. Just after the switch-off of the fixation point, one of the peripheral targets was illuminated for a duration of 1 s. The visual stimulus under the gap condition was almost the same as that under the overlap condition. However, only the temporal gap between the switch-off of the fixation point and the onset of the target differed between those conditions. The gap duration in the gap condition was set at 200 ms. The mean of median value of the bandwidth showing the earliest peak in the histogram was calculated for each group. Thereafter, for each subject, the bandwidth showing the earliest peak under the gap condition was defined as the criterion bandwidth (0 ms bandwidth). Based on this criterion bandwidth, the mean of the relative frequency was calculated for every 10 ms of bandwidth, for the overlap and gap conditions, in each group. Results Under the overlap condition, for all subjects, the pro-saccade reaction times showed unimodal distribution. The means of the median value of the bandwidth showing the earliest peak for the basketball and table tennis groups (approximate 170 ms) were significantly earlier than that for the control group (approximate 190 ms). Under the gap condition, the distribution was bimodal for 11 of 15 subjects in the basketball group and for 5 of 15 subjects in the control group. In the table tennis group, the distribution was not bimodal but unimodal for all 15 subjects. For the basketball group, mean of the relative frequency showed bimodal distribution with approximate 120 ms and 170 ms peaks. For the table tennis and control groups, the mean of the relative frequency showed unimodal distribution with approximate 130 ms and 140ms peak, respectively. Conclusions The present study indicated that under the gap condition, the sports experience influenced on the distribution of the pro-saccade reaction time. The pro-saccade reaction time under the condition would show a distinct bimodal distribution for the basketball group and show a distinct and early unimodal distribution for the table tennis group. It was suggested that the physiological factor leading the group difference in the distribution was the effect of sports experience on the disengagement function of fixation.
Collapse
|